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Abstract
Background: Signalling pathways relay information by transmitting signals from cell surface
receptors to intracellular effectors that eventually activate the transcription of target genes. Since
signalling pathways involve several types of molecular interactions including protein-protein
interactions, we postulated that investigating their organization in the context of the global protein-
protein interaction network could provide a new integrated view of signalling mechanisms.

Results: Using a graph-theory based method to analyse the fly protein-protein interaction
network, we found that each signalling pathway is organized in two to three different signalling
modules. These modules contain canonical proteins of the signalling pathways, known regulators
as well as other proteins thereby predicted to participate to the signalling mechanisms.
Connections between the signalling modules are prominent as compared to the other network's
modules and interactions within and between signalling modules are among the more central
routes of the interaction network.

Conclusion: Altogether, these modules form an interactome sub-network devoted to signalling
with particular topological properties: modularity, density and centrality. This finding reflects the
integration of the signalling system into cell functioning and its important role connecting and
coordinating different biological processes at the level of the interactome.

Background
'Interactomes' are novel biological entities that corre-
spond, ideally and formally, to the complete set of inter-
actions existing between all the macromolecules of an
organism [1]. Currently, the available interactomes are
primarily formed by protein-protein interaction (PPIs)
networks in which the interactions have been experimen-
tally obtained either from high throughput experiments
(such as large-scale two hybrid screens and affinity purifi-

cations/mass spectrometry [2-12]) or by different types of
low-scale experiments. Despite the fact that interactomes
are far from being complete, the current PPI maps (for
yeast, worm, fly and human) form large intricate networks
[13-16].

Concurrently to the deciphering of the interactomes, bio-
informatics methods allowing their analysis have been
developed. Since interaction networks are represented by
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complex graphs in which nodes correspond to proteins
and edges to their interactions, a number of these meth-
ods have been grounded on principles deriving from
graph partitioning theory such as the search for interac-
tion-dense regions [17,18], shortest paths in the graph
[19], graph disconnection according to edge betweenness
[20,21], the sharing of interactors [22,23] or a combina-
tion thereof [24] (see [25,26] for review). All these algo-
rithms partition the interaction network into sub-graphs.
Among those, the PRODISTIN method that we previously
proposed [22] allows the functional classification of the
proteins through the computation of a distance reflecting
the sharing of interactors between each possible protein
pair. As previously demonstrated, proteins participating
to the same cellular processes are clustered by the method
into the same PRODISTIN classes [22,27].

Signalling consists of multiple sequential events which
relay information by transmitting signals from cell surface
receptors to intracellular effectors that eventually activate
the transcription of target genes. These events are pro-
moted by specific interactions between signalling mole-
cules (proteins, lipids, ions) among which the more
prominent and numerous are the protein-protein ones.
Essentially due to the temporal dynamics of signal trans-
duction and to the experimental choices often made for
investigation (mainly genetics), the signalling mecha-
nisms have long been perceived and described as distinct
and isolated linear cascades of reactions, namely the sig-
nalling pathways. Nowadays, this vision is progressively
changing with the discovery of important crosstalks
between pathways [28,29] and the assumption that
unknown crosstalks should be responsible for the diffi-
culty to predict output states for particular pathways
[29,30]. Finally, the discovery of large numbers of new
participants to well known signalling pathways in meta-
zoans, resulting from novel investigations using func-
tional genomics and proteomics methods [31-39], is
widening the signalling space [40].

We have taken advantages of our recent efforts 1) in par-
ticipating to the deciphering [5] and the manual curation
of the Drosophila interactome [41] and 2) in developing
PRODISTIN, an interactome analysis method [22,27], to
investigate the topological organization of the signalling
pathways when embedded within a global PPI network.
This may predict the participation of unforeseen actors to
the pathways and provide an integrated view of the signal-
ling mechanisms by assessing the existence of important
interactions between them.

Thus, we have applied the PRODISTIN method to a high
quality Drosophila interactome. We established and ana-
lyzed the functional classification of the proteins partici-
pating to 9 canonical signalling pathways and identified

12 classes which potentially correspond to 12 functional
modules. From the detailed analysis of these modules,
their composition and interconnections, it appears that
the linear perception of the signalling pathways does not
resist to a global interactome analysis. Rather, our work
delineates a highly modular and interconnected signal-
ling network showing a central and plausibly organiza-
tional position within the global interactome.

Results
Functional classification from the protein-protein 
interaction network: a bi- to tri-partite organization of the 
signalling pathways based on the sharing of interactors
In Drosophila, at least eleven pathways are crucial for sig-
nalling in development and adult cell physiology, namely
the Wingless (WG), Hedgehog (HH), Notch (N), Decap-
entaplegic (TGF), Janus Kinases and Signal Transducers
and Activators of Transcription (JAK-STAT), Sevenless
(SEV), Torso (TOR), Epidermal Growth Factor Receptor
(EGFR), Insulin (INS), Toll (TOL) and Fibroblast Growth
Factor (FGF) pathways. These pathways have been chosen
for the subsequent analysis and according to our curation
of the literature (see Methods for details, Additional file
1), each of them transmits external signals through a cas-
cade of reactions mediated by a ten of canonical proteins
(10.63 on average). Given that these proteins are parts of
a larger PPI network, studying the structure of these signal-
ling pathways with an interactome perspective may bring
new insights not only into their composition and possible
regulation but also their integration into cell functioning.

