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Laboratoire d’informatique fondamentale de Marseille (LIF),
Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13 013 Marseille, France

Abstract

In this note, colorings of the plane by finite sequential machines are compared to
previously introduced notions of ultimately periodic tilings of the plane. Finite au-
tomata with no counter characterize exactly biperiodic tilings. Finite automata with
one counter characterize exactly particles — periodic colorings that are ultimately
periodic in every direction. Finite automata with two counters and aperiodic color-
ings characterize exactly collisions — ultimately periodic tilings of the plane.
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Introduction

In [1], motivated by the study of space-time diagrams of cellular automata, we
introduced collisions as a practical notion of ultimately periodic tiling of the
plane: an extension of the notion of ultimately periodic biinfinite words to infi-
nite bidimensional tilings. Intuitively, ultimately periodic words and collisions
share the property to be locally almost everywhere periodic in every direction.
Imagine that you are walking on the plane, trying to color it according to a
collision: you only need to keep a finite information, your position inside the
biperiodic pattern, plus a way to store your distance to the boundaries: places
where one should switch from a biperiodic region to another. All you need to
know about this distance is when it becomes equal to zero. Therefore, counter
machines coloring the plane can certainly encode every collision.

In this note, we explore the analogy between regular tilings and colorings by
counter machines. A map automaton over a free monoid is a deterministic
counter machine that starts in a given initial state with empty counters on
the unit element of the monoid. The automaton walks on the monoid by firing
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transitions labelled by the generator associated to each of its move. Such an
automaton can certainly color each element of the monoid with a finite set of
colors according to its state. To color a group, like the euclidean plane Z2, with
a map automaton, we simply choose a monoid presentation for the group and
require the automaton to be compatible with the group structure – that is,
to have the same state and counter values on two elements of the free monoid
corresponding to a same element of the group.

As expected, in the case of biinfinite words, map automaton with no counter
capture periodic words; map automata with one counter capture ultimately
periodic words; and map automata with two counters can paint arbitrarily
complex recursive tilings. In the case of bidimensional tilings, map automata
coloring the plane with a periodicity vector act like a finite family of map
automata on biinfinite words. Thus, map automata with no counter capture
biperiodic tilings; map automata with one counter capture particles. In the
case of two counters automata, if the coloring is periodic then it can be arbi-
trarily recursively complex. However, aperiodic map automata with two coun-
ters capture collisions. In the case of aperiodic colorings, the two counters of
a map automata act like a compass pointing to the origin cell using finitely
many biperiodic quadrants: this is a collision.

The note is organized as follows. In section 1, we introduce map automata on
monoid presentations and some of their properties. Section 2 studying map
automata on Z and section 3 studying map automata on Z2 are constructed
symmetrically: notions of regular colorings are first defined before a sequential
study of automata with 0, 1 and 2 counters.

1 Definitions

In this paper, Zm denotes the cyclic group Z/mZ. Let Σ be a finite alphabet,
Σ∗ is the free monoid generated by Σ, the set of words on Σ, with empty word
ε. The catenation of u ∈ Σ∗ and v ∈ Σ∗ is denoted as uv. A finite monoid
presentation is a pair (G,R) where G is a finite alphabet of generators and
R ⊆ G∗ × G∗ is a finite set of relators. The monoid G = 〈G|R〉 associated to
the presentation is the largest monoid satisfying the relators equations, i.e.
such that for each (u, v) ∈ R, u = v in this monoid.

A G-coloring is a mapping c : G→ Σ. It is periodic, with period z ∈ G \ {ε}, if
for all z′ ∈ G, c(zz′) = c(z′). Is is aperiodic if it is not periodic. It is biperiodic,
with periods z, z′ ∈ G\{ε}, if z and z′ are two non-collinear periods, i.e. there
does not exist k, k′ ∈ Z+ such that zk = z′k

′
.

