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Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13 013 Marseille, France

Abstract

In this note, the coloring of the plane by finite sequential machines is compared to
previously introduced notions of ultimately periodic tilings of the plane. Finite au-
tomata with no counter characterize exactly biperiodic tilings. Finite automata with
one counter characterize exactly particles: periodic colorings that are ultimately pe-
riodic in every direction. Finite automata with two counters and aperiodic colorings
characterize exactly collisions: ultimately periodic tilings of the plane.
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Introduction

In [1], motivated by the study of space-time diagrams of cellular automata, we
introduced collisions as a practical notion of ultimately periodic tiling of the
plane: an extension of the notion of ultimately periodic biinfinite words to infi-
nite bidimensional tilings. Intuitively, ultimately periodic words and collisions
share the property to be locally almost everywhere periodic in every direction.
Imagine that you are walking on the plane, trying to color it according to a
collision: you only need to keep a finite information, your position inside the
biperiodic pattern, plus a way to store your distance to the boundaries: places
where one should switch from a biperiodic region to another. All you need to
know about this distance is when it becomes equal to zero. Therefore, counter
machine coloring the plane can certainly encode every collision.

In this note, we explore the analogy between regular tilings and colorings by
counter machines. A map automaton over a free monoid is a deterministic
counter machine that starts in a given initial state with empty counters on
the unit element of the monoid. The automaton walks on the monoid by firing

Preprint submitted to Elsevier 12 August 2008



transitions labelled by the generator associated to each of its move. Such an
automaton can certainly color each element of the monoid with a finite set of
colors according to its state. To color a group, like the euclidian plane Z

2, with
a map automaton, we simply choose a monoid presentation for the group and
require the automaton to be compatible with the group structure – that is,
to have the same state and counter values on two elements of the free monoid
corresponding to a same element of the group.

As expected, in the case of biinfinite words, map automata with no counter
capture periodic words; map automata with one counter capture ultimately
periodic words; and map automata with two counters can paint arbitrarily
complex recursive tilings. In the case of bidimensional tilings, map automata
coloring the plane with a periodicity vector act like a finite family of map
automata on biinfinite words. Thus, map automata with no counter capture
biperiodic tilings; map automata with one counter capture particles. In the
case of two counters automata, if the coloring is periodic then it can be arbi-
trarily recursively complex. However, aperiodic map automata with two coun-
ters capture collisions. In the case of aperiodic colorings, the two counters of
a map automata acts like a compas pointing to the origin cell using finitely
many biperiodic quadrants: this is a collision.

The note is organized as follows. In section 1, we introduce map automata on
monoid presentations and some of their properties. Section 2 studying map
automata on Z and section 3 studying map automata on Z

2 are constructed
symmetrically: notions of regular colorings are first defined before a sequential
study of automata with 0, 1 and 2 counters.

1 Definitions

Let Σ be a finite alphabet, Σ∗ is the free monoid generated by Σ, the set
of words on Σ, with empty word ǫ. The catenation of u ∈ Σ∗ and v ∈ Σ∗ is
denoted as uv. A finite monoid presentation is a pair (G, R) where G is a finite
alphabet of generators and R ⊆ G∗×G∗ is a finite set of relators. The monoid
G = 〈G|R〉 associated to the presentation is the largest monoid satisfying the
relators equations, i.e. such that for each (u, v) ∈ R, u = v in this monoid.

A G-coloring is a mapping c : G → Σ. It is periodic, with period z ∈ G \ {ǫ}, if
for all z′ ∈ G, c(zz′) = c(z′). Is is aperiodic if it is not periodic. It is biperiodic,
with periods z, z′ ∈ G\{ǫ}, if z and z′ are two non-collinear periods, i.e. there
does not exist k, k′ ∈ Z

+ such that zk = z′k
′

.

Let Υ = {0, +} and Φ = {−, 0, +} be respectively the set of test values and
counter operations. Let 0 denote the constant k-uple (0, . . . , 0). For all φ ∈ Φk,
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testing τ and modifying actions are defined for all i ∈ Zk, v ∈ N
k and j ∈ N

as:

τ(j) =











0 if j = 0

+ if j > 0
θφ(v)(i) =



























max(0, v(i) − 1) if φi = −

v(i) if φi = 0

v(i) + 1 if φi = +

A k-counter map automaton on the alphabet Σ is a tuple (Σ, k, S, s0, δ) where
k ∈ N is the number of counters, S is a finite set of states with initial state
s0 ∈ S and δ : S × Υk × Σ → S × Φk is the transition rule of the automaton.
Its transition function f : S × N

k × Σ∗ → S × N
k is recursively defined on

Σ∗ by f(s, v, ǫ) = (s, v) and f(s, v, za) = (s′′, θφ(v
′)) where f(s, v, z) = (s′, v′)

and δ(s′, τ(v′), a) = (s′′, φ) for all s ∈ S, v ∈ N
k, z ∈ Σ∗ and a ∈ Σ.