For this purpose, a high confidence Drosophila interac-
tome composed of 2894 binary protein-protein interac-
tions involving 2939 proteins (see Methods) was
analyzed with the PRODISTIN method [22,27]. Briefly,
this interactome analysis method first calculates a func-
tional distance between each possible pairs of proteins in
the interaction network with regard to the number of
interactors they share (in order to reduce the weight of
spurious interactions in the computation, proteins must
have a connectivity k ≥ 3 to be considered further); the dis-
tance values are then clustered leading to a classification
tree which is subsequently subdivided into formal classes,
using the tree topology and the functional annotations of
the proteins (see Methods and [22] for detailed explana-
tions and statistical assessments).

In the present work, we obtained a classification tree con-
taining 472 proteins (Figure 1) among which 58 are
canonical components of 9 out of the 11 signalling path-
ways cited above. The FGF and JAK-STAT pathways were
not further investigated because 80 to 100% of their
canonical proteins are so poorly connected in the high
quality interactome that they are not classified. On aver-
age, 68% of the canonical signalling proteins initially
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taken into consideration are present in the classification
tree (Figure 1).

Then, in order to annotate this tree following the PRO-
DISTIN procedure, classes of proteins involved in the
same cellular function(s) were defined according to the
GO Biological Process ontology. Among the PRODISTIN

classes containing less than 20 proteins (which are nested
into larger ones since the method uses a tree representa-
tion and Gene Ontology displays a hierarchical organiza-
tion), those containing at least one canonical protein have
been chosen to be further investigated. Twelve such
classes have been identified, containing 56/58 of the
canonical proteins present in the tree (Figure 1, Addi-

The Prodistin classification tree and the signalling PRODISTIN classesFigure 1
The Prodistin classification tree and the signalling PRODISTIN classes. The Drosophila PRODISTIN classification 
tree contains 472 Drosophila proteins. Protein names have been omitted for clarity. PRODISTIN classes containing signalling 
canonical proteins are coloured in magenta in the tree. Purple branches carry canonical proteins. Classes are named and num-
bered according to the signalling pathway's proteins they contain. When proteins from several pathways are present in the 
same class, the names of the different pathways are juxtaposed. For sake of clarity, the RAS cascade is clearly identified as such 
despite we didn't consider it as a pathway on its own. Details of the class proteins are shown in boxes using Flybase symbols 
for genes: canonical proteins are purple, non-canonical ones are magenta.
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tional file 2). On average, these PRODISTIN classes con-
tain 9.75 proteins among which 48% are canonical
proteins from the signalling pathways. All these classes
but one are annotated with a GO Biological Process term
related to 'Signal Transduction', or are nested within a
larger class annotated with such a term (by nature, a
nested class inherits the annotations of all its parent
classes) (Additional file 2). Noticeably, the 'Signal trans-
duction'-related annotation of almost all these classes is
supported by the best p-value (calculated as the over-rep-
resentation of the considered GO term in the class com-
pared with the tree [27]) (Additional file 2), reinforcing
the proposal that the proteins belonging to these classes
are signalling actors.

We then investigated the detailed distribution of the
canonical proteins by analyzing the 12 PRODISTIN
classes. Whereas one could have anticipated the clustering
of the proteins participating to the same signalling path-
way into one single class, it strikingly turned out that with-
out any exception for the 9 considered pathways, the
canonical proteins were distributed into 2 or 3 classes per
pathway (2.33 on average). Since the PRODISTIN method
clusters proteins sharing common interactors [22], this
result means that the canonical proteins of a particular
pathway belonging to a same class share more common
interactors between them and with the other non-canoni-
cal proteins of the same class than with the other canoni-
cal proteins of the same pathway found in other classes.
As a control, ten randomization experiments in which
protein names have been randomly assigned to tree
branches (see Methods) showed that this clustering pat-
tern could not have happened by chance since the canon-
ical proteins of a pathway are then found distributed
among 5.75 (± 0.6) classes on average.

As a conclusion, the analysis based on the sharing of inter-
actors overall suggests a bi- to tri-partite organization of
each fly signalling pathway within the interactome.

The distribution of GO annotations among PRODISTIN 
classes reflects the polarity of signal transduction: toward 
the notion of 'signalling modules'
For a better understanding of the functional significance
of this bi- to tri-partite organization of the signalling path-
ways, we investigated the class composition and the func-
tions of the classified proteins based on Gene Ontology
annotations [42]. Using the 'Cellular Component' and the
'Molecular Function' ontologies, we investigated the
repartition of protein localizations and molecular func-
tions in each PRODISTIN class (see Methods for details,
Figure 2a and 2b). In addition, we verified that the GO
term corresponding to the main sub-cellular localization
of each PRODISTIN class was statistically over-repre-
sented among the annotations of all the proteins of the

class as compared to the fly proteome using the statistical
tool of GOToolBox [43] (Additional file 2).

Qualitatively, when considering the main localization of
the classes containing the canonical proteins of a given
pathway, the sub-cellular polarity of the pathway is per-
ceptible. Indeed, these proteins are subdivided into
classes mainly membrane or membrane/cytoplasm-
located, and classes mainly cytoplasmic or cytoplasm/
nucleus-located (Figure 2a). This partition of the canoni-
cal proteins in classes of different main sub-cellular local-
izations is also corroborated by the distribution of the
Molecular Function annotations found within the classes
(Figure 2b). Indeed, proteins acting at the same level of a
signalling pathway through their interactions, such as lig-
ands and receptors, are clustered in the same class. In
other words, when the proteins of a particular pathway are
considered, although the dynamic aspect of signalling is
not taken into account for this analysis, the 'Molecular
Function' and the 'Cellular Component' annotations of
the clustered proteins reflect the polarity of signal trans-
duction (Figure 2b). Taken all together, these results lead
us to propose that the identified PRODISTIN classes may
correspond to 'signalling modules' defined as groups of
signalling proteins acting together through their interac-
tions.