Let Υ = {0,+} and Φ = {−, 0,+} be respectively the set of test values and
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counter operations. Let 0 denote the constant k-uple (0, . . . , 0). For all φ ∈ Φk,
testing τ and modifying θ actions are defined for all i ∈ Zk, v ∈ Nk as:

τ(v)(i) =

 0 if v(i) = 0

+ if v(i) > 0
θφ(v)(i) =


max(0, v(i)− 1) if φi = −

v(i) if φi = 0

v(i) + 1 if φi = +

A k-counter map automaton on the alphabet Σ is a tuple (Σ, k, S, s0, δ) where
k ∈ N is the number of counters, S is a finite set of states with initial state
s0 ∈ S and δ : S ×Υk × Σ→ S × Φk is the transition rule of the automaton.
Its transition function f : S × Nk × Σ∗ → S × Nk is recursively defined on
Σ∗ by f(s, v, ε) = (s, v) and f(s, v, za) = (s′′, θφ(v′)) where f(s, v, z) = (s′, v′)
and δ(s′, τ(v′), a) = (s′′, φ) for all s ∈ S, v ∈ Nk, z ∈ Σ∗ and a ∈ Σ.

A k-counter map automaton (k-CMA) A on the monoid presentation G =
〈G|R〉 is a tuple (G, k, S, s0, δ) where (G,R) is a finite presentation of G and
(G, k, S, s0, δ) is a k-counter map automaton on the alphabet G compatible
with the monoid structure, i.e. satisfying f(s0,0, zz1) = f(s0,0, zz2) for all
z ∈ G∗ and (z1, z2) ∈ R. Its mapping function g : G → S × Nk is defined,
for all z ∈ G, as g(z) = f(s0,0, z). Its minimum (resp. maximum) counter
function minc : G → N (resp. maxc) is defined for all z ∈ G as minc(z) =
mini∈Zk

vi (resp. maxc(z) = maxi∈Zk
vi) where g(z) = (s, v). Two elements

z, z′ ∈ G are undistinguished by A if z 6= z′ and g(z) = g(z′). An element
z ∈ G is discriminative under A if minc(z) = 0. A connected subset Z of G is
independent under A if {minc(z) | z ∈ Z} is an infinite subset of Z+. Notice
that a subset of G independent under A does not have any discriminative
points under A. The automaton is periodic, with period z ∈ G \ {ε}, if for all
z′ ∈ G, g(z′) = g(zz′).

Lemma 1. A k-CMA A on a group G is periodic if and only if two elements
of G are undistinguished by A.

Proof. Let A be a k-CMA on a group G. If it is periodic with period z ∈ G then
ε and z are undistinguished. Conversely, if z, z′ ∈ G are undistinguished then
for any path z0 ∈ G, g(zz0) = g(z′z0) by the fact that transition does only
depends on state. In particular, for any z0 ∈ G, g(z0) = g(zz−1z0) = g(z′z−1z0)
and thus z′z−1 is a valid period. �

The projector π1 : S × Nk → S is defined for all s ∈ S and v ∈ Nk by
π1(s, v) = s. The coloring of A by ϕ : S → Σ is the mapping c ∈ ΣG satisfying
c(z) = ϕ(π1(g(z))) for all z ∈ G. The G-k-map set is the set of all colorings of
G by all k-counter map automata. The translated of a coloring c, by a vector
z ∈ G, is the coloring cz ∈ ΣG defined for all z′ ∈ G by cz(z

′) = c(zz′).
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Lemma 2. Every G-k-map set is closed under translation.

Proof. Let c be a coloring of a k-CMA (G, k, S, s0, δ) by ϕ. Let z ∈ G be a
vector and mz = maxc(z). Let us consider functions b : N→ [0, . . . ,mz] and t :
N→ N defined for all n ∈ N by b(n) = min(mz, n) and t(n) = max(0, n−mz).
These two functions can be naturally extended to Nk. Let S ′ = S×[0, . . . ,mz]

k

and e : S × Nk → S ′ × Nk be defined by e(s, v) = ((s, b(v)), t(v)) for all
(s, v) ∈ S ×Nk. Let A′ be the k-CMA (G, k, S ′, s′, δ′) chosen such that, for all
z′ ∈ G, its mapping function g′ satisfies : g′(z′) = e(g(zz′)) (in particular s′ is
the first component of e(g(z))). Straightforwardly, the translated cz of c by z
is the coloring of A′ by ϕ′ : S × [0, . . . ,mz]

k → Σ defined, for all s ∈ S and
t ∈ [0, . . . ,mz]

k, as ϕ′((s, t)) = ϕ(s). �

Lemma 3. Let c be a coloring of a k-CMA A on a group G. Let Z ⊆ G be
independent under A. There exists a G-0-map c′ such that c|Z = c′|Z.

Proof. Let A be a k-CMA (G, k, S, s0, δ) and c a coloring of A by ϕ. Let Z be

a subset of G independent under A. For all s ∈ S, let Zs = Z∩g−1
(
{s} × Nk

)
.