A k-counter map automaton (k-CMA) A on the monoid presentation G =
〈G|R〉 is a tuple (G, k, S, s0, δ) where (G, R) is a finite presentation of G and
(G, k, S, s0, δ) is a k-counter map automaton on the alphabet G compatible
with the monoid structure, i.e. satisfying f(s0,0, zz1) = f(s0,0, zz2) for all
z ∈ G∗ and (z1, z2) ∈ R. Its mapping function g : G → S×N

k is defined, for all
z ∈ G, as g(z) = f(s0,0, z). Its minimum (resp. maximum) counter function
minc : G → N (resp. maxc) is defined for all z ∈ G as minc(z) = mini∈Zk

vi

(resp. maxc(z) = maxi∈Zk
vi) where g(z) = (s, v). Two distinct elements z, z′ ∈

G are undistinguished by A if g(z) = g(z′). An element z ∈ G is discriminative
under A if minc(z) = 0. A connected subset Z of G is independent under
A if {minc(z) | z ∈ Z} is an infinite subset of Z

+. Notice that a subset of G

independent under A does not have any discriminative points under A. The
automaton is periodic, with period z ∈ G \ {ǫ}, if for all z′ ∈ G, g(z′) = g(z′z).

Lemma 1. A k-CMA A on a group G is periodic if and only if two elements
of G are undistinguished by A.

Proof. Let A be a k-CMA on a group G. If it is periodic with period z ∈ G

then ǫ and z are undistinguished. Conversely, if z, z′ ∈ G are undistinguished
then z′ − z is a valid period. �

The projector π1 : S × N
k → S is defined for all s ∈ S and v ∈ N

k by
π1(s, v) = s. The coloring of A by ϕ : S → Σ is the mapping c ∈ ΣG satisfying
c(z) = ϕ(π1(g(z))) for all z ∈ G. The G-k-map set is the set of all colorings of
G by all k-counter map automata. The translated of a coloring c, by a vector
z ∈ G, is the coloring cz ∈ ΣG defined for all z′ ∈ G by cz(z

′) = c(zz′).

Lemma 2. Every G-k-map set is closed under translation.
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Proof. Let c be a coloring of a k-CMA (G, k, S, s0, δ) by ϕ. Let z ∈ G be a
vector and mz = maxc(z). Let us consider functions b : N → [0, . . . ,mz] and t :
N → N defined for all n ∈ N by b(n) = min(mz, n) and t(n) = max(0, n−mz).
Those two functions can be naturally extended to N

k. Let S ′ = S×[0, . . . ,mz]
k

and e : S × N
k → S ′ × N

k be defined by e(s, v) = ((s, b(v)), t(v)) for all
(s, v) ∈ S ×N

k. Let A′ be the k-CMA (G, k, S ′, s′0, δ
′) chosen such that, for all

z′ ∈ G, its mapping function g′ satisfies : g′(z′) = e(g(zz′)) (in particular s′ is
the first component of e(g(z))). Straightforwardly, the translated cz of c by z
is the coloring of A′ by ϕ′ : S × [0, . . . ,mz]

k → Σ defined, for all s ∈ S and
t ∈ [0, . . . ,mz]

k, as ϕ′((s, t)) = ϕ(s). �

Lemma 3. Let c be a coloring of a k-CMA A on a group G. Let Z ⊆ G be
independent under A. There exists a G-0-map c′ such that c|Z = c′|Z.

Proof. Let A be a k-CMA (G, k, S, s0, δ). Let Z be a subset of G independent

under A. For all s ∈ S, let Zs = Z ∩ g−1
(

{s} × N
k
)

. S being finite, there

exists s′0 ∈ S such that
{

minc(z) | z ∈ Zs′
0

}

is infinite. Let A′ be the 0-CMA

(G, 0, S, s′0, δ
′) where δ′(s, a) = δ(s, +, a) for all s ∈ S and a ∈ G. Let’s first

prove that A′ is indeed a 0-CMA. Let z ∈ G∗ and (z′, z′′) ∈ R. Let N =
max(|zz′|, |zz′′|). By construction, there exists zN ∈ Zs′

0
such that minc zN >

N . Since no discriminative point is encountered on the path from zN to zNzz′,
f ′(s′0, zz

′) = s where (s, n) = f(g(zN), zz′). The same holds for zz′′. Let z0

be any element of Zs′
0
, Z being independent, c′(z) = c(z0z) for all z ∈ Z. By

lemma 2, the translated c′z0
of c′ by z0 is a G-0-map equal to c on Z. �

2 Map Automata on Z

In the following, we denote by Z the one-dimensional grid

(Z, +) = 〈l, r|lr = ǫ, rl = ǫ〉 ,

the presentation is embed with the canonical morphism r = 1.

2.1 Regular Colorings of Z

For i ∈ Z and p ∈ Z
∗, let us denote as i[p] the remainder of the division of

i by p. On Z, a periodic coloring