The composition of the signalling modules reflects close 
relationships between pathways
Since only 12 modules have been identified and each of
the 9 pathways is split into 2 to 3 modules, some modules
must necessarily include components belonging to more
than one pathway. Indeed, whereas 8 out of 12 signalling
modules contain canonical proteins from a single path-
way, the 4 others enclose proteins from several pathways
(Figure 1). These modules contain proteins from the
Wingless and the Notch pathways (class WG1 N1), the
Wingless, Notch and TGF pathways (class N2 WG3
TGF3), the Sevenless-Ras and the Insulin pathways (class
SEV RAS1 INS1) and the Hedgehog and EGFR pathways
(class HH2 EGFR). In 3 out of 4 of these 'mosaic' mod-
ules, several canonical proteins of the different pathways
interact directly (for instance, Notch (N) from the epo-
nymic pathway interacts with wingless (wg) and dishev-
elled (dsh) from the Wingless pathway, class WG1 N1)
(Additional file 3). These protein-protein interactions
have different functional contributions to signalling:
those mediating a functional crosstalk which involves
information transfer from a pathway to another, such as
dsh (from the Wingless pathway) inhibiting Notch signal-
ling through its physical interaction with N [44], those
revealing the sharing of a component between pathways,
such as the use of groucho (gro) from the Wingless path-
way as a co-repressor in Notch and TGF signalling [45,46]
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Gene Ontology annotations of the signalling modulesFigure 2
Gene Ontology annotations of the signalling modules. The 12 classes identified by the PRODISTIN method are repre-
sented as pie charts. They show the proportion of proteins annotated with the terms: Nucleus (wheat), Cytoplasm (salmon) 
and Membrane/Extracellular (blue) for the Cellular Component ontology (a) and Receptor/Ligand (dark blue), Kinase/Hydro-
lase (dark red), DNA binding proteins (yellow), Others (turquoise) for the Molecular Function ontology (b). For visualization 
sake, the pie charts have been ordered along the horizontal axis according to the signalling pathways they correspond to, and 
along the vertical axis according to their main subcellular localization.
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and those for which no functional role is known so far
(detailed in Additional file 3).

The fourth mosaic module, HH2 EGFR, suggests a poten-
tial link between the Hedgehog and the EGFR pathways
since patched (ptc), the receptor of the Hedgehog path-
way, is classified with the membrane/cytoplasmic part of
the EGFR cascade (Figure 1). This co-classification is not
due to a direct interaction between canonical proteins of
the pathways but rather by the sharing of interactors.
Indeed, the EGFR ligand gurken (grk) and sprouty (sty), a
negative regulator of the pathway, share respectively one
and four interactors with ptc. Interestingly, two of these
interactors (trol and Ppn) are peptidoglycans known to
modulate the signal activity by sequestering ligand mole-
cules or by favouring the ligand-receptor interaction,
therefore stressing the coherence of the classification.

Finally, the fact that the HH2 EGFR and the SEV RAS1
INS1 classes contain the membrane proteins of four sig-
nalling pathways known to use lipid rafts for signal trans-
duction [47] is also remarkable and reinforces the
functional consistency of the modules found by the anal-
ysis.

Overall, these results show that although the analysis is
anchored on separate linear cascades (represented by their
canonical proteins), the co-classification of some of their
components by the PRODISTIN method reveals their
close functional relationships.

Signalling modules contain other proteins related to 
signalling: validations and predictions
The PRODISTIN method clusters proteins participating in
the same cellular process by grouping proteins that share
interactors. The obtained clusters then provide a mean to
identify potential new players in given cellular processes
based on their co-classification with proteins clearly
involved in these processes [22]. On average, half of the
proteins contained in the signalling modules are not
canonical proteins. This accounts for 61 proteins out of
117 proteins contained within the signalling modules.
Although these 61 proteins are candidates to participate in
signalling, our results obtained on a high quality interac-
tome may be dependent on its relative small size. Indeed,
a large number of available but possibly false interactions
have not been incorporated in the high quality interac-
tome and an unknown number of not yet detected but
physiological interactions is probably missing. We thus
address the robustness of our predictions based on co-
classifications by proposing as putative new members or
regulators of the signalling pathways only the proteins
systematically found clustered with the canonical proteins
both in the high quality network and in a larger one, con-
taining almost all available Drosophila interactions

(22819 interactions) (see Methods for details). As a result,
45/61 non canonical proteins contained in the signalling
modules are robustly clustered with the canonical pro-
teins (Table 1, Additional file 4). Twenty of them corre-
spond to already known regulators of the pathways after
literature and Gene Ontology annotation searches, thus
validating our approach. In addition and noticeably, 15
other proteins are members of alternate or other path-
ways. Here again, we observed that a given signalling
module may contain canonical proteins from a particular
pathway as well as proteins from another pathway. Inter-
estingly, proteins belonging to signalling pathways not
chosen to 'anchor' the analysis (such as IMD (= Immune
Deficiency) and JNK (= Jun N-terminal kinase)) are classi-
fied within signalling modules defined by the 'anchoring'
pathways (TGF1 and TOL2 for IMD, HH2 EGFR and TOR
RAS2 for JNK). This finding raises the number of classified
pathways from 9 to 11, therefore heavily underlining the
fact that with a PPI network perspective, signalling path-

Table 1: Functional status of the proteins classified with 
canonical proteins in each signalling module.