S being finite, there exists s′0 ∈ S such that
{
minc(z) | z ∈ Zs′0

}
is infinite.

Let A′ be the 0-CMA (G, 0, S, s′0, δ
′) where δ′(s, a) = δ(s,+k, a) for all s ∈ S

and a ∈ G. Let’s first prove that A′ is indeed a 0-CMA. Let z ∈ G∗ and
(z′, z′′) ∈ R. Let N = max(|zz′|, |zz′′|). By construction, there exists zN ∈ Zs′0
such that minc zN > N . Since no discriminative point is encountered on the
path from zN to zNzz

′, f ′(s′0, zz
′) = s where (s, n) = f(g(zN), zz′). The same

holds for zz′′. Let z0 be any element of Zs′0 , Z being independent we have that
π1(g(z)) = π1(g

′(z0z)) for all z ∈ Z. If we consider the c′ to be the coloring of
A′ by ϕ, it follows that c(z) = c′(z0z). By lemma 2, the translated c′z0 of c′ by
z0 is a G-0-map equal to c on Z. �

2 Map Automata on Z

In the following, we denote by Z the one-dimensional grid

(Z,+) = 〈l, r|lr = ε, rl = ε〉 ,

the presentation is embed with the canonical morphism r = 1.

2.1 Regular Colorings of Z

For i ∈ Z and p ∈ Z+, let us denote as i[p] the remainder of the division of
i by p. On Z, a periodic coloring c can be characterised by a finite pattern
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u ∈ Σp such that for all i ∈ Z, c(i) = ui[p]. A coloring is ultimately periodic
with period p ∈ Z+ and defect k ∈ N, if for all element i ∈ Z, |i| > k implies
c(i+p) = c(i). Ultimately periodic colorings correspond to colorings which are
periodic out of a finite support. They can also be characterised by three finite
words u, v ∈ Σp and w ∈ Σ2k+1 such that for all element i ∈ Z, c(i) = ui[p] if
i < −k, c(i) = vi[p] if i > k and c(i) = wi+k otherwise. Notice that periodicity
is a special case of ultimate periodicity.

2.2 Automata with no counter

Theorem 4. A Z-coloring is a Z-0-map if and only if it is periodic.

Proof. Let g : Z→ S be the mapping function of a 0-CMA A. S being finite,
there exist two elements undistinguished by A. By lemma 1, the automaton
is periodic.

Conversely, let c be a periodic Z-coloring with period p ∈ Z+. Let A be the
0-CMA (Z, 0,Zp, 0, δ) where δ(i, l) = i− 1 and δ(i, r) = i+ 1. The coloring of
A by ϕ : i 7→ c(i) is c. �

2.3 Automata with 1 counter

Theorem 5. A Z-coloring is a Z-1-map if and only if it is ultimately periodic.

Proof. Let g : Z→ S × N be the mapping function of a 1-CMA A. Z-0-maps
being Z-1-maps, we can assume that g is one to one (i.e., has no undistin-
guished elements). Thus, there exists k ∈ N such that g−1(S×{0}) ⊆ [−k, k].
By lemma 3, on both ]−∞,−k[ and ]k,+∞[, g is periodic and thus c is ulti-
mately periodic.

Conversely, Let c be an ultimately periodic Z-coloring with period p ∈ Z+ and
defect k ∈ N. Let A be the 1-CMA over set of states [−k − p, k + p] whose
mapping function is defined for all elements i ∈ Z by:

g(i) =


(i, 0) if |i| ≤ k + p

((i− k)[p] + k, b(i− k)/pc) if i > k + p

(i+ k[p]− k − p, b(k − i)/pc) if i < −k − p

The coloring of A by ϕ : i 7→ c(i) is c. �
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2.4 Automata with 2 counters

It is well known that finite automata with two counters can simulate any
Turing machine (see Minsky [2]). Morita [3], improved the result proving that
the simulation can be done in a reversible way. It is therefore no surprise that
these machines can embed any computation of a Turing machine and encode
any recursively enumerable language.

Theorem 6. There exists a ∅′-complete 1 Z-2-map.