R AO P

INS2 Pk61C
TGF1 th

Iap2
Rpr

Grim
N2 run Gug

WG3 h Kr
TGF3 CtBP

eve
TfIIB
nej
Sir2

TGF2 tin
TOL2 smt3 Dredd CaMKII

lwr BG4
TOL1 Pli
WG2 CG3402
HH1 CG32209

WG1 N1 Wnt4 CG3962
Pk CG7818

Vang
HH2 trol Btk29A ImpE1
EGF sty

stet
ru

rho-4
TOR msk Pyd Loco
RAS2 ksr R CG8965

cnk Rap2l
Rgl
Cno

R, protein already known to regulate the pathway; AO, protein 
known to be involved in alternate or other pathways; P, protein 
predicted to be involved in the pathway by this analysis.
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ways are intermingled. The functional consequences of
this observation may reside in the integration of the sig-
nalling processes and their capacity to rapidly respond to
diverse extra-cellular stimuli.

Signalling modules contain new potential actors of the 
pathways
Finally, among the 45 non-canonical pathway proteins
robustly found in the 12 signalling modules, 10 proteins
are neither known regulators of the pathways nor mem-
bers of other pathways (Table 1, Additional file 4). They
are thus predicted by the classification to participate to
signalling processes. Five of them have been previously
described as involved in other biological processes (Addi-
tional file 4) but their domain composition is compatible
with a possible implication in signalling. The five others
(described below) did not have any Gene Ontology Bio-
logical Process annotations in FlyBase at the time of the
work but arguments from the literature available for 4 of
them suggest their potential role as components, regula-
tors or effectors of the signalling pathways in Drosophila.

Hedgehog pathway
CG32209/Serpentin is found in the HH1 module, con-
taining the hedgehog (hh), smoothened (smo), costal-2
(cos), fused (fu), Suppressor of fused (Su(fu)) and cubitus
interruptus (ci) proteins. It has been recently involved in
late tracheal development [48,49]. Its possible involve-
ment in the Hedgehog pathway is suggested by several
lines of evidence. First, CG32209 is interacting with the
receptor patched (ptc) and the transcription factor ci via
two different domains with a high confidence score [5].
Second, CG32209 contains a Low Density Lipoprotein
(LDL)-like receptor domain and hedgehog is a lipidated
molecule. From a genetic point of view, a transposon
insertion into CG32209 is presumably lethal [50] and the
gene belongs to a complementation group rescuing the
jaft mutation, identified in an enhancer/suppressor
genetic screen designed to characterize novel components
of the Hedgehog pathway [51].

Notch pathway
CG3962/Keap1 is found in the signalling module WG1
N1 containing the Notch (N) and Delta (Dl) proteins and
interacts with Dl. Taken together with the facts that 1) the
human ortholog KEAP1 is an adaptor protein regulating
steady-state levels of the transcription factor NRF2 in
response to oxidative stress [52] and 2) the accumulation
of reactive oxygen species in mammalian cells was
recently shown to occur following disruption of Notch
signalling [53], CG3962 may play a role in the Notch
pathway.

Ras pathway
In agreement with its classification in the signalling mod-
ule containing the cytoplasmic part of the Ras cascade
(TOR RAS2), CG8965, which contains two RA (Ras-asso-
ciated) domains, was recently proposed to represent a Ras
effector candidate based on its interactors [5].

Wingless pathway
CG3402 belongs to the WG2 module containing the cyto-
plamic part of the Wingless pathway (armadillo (arm),
shaggy (sgg), Axin (Axn), Adenomatous polyposis coli
tumor suppressor homolog 2 (Apc2), Casein Kinase I
alpha (CkIalpha) and CG3402). The protein contains a
single PDZ domain – usually found in diverse signalling
proteins – of 123 amino-acids, evolutionarily conserved
from arthropods to humans, which is interacting with arm
with a very high confidence score [6]. The interaction is
conserved throughout the evolution since recorded in C.
elegans [4], M. musculus and H. sapiens [54]. Intriguingly,
CG3402 also interacts with an arrestin-like protein of
unknown function (CG18745) [6], whereas arrestins are
regulators of (G-protein)-coupled receptor signalling
[55], and G-proteins are involved in both the canonical
and the non-canonical Wingless pathways [56]. Finally,
the facts that the mammalian ortholog is implicated in
(G-protein)-coupled receptor signalling [57] and inhibits
the transcriptional activity of β-catenin [54], strongly sug-
gest that CG3402 may represent a new player of the Dro-
sophila Wingless pathway.

Interactions between modules define the signalling 
network
The composition of the signalling modules defined by our
interactome analysis method shows that signalling path-
ways are closely intertwined. This observation naturally
prompted us to next investigate the interactions between
signalling modules. An interaction linking any protein of
a signalling module to a protein belonging to another sig-
nalling module is considered here as a link between those
modules. We then differentiate intra-pathway links i.e
between the different modules assigned to a same signal-
ling pathway, excluding links within a module, and inter-
pathways links between modules of different signalling
pathways. Among the 30 links connecting the 12 signal-
ling modules together (Additional file 5), 53% corre-
spond to intra-pathway links whereas the other 47% are
inter-pathways links (Figure 3). Thus, there is almost no
numerical difference between the 'classical pattern' of
interactions of the signalling modules in the spirit of the
linear cascade and the links between signalling modules
of different signalling pathways. This observation holds
when considering, the interaction pattern of each protein
of the signalling modules in the larger dataset (42% intra-
pathways links, 58% inter-pathways links). Given that
almost all inter-pathways links (13 out of the 14, Figure 3)
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involve canonical signalling proteins (Additional file 5),
these results are thus extending our previous observation
that signalling pathways are intertwined within modules,
to a higher organizational level corresponding to the links
between signalling modules. The functional contributions
of these particular interactions to signalling are diverse
and are detailed in Additional file 5.

Is the interaction pattern between signalling modules dif-
ferent from the one between other PRODISTIN classes
composing the interactome? To test this, we calculated the
density of interactions linking the modules as the number
of existing interactions between modules compared to the
number of possible ones (see Methods for details). We
found that whereas the average density of interactions
within modules does not show any important discrepancy

between the signalling modules and the other classes
(0.39 ± 0.17 vs. 0.35 ± 0.16 respectively), the average den-
sity between them shows variations (Table 2). Indeed, the
average density of interactions between signalling mod-
ules is 6 times higher than between non-signalling PRO-
DISTIN classes. It is also 2 times higher than between all
the classes composing the interactome (Table 2). Finally,
it is 3 times higher than the average density calculated
between 12 classes picked randomly, taken as a control
(see Methods for details).

These results are obtained on a high quality but relatively
reduced interactome. Consequently, they might be influ-
enced by the size of the interactome studied. We re-calcu-
lated the density measures between modules after
considering the interaction patterns of each protein in the

Table 2: Interaction densities between modules.

Dataset Between signalling modules (× 
10-3)

Between all modules except 
signalling (× 10-3)

Between all modules (× 10-3) Between modules taken 
randomly (× 10-3)

High-
quality

5.15 0.86 2.72 1.6

Large 7.73 4.69 4.73 4.02

Interactions between signalling modulesFigure 3
Interactions between signalling modules. The 12 signalling modules identified by the PRODISTIN method are repre-
sented as circles. The lines between circles represent the 30 protein-protein interactions linking the signalling modules. The 16 
blue lines and the 14 red lines correspond to protein-protein interactions linking different modules in the same pathway and in 
different pathways respectively. The INS2 module is disconnected from the other signalling modules since only direct interac-
tions between modules are here represented.
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larger dataset. We showed that again, the average density
of interactions between the signalling modules is still 1.6
times higher than between all classes and twice as high as
between random classes (Table 2).

A numerical bias towards signalling interactions in the
studied datasets may have influenced the density results.
As a matter of fact, whereas the mean connectivity of the
proteins of the high quality PPI network is almost 2, the
canonical proteins are connected to 5.17 interactors on
average. Are the signalling proteins genuinely more con-
nected than others datasets' proteins because of their
intrinsic signalling function or is it explained by the fact
that a larger number of interactions is known for signal-
ling proteins due to their extensive investigation? This
question has been addressed by analyzing the number of
interactors identified for both types of proteins (signalling
canonical vs. others) in a same set of experiments, there-
fore in a context devoid of any bias. We compared the
number of interactors identified for 13 of the canonical
proteins when tested as baits in the LS-Y2H screen of
Formstecher et al. [5] to the number of interactors found
for the 86 other baits tested in the same screen. In these
conditions, canonical proteins are 1.6 times more con-
nected than other proteins (9.15 interactors on average vs.
5.89 for non canonical and 5.97 for randomly picked pro-
teins, Additional file 6). In addition, whereas 7.6% of the
interactions of the canonical baits involve another canon-
ical protein, only 1.4% of the interactions of non canoni-
cal proteins do. Therefore, these results provide support to
the fact that the observed higher density of links between
signalling modules is not due to a bias towards signalling
interactions but rather to the natural higher connectivity
of the signalling proteins and their propensity to interact
with other proteins involved in signalling.

Taken together, these results thus suggest that we here
define a modular sub-network of the interactome devoted
to signalling into which interactions between signalling
modules are prominent.

The signalling network lies centrally in the interactome
The betweenness of an edge is the number of shortest
paths between all possible pairs of nodes that run along it
(Figure 4A). This graph topological feature has been used
to define community structures in networks and to parti-
tion them [20,21]. It is assumed that when communities
are loosely connected by few edges, all shortest paths
between node pairs must run through those, therefore
leading to a high edge-betweenness (EB) value. Consist-
ently, when the EB values are calculated for all the Dro-
sophila network's edges, signalling modules are linked by
high betweenness edges (19167 paths/edge on average vs.
5304 paths/edge on average for all network's edges).

Edge-betweenness is also interpreted as a measure of net-
work centrality [58,59]. Indeed, edges with high EB values
have been proposed to control the communications
between network's nodes and to contribute to the cohe-
siveness of the network. In this respect, signalling proc-
esses are expected to contain a large number of edges with
a high EB value. In order to test this possibility, we studied
the distribution of the EB values on the complete network.
Then, considering separately two subsets of edges, inter-
nal and external to the signalling network, we determined
their repartitions among each of the 4 interquartile inter-
vals of the EB values distribution (see Methods for details)
(Figure 4, Additional file 7). Whereas the edges external to
the signalling network are evenly distributed between the
four intervals of the distribution (Figure 4b, right), the
edges internal to the signalling network exhibit a non-uni-
form distribution with two striking features. On one
hand, half of them (47%, p < 10-12) belongs to the fourth
interval of the distribution. This interval contains the
higher EB values of the distribution, corresponding to the
more central routes of the network according to the EB
definition. On the other hand, the internal edges are
almost absent of the second interval of the distribution (p
< 10-22). This interval is essentially populated by the out-
ward edges of the network, connecting proteins solely
linked to the connected component via one interaction.
Therefore, the edges of the signalling network are
excluded from the periphery of the network and the
number of shortest paths running along them is signifi-
cantly high. The signalling network thus appears to lie
centrally in the interactome based on the EB calculation.
This result may reflect the important role of the signalling
network in connecting and coordinating the different bio-
logical processes and the integration of the signalling sys-
tem into cell functioning.