Sketch of the proof. Let K be a ∅′-complete language containing 0 and (ni)i∈N
be a computable enumeration without repetition of K satisfying n0 = 0. There
exists a one to one computable function that on input ni computes ni+1. Com-
bining Morita construction [3] with techniques of [4], one can construct a re-
versible 2-counters machine with set of states SA ∪ {sα, sω} such that, for
all i ∈ N, starting from (sα, (ni, 0)), the machine eventually halts in config-
uration (sw, (ni+1, 0)). It is also possible to construct a reversible 2-counter
machine with set of states SB ∪{sα, sω} such that, for all i ∈ N, starting from
(sw, (ni, 0)), the machine halts in configuration (sα, (ni, 0)) after exactly 2ni
steps of computations. By making disjoint union of these two machines, one
can construct 2-CMA A with set of states S = SA ∪ SB ∪ {sα, sω} sharing
transitions of both machines and with starting state sα. The transition func-
tion works by the applying 2-counter machine transition on generator r and
reverse transition on generator l. Let c be the coloring of A by ϕ : S → {0, 1}
defined for all s ∈ S by ϕ(s) = 1 if and only if s ∈ SB. The coloring c contains
the factor 012n0 if and only if n ∈ K. �

3 Map Automata on Z2

In the following, we denote by Z2 the two-dimensional grid

(Z2,+) = 〈n, s, e, w|ns = ε, sn = ε, ew = ε, we = ε, ne = en〉 ,

the presentation is embed with the canonical morphism e =
(

1
0

)
and n =

(
0
1

)
.

1 i.e., of maximal complexity (for many-one reductions) among recursively enumer-
able sets
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3.1 Regular Colorings of Z2

The case of Z2 is strongly linked with the previous case as the following lemma
suggests.

Lemma 7. Each line (resp. column) of a Z2-k-map is a Z-k-map.

Proof. Let c be a Z2-k-map. By definition, the restriction of c to {0}×Z (resp.
Z × {0}) is a Z-k-map. By lemma 2, this result is valid for every line (resp.
column). �

An easy corollary is that a periodic map automaton on Z2 acts as periodic
copies of map automata on Z. To define regular coloring of Z2, we chose the
approach presented in [1]. Simplest element is a biperiodic coloring called
background (Fig. 1a). A particle is a coloring with one direction of periodicity
and ultimate periodicity in every other direction (Fig. 1b). Let ^v(u, u′) be the
angular portion of the plane, on the right hand side of u, starting in position
v ∈ Z2 and delimited by the vectors u, u′ ∈ Z2. A collision as a coloring c
characterised by a sequence of m vectors (ui)i∈Zm such that for all i ∈ Zm,
the coloring is ui-periodic in the cone between ui−1 and ui+1 starting from ui,
i.e., for all i ∈ Zm, and z ∈ ^ui

(ui−1, ui+1), c(z+ui) = c(z) (Fig. 1c). The ball
of radius r and center (x, y) is the set [x− r, x+ r]× [y − r, y + r]. When no
center is specified, it implicitly refers to center (0, 0).

u
v

u

u

u

v

v

u0u1

u2

(a) Background (b) Particle (c) Collision

Fig. 1. Regular colorings of Z2

3.2 Automata with no counter

Theorem 8. A Z2-coloring is a Z2-0-map if and only if it is biperiodic.
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Proof. Let g : Z→ S be the mapping function of a 0-CMA A. S being finite,
there exists two elements undistinguished by A. Thus, there is only a finite
number of lines or columns. By lemma 7 and theorem 4, each of them is
periodic.

Let c be a biperiodic Z2-coloring with periods (m, 0) and (0, n) (such canonical
periods always exist). Let A be the 0-CMA (Z2, 0,Zm × Zn, (0, 0), δ) where
δ((x, y), e) = (x + 1, y) and δ((x, y), n) = (x, y + 1). c is the coloring of A by
ϕ : Zm×Zn → Σ defined, for all x ∈ Zm and y ∈ Zn, by ϕ(x, y) = c(x, y). �

3.3 Automata with 1 counter

Theorem 9. A Z2-coloring is a Z2-1-map if and only if it is a particle.

Proof. Let c be a Z2-1-map. Suppose that c is not periodic. By lemma 7, all
lines of c are non periodic Z-1-map and by lemma 3 each of them contains at
least one discriminative point. S × {0} being finite, we reach a contradiction.
Thus, c is made of a finite number of lines (or columns) which are Z-1-map.
Since each of these maps is ultimately-periodic, c is a particle.