Discussion
By computing the Drosophila interactome, we identified
a modular signalling network lying centrally in the net-
work after its topological properties. The deciphering of
this highly connected sub-network underlines the topo-
logical importance of the interactions between signalling
modules for the coherence of the interactome. The study
also contributes to identify potential new players in Dro-
sophila signalling.

It is important to note that the PPI network is static and
does not contain any spatio-temporal information. There-
fore, our conclusions are drawn from the analysis of 'a
long-exposure photograph' [60] of the interactions
between proteins, i.e. the set of all possible interactions in
all possible biological contexts.
Page 9 of 17
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Computation of the Drosophila interactions: quality 
assessment
Protein-protein interaction networks have been often sus-
pected to contain erroneous interactions, to be incom-
plete and biased towards certain type of interactions. For
these reasons, our conclusions have been drawn from the
analysis of a high quality interaction dataset in order to
minimize the weight of potential false positive interac-
tions. In addition, in order to build robust predictions and
conclusions, we have reinforced and validated them on a
larger dataset containing almost all the currently known
Drosophila PPIs. This step insures that the results
obtained on the high quality dataset are not sensitive to
missing interactions and robust to potential false positive
ones. The PRODISTIN method has also been largely sta-

tistically assessed for robustness against the presence of
false interactions in a previous study [22].

Functional modules devoted to signalling
The present analysis identified a signalling network
formed by 12 groups of proteins organized around signal-
ling proteins, that we assimilated to 'signalling modules'.
Although several different definitions of 'modules' are
found in the literature, from static to dynamic (for exam-
ples [61-63]), it is however admitted that they form
groups of molecules, possibly evolutionary conserved,
involved in the same pathway, the same protein complex
or the same cellular process. In our experiments as well as
in others [17,19,22], modules identified by the computa-
tion of interaction networks are generally more than
molecular complexes. They may contain proteins belong-

Analysis of edge-betweenness distribution in the Drosophila PPI networkFigure 4
Analysis of edge-betweenness distribution in the Drosophila PPI network. (a) A theoretical example of a network 
between 10 vertices linked by 13 edges (both solid and dashed lines) for the 'shortest path' and the 'edge-betweenness' (EB) 
definitions. The shortest path between two nodes represents the path for which the number of edges is minimized: the short-
est path between nodes b and j is represented by the path in dashed lines. The betweenness of an edge represents the number 
of shortest paths running through it. For instance, the EB value of the edge i-j corresponds to the number of nodes in the rest 
of the graph; the EB value of the edge a-b is 1, because only the shortest path between the nodes a and b runs through this 
edge; the EB value of the edge e-g is the higher of the graph since all shortest paths between nodes located on the left part on 
one hand, and on the right part on the other hand, must run along it. (b) Piecharts showing the repartition of the subsets of 
edges internal (left) and external (right) to the signalling network among the 4 interquatile intervals of the EB values distribu-
tion. For each subset of edges, the interquartile intervals (labelled from 1 to 4) are indicated by the same colors (chart in the 
middle).
Page 10 of 17
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ing to complexes as well as regulatory proteins and/or
proteins involved in the same cellular process through
interactions. These proteins thus do not necessarily act
and bind each other at the same location and time in the
cell. As a consequence, a common sub-cellular localiza-
tion of the proteins of a same functional module is not
mandatorily expected since, as known for numbers of sig-
nalling proteins, they may shuttle and translocate from
one sub-cellular compartment to another to perform their
function(s). Indeed, we observed that half of the Dro-
sophila signalling modules are distributed between two
sub-cellular localizations and the other half between 3
(Figure 2a).

The identification of functional modules allowed us to
predict the participation of 10 potential new actors to
Drosophila signalling. None of them was found in the
high-throughput RNAi screens recently performed on
Drosophila signalling pathways [31-35]. This lack of over-
lap is probably due to the fact that RNAi screens identify
regulators of the pathways which may act not only
through protein-protein interactions but also through
protein and other molecules (nucleic acids, lipids, ions)
direct or indirect interactions.

Modularity and signalling
By anchoring our analysis on the currently known signal-
ling pathways herein considered as models [64], and by
computing the PPI network they belong to, we showed
their systematic bi- to tri-partite modular organization.
Here, we generalize an observation made on one pathway
of a unicellular eukaryote [19] to the major signalling
pathways of a metazoan organism. Moreover, preliminary
results obtained on the human interactome (Baudot,
Brun, Jacq, unpublished) confirm this organization, at
least for the Wnt pathway. Indeed, the human functional
homologs of the canonical proteins of the Drosophila
Wingless pathway are also distributed between 3 signal-
ling modules (Figure 5). Moreover, the internal composi-
tion of each signalling module appears to be conserved
throughout evolution.

In theory, the modular organization of the biological net-
works has been proposed to favour and even ensure the
insulation necessary to the correct accomplishment of cer-
tain cellular process on one hand, and the connections
needed to integrate information from multiple sources on
the other hand [61]. Remarkably, these properties consti-
tute two important needs of the signalling process. So,
how does this modular organization of the signalling
pathways delineated by computational means fit with the
functional requirements and principles of the signalling
mechanisms? In mammalian cells, the Ras/MAPK signal-
ling takes place in several subcellular compartments
(plasma membrane, endosomes, endoplasmic reticulum,

Golgi apparatus and mitochondria) [65]. It was shown
experimentally that the sensitivity to an input of a MAPK
module downstream of Ras – composed of RAF, ERK,
MEK and KSR – is determined by its spatial localization
[66]. In Drosophila, we found the Ras pathway organized
in 2 modules: SEV RAS1 INS1, formed by the membrane-
bound proteins of the pathway and TOR RAS2, formed by
kinases and the scaffold protein. Interestingly, the latter
recapitulates the tested mammalian MAPK module.
Indeed, it contains the Drosophila counterparts of the
mammalian proteins belonging to the tested module
(namely phl for RAF, Dsor1 for MEK and ksr for KSR).
Taken together, these results lead to the proposal that the
organization of the signalling pathways into different
modules may provide the flexibility necessary to the func-
tioning of the same signalling pathway in different spatial,
cellular or developmental contexts, aiming probably at
increasing the output repertoire complexity.

High density and high betweenness of edges: two 
topological features specific to the signalling network
Two graph features, density and betweenness of edges,
allowed us to delineate the signalling sub-network from
the rest of the network. These topological characteristics –
a high density of edges linking the modules and the high
number of shortest paths running through the signalling
network's edges – reveal the central position of the signal-
ling network within the global interactome. Hence, the
role of the signalling mechanisms in connecting and coor-
dinating the diverse cellular processes is here underlined
by graph features.

Edge-betweenness is a common concept in graph analysis.
However, the question of its exact functional biological
meaning remains open. The signalling network encom-
passes a large number of edges with high EB values. This
leads to envisage that this could reflect, like in social net-
works [58], an information flow in spite of the fact that
edges in PPI networks are not directed. This last statement
agrees with the recent proposal of Yu and colleagues that
nodes linked by such edges correspond to the dynamic
components of the PPI network [59].

Conclusion
We propose here a systems-level analysis of signal trans-
duction from a protein-protein network point of view.
Overall, our results reflect the integration of the signalling
system into cell functioning and its important role in con-
necting and coordinating the different biological proc-
esses at the level of the interactome.

Methods
Protein-protein interactions datasets
The high quality protein-protein interactions dataset is
composed of 2894 binary interactions between 2939 pro-
Page 11 of 17
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teins. It was created by joining 970 interactions extracted
from literature (deposited in the Intact database [41]), to
the interactions identified in two LS-Y2H screens with a
high confidence score: 584 interactions from Formstecher
et al. (with A, B or C PBS scores) [5] (i.e. 25% of the inter-
actions identified in this screen) and 1395 interactions
from Giot et al. (score > 0,8) [6] (i.e. 7% of the interac-
tions identified in this screen).

The large dataset contains 22819 interactions and is
intended to represent our present view of the Drosophila
interactome (probably largely incomplete and with an

unknown proportion of false positive interactions). It
contains the 970 interactions extracted from the literature
and the complete sets of interactions identified in the two
LS-Y2H screens cited above, depleted of 7% of their inter-
actions respectively. These 7% correspond to the interac-
tions with the lowest confidence scores in each of the
screens. Finally, 1654 interactions from Stanyon et al. [67]
were also added.

Furthermore, and with the aim of limiting the effect of
false positive interactions, each interaction was weighted
depending on its reliability. Taken into account that inter-

The human functional homologs of the Drosophila Wingless pathway are also distributed in 3 signalling modulesFigure 5
The human functional homologs of the Drosophila Wingless pathway are also distributed in 3 signalling mod-
ules. The 3 Drosophila PRODISTIN classes containing the canonical proteins (magenta) of the Wingless pathway (left side) are 
presented in front of the 3 subtrees containing their functional homologs in the human classification tree (right side).
Page 12 of 17
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actions are taken from different sources and therefore are
provided with confidence scores calculated differently, we
determined the weights as follows:

- 2894 interactions coming from the high quality dataset
are weighted with the maximum value, 1;

- interactions from Giot et al. [6] given by the authors with
a probability score between 0.5 and 0.8 and interactions
from Stanyon et al. [67] are weighted with an intermediate
value of 0.5;

- interactions from Giot et al. [6] given by the authors with
a probability score below 0.5 as well as Formstecher et al.
[5]interactions with a PBS D score are weighted with a
minimum value of 0.1.

PRODISTIN functional classification
Applying the Prodistin method on the high quality protein-protein 
interactions dataset
We used the PRODISTIN method [22] through the Prodis-
tin Web Site [27]. Starting with a list of binary interac-
tions, only proteins involved in at least three binary
interactions are selected for further classification in order
to reduce the weight of spurious interactions. The server
then computes the Czekanowski-Dice distance between
all possible pairs of proteins (for details, see [22]). The
obtained values are subsequently clustered using the
BioNJ algorithm [68], leading to a classification tree con-
taining 472 proteins. PRODISTIN functional classes are
identified as the largest possible sub-tree composed of at
least 3 proteins sharing the same Gene Ontology (Febru-
ary 29th, 2006 version) Biological Process annotations
[42] and representing at least 50% of the class members
for which an annotation is available. For each protein, the
complete hierarchy of annotation terms is considered
(child and all parents). Given the large number of anno-
tations for proteins, the majority of PRODISTIN classes
are nested within other PRODISTIN classes.

The result of the computation is then visualized as a col-
oured classification tree using an integrated TreeDyn
module [69] as a tree viewer.