Conversely, let c be a particle with period u = (x, y) with y > 0 (this can
always be achieved up to exchanging axes). Thus c consists of periodic repeti-
tions of y ultimately periodic lines. Without loss of generality, we can assume
that all the lines are p ∈ Z+ periodic with defect p satisfying p > x. Thus,
we can use the same construction as in proof of theorem 5 on the whole block
of lines (see Fig. 2). At first, let us construct a 1-CMA automaton over the
set of states [−k − p, k + p] × [0, y − 1] whose mapping function is defined
for each element of one line of blocks (grayed in Fig. 2). This automaton
can be constructed such that the mapping function satisfies, for all element
(i, j) ∈ Z× [0, y − 1] :

g(i, j) =


((i, j), 0) if |i| ≤ 2p

((i[p] + p, j), bi/pc − 1) if i > 2p

((i[p]− 2p, j), b−i/pc − 1) if i < −2p

Then we extend the construction in order to achieve a u periodic mapping
function g̃ : Z2 → [−k − p, k + p]× [0, y − 1] by g̃(i, j) = g(i + x bj/yc , j[y]).
As x < p this function is well-defined since counters differ by at most one and
periodicity ensure correctness of definition (see Fig 2).

The resulting coloring of A by ϕ : (i, j) 7→ c(i, j) is c. �
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u

−5

−5

−5

−5

−5

−4

−4

−4

−4

−4

−3

−3

−3

−3

−3

−2

−2

−2

−2

−2

−1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

Fig. 2. Grouping by blocks (number indicates value of the counter and dotted portion
the non-periodic place where counter is empty)

3.4 Automata with 2 counters

Theorem 10. There exists a ∅′-complete Z2-2-map.

Proof. It is possible to extend any Z-k-map to a Z2-k-map by using identity
function on e, w. Thus, existence of a ∅′-complete Z-2-map induces existence
of a ∅′-complete Z2-2-map. �

Theorem 11. Every collision is a Z2-2-map.

Proof. Let c be a collision. Instead of working on the whole plane, we cut it
into four quarters and study at first independently each quarter. Without loss
of generality, we consider the northern quarter. Intuitively, each line on this
quarter can be see as succession of particle patterns separated by repetitions of
several background patterns (see Fig. 3). Moreover, since the growth of back-
ground size between two consecutive particles is linear and that background
patterns are periodic, it is possible to ensure that the growth in numbers of
backgrounds patterns inside a line is the same for every background (up to
choosing some bigger background patterns). More formally, for all k ∈ N, let
w(k) = c|[−k,k]×{k} be the k-th northern sphere word of c. There exists an inte-
ger K ∈ N such that for all k > K, w(k) is only included in cones (i.e., avoid
the central perturbation). The number of cones being finite, let l ∈ N be a
multiple of vertical component of all the vectors intersecting with these sphere
words. Formally, for all l′ ∈ [0, . . . , l−1], there exists n ∈ N, a(l′, 0) . . . a(l′, n) ∈
Σ∗ and b(l′, 0) . . . b(l′, n−1) ∈ Σ∗ such that for all k ∈ N, kl > K, w(kl+ l′) =
a(l′, 0)b(l′, 0)ka(l′, 1)b(l′, 1)k . . . a(l′, n−1)b(l′, n−1)ka(l′, n). Notice that the set
of constructed words W = {a(i, j) | i ∈ [0, . . . , l′− 1], i ∈ [0, . . . , n]}∪{b(i, j) |
i ∈ [0, . . . , l′ − 1], i ∈ [0, . . . , n− 1]} is finite.

Using similar techniques as previously, let us consider the partial mapping
function g which maps any element to the corresponding letter in W . More-
over, local transition function is chosen such that, for any element in w(kl+l′),
counter are equal to (0, k) (resp. (k, 0)) if the corresponding letter is in a(l′, 2i)
(resp. a(l′, 2i + 1)) and (i, k − i) (resp. (k − i, i)) if the letter is in the i-th
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w(l)

w(2l)

a0

a0

a1

a1

a2

a2

a3

a3

a4

a4

b0 b1 b2 b3

b0 b0 b1b1 b2 b2 b3 b3

Fig. 3. Decomposition of collisions (for concision, l′ is omitted in the picture)

repetition of the word b(l′, 2i) (resp. b(l′, 2i+ 1)). One can note that g can be
achieved by a local transition function. The last remaining problem is that g
is, for now, only defined on the northern quarter of the plane.

The previous construction can be also achieved on all other quarters of the
plane. What is left is to prove that these four constructions can be chosen
so that they match on boundaries. To do this, one has just to look at the
diagonals (it is the only place where two or more constructions overlap). First,
note that, up to taking common multiples, we can assume that all four sphere
words have the same l. Then, the empty counter depends on the parity of
number of particle involved. Since background can also be seen as particle,
one can easily introduce “phantom” particles to get rid of this problem.

The last point is that the mapping resulting of the union of the four construc-
tions is defined everywhere but in the center of the map which consists on
a finite number of points. Up to introducing new states, on can extend this
mapping function to the one of a 2-CMA on Z2. �

Theorem 12. Every aperiodic Z2-2-map is a collision.

Proof. Let A be a 2-CMA (Z2, 2, S, s0, δ). A being aperiodic, its mapping
function g is one to one. In a first step, let us prove that for all ball of radius
r containing n discriminative points under A, there is n + 1 discriminative
points under A in the ball of radius r + |S|+ 1.

Let B be a ball of radius r containing n discriminative points. Assume that
B′ the ball of radius r + |S| + 1 does not contain any discriminative points.
Let ul (resp. ur, ll) be one extremal upper-left (resp. upper-right, lower-left)
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ll

ur

z z′

Fig. 4. Finding a new discriminative point

discriminative point (see Fig. 4). Note that these points does not need to
be distinct. Without loss of generality, one can assume that ur and ll have
both the first counter empty. Let us consider the set {ll − (i, 0) | i ∈ N}
of elements left of ll. S being finite, there exists two elements z and z′ in
B′ \ B such that g(z) = (s, (a0, a1)) and g(z′) = (s, (b0, b1)) for some s ∈ S
and a0, a1, b0, b1 ∈ Z+. One can assume that z is the left one. There exists
a path ri, i ∈ N+ from z′ to ll. Since the same path starting from z′ does
not encounter any discriminative point, a0 − (b0 − 0) > 0. By doing the same
reasoning on the path from z′ to ur in B′ avoiding B, we can deduce that
b0 − (a0 − 0) > 0 leading to a contradiction.

Let B be the ball containing all discriminative points whose counters are both
less than (|S| + 1)3. We shall prove that all discriminative points are located
on a finite number of thick half-lines of width (S + 1)2 originated from B as
depicted on Fig. 5.

Fig. 5. Disposition of discriminative points

Formally, let us take a discriminative point z. By iterating previous result,
there are at least |S|+ 1 discriminative points in the ball of radius (|S|+ 1)2

centered around z. Among these points, either two have distinct empty counter
which implies that non empty counter of z is less the (|S|+1)3, or there exists
two points za and zb such that g(za) = (s, (a, 0)) and g(zb) = (s, (b, 0)) for
some s ∈ S and b > a ∈ N+. Let z ∈ G∗ such that zaz = zb. One can check
that g(zaz

n) = (s, (a+n(b−a), 0)) for all n such that a+(b−a)n > (|S|+1)3.
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It follows that za is on a half-line starting from an elements in B and thus
z is at distance at most (|S| + 1)2 of such an half-line. Slope of this half-line
depends only on the point in the ball and b− a < (|S|+ 1)3 which only leave
a finite number of possibilities.

The last intermediate result needed is that any point z ∈ Z2 such that mincz <
N has one discriminative point under A at distance at most N(|S| + 1). To
prove this, let B be the ball of center z ∈ Z2 and of radius |S|. This ball
contains two distinct points za, zb ∈ Z2 whose mapping has the same state.
Following this vector in the direction of decreasing counter value leads to
encounter of a discriminative point at distance at most N(|S| + 1). A useful
corollary is that any connected component between two consecutive (but not
parallel) half-lines of discriminative points is independent since it contains
balls of arbitrary size.

To conclude the proof, let us show that any map associated to A is a collision
characterised by the sequence u ∈ Z2p of half-lines ordered by slope. Since
all half-lines start inside a finite ball, there exist an element k ∈ N such that
all discriminative points in the cone ^kui

(kui−1, kui+1) are on a half-line of
vector ui for all i ∈ Zp (see Fig. 5). In this cone, we have elements of the
half-line (which are by construction ui periodic) and elements of connected
components between two consecutive half-lines. These connected components
are independent by the previous corollary. By lemma 3, they are bi-periodic
and thus also kui periodic for some k ∈ N+. �
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