The method has formerly led to the prediction of the cel-
lular function of uncharacterized yeast proteins [22] and
the definition of a scale of functional divergence for yeast
paralogs based on PPIs [13]. It has also been recently used
through its automated version [27] to explore a predicted
genetic interaction network of C. elegans [70].

Canonical proteins and PRODISTIN classes identification
Canonical proteins (see Additional file 1) were identified
from the literature as the main actors of the 'canonical sig-
naling pathways', defined according to STKE as 'idealized

or generalized pathways that represent common proper-
ties of a particular signalling module or pathway' [71].

Signalling classes are identified as classes containing less
than 20 proteins and containing at least one canonical
protein. Other PRODISTIN classes are identified as non-
overlapping classes of the same size.

PRODISTIN method on the large weighted protein-protein 
interactions dataset
Aiming at increasing the efficiency and the reliability of
the PRODISTIN classification for large networks, we used
in the computation of the distance, the interactions' con-
fidence scores provided in the different large-scale experi-
ments. These confidence scores can be considered as
probabilities of interactions and were used to weight the
edges of the interaction graph. In order to enable the PRO-
DISTIN method to be applied to weighted networks, we
propose to extend the formula of the Czekanowski-Dice
distance as follows [72]. This distance was used to cluster
graphs Γ = (X, E) where X is a set of n vertices and E a set
of m edges. The original distance formula is:

where Δ is the symmetric difference between two sets,

 the neighborhood of x extended by x itself:

 = {x} ∪ {y|(x, y) ∈ E}.

The new distance between each pair (x, y) is computed in
a graph Γ = (X, E, W) where W is the weight function W :
X × X → [0,1].

where:

with Y = Γ (x) Ω Γ (y)

We then applied the PRODISTIN method based on the
new distance formula for weighted edges, on a list of
22819 binary weighted interactions. The obtained classifi-
cation tree contained 3975 proteins. Since more than 40%
of the tree proteins are of unknown function, only a small
number of PRODISTIN classes were identified in this tree.
Thus, for comparison purposes, we here considered sub-
trees (based on topology only) instead of PRODISTIN
classes when necessary.
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GO annotation analysis
The Gene Ontology (version February 29th, 2006) Cellu-
lar Component annotations of each signalling module
protein have been slimmed to a list of annotations com-
prising the 4 following terms: Membrane or Extracellular,
Cytoplasm, Nucleus and Other. Similarly, the GO Molec-
ular Function annotations have also been simplified to a
list of 4 terms: Receptor or Ligand, Kinase or Hydrolase,
Transcription Factor and Others. Pie charts shown in Fig-
ure 2 represent the proportion of the different slimmed
annotations for modules' proteins. For multi-annotated
proteins, each annotation is given an equal weight such
that the sum of the weights is equal to 1.

Density calculation
The density of links Di within a class X1 and De between
two classes X1 and X2 in a graph Γ = (X, E) are defined by
the two formulas:

The density of links within a class Di corresponds to the
number of observed links between the class' vertices
divided by the number of possible links.

The density of links between a set of more than 2 classes
is calculated as the sum of densities between all pairs of
classes divided by the number of possible pairs between
classes.

Edge betweenness calculation and distribution study
The total number of shortest paths between all pairs of
vertices in a graph that run through a given edge defines
its edge-betweenness. If there is more than one shortest
path between a pair of vertices, each path is given an equal
weight such as the total weight of all paths is equal to 1
[21]. The EB value has been calculated for the 2061 edges
of the interactome. Then, we considered 2 subsets of
edges:

- the 188 edges linking the proteins belonging to the sig-
nalling network, hereafter called 'internal' to the signal-
ling network

- the other 1873 edges connecting either two proteins out-
side of the signalling network or one inside and one out-
side, hereafter called 'external' to the signalling network.

For each subset, the repartition of the corresponding EB
values is represented according to the interquartile inter-
vals of the initial EB value distribution as piecharts (Figure
4b).

P-values are calculated using the hypergeometric distribu-
tion.
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Additional file 1
Canonical signalling proteins. List of proteins selected as canonical pro-
teins (see Methods) for each of the 10 signalling pathways. Protein names 
correspond to FlyBase gene symbols.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-45-S1.xls]

Additional file 2
Signalling modules details. Class name and class members, class anno-
tations and p-values for each annotation; annotation(s) of the larger class 
and number of proteins in the larger class when the signalling classes are 
nested into larger ones; p-value of the slimmed GO Cellular Component 
annotation which is over-represented in each class, computed with the 
GOStat statistical tool of GOToolBox [33].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-45-S2.xls]

Additional file 3
Interactions between canonical pathways. List of protein-protein inter-
actions between canonical proteins from different signalling pathways 
belonging to a same signalling module. For each interaction, the literature 
source and a short description are given, when available.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-45-S3.xls]

Additional file 4
Functional status and Gene Ontology annotations of the proteins clas-
sified with canonical proteins in each signalling module. The func-
tional status of each protein found in signalling modules (except canonical 
proteins) is defined as R when the protein is already known to regulate the 
pathway; AO, when the protein is known to be involved in alternate or 
other pathways; P, when the protein is predicted to be involved in the path-
way by this analysis. For each protein, all available GO annotations in the 
Biological Process, Molecular Function and Cellular Component ontolo-
gies are given. GO annotations are printed in blue if they correspond to a 
predicted annotation (inferred from Sequence Similarity or Inferred from 
Electronic Annotation) and not to an experimentally proven function.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-45-S4.xls]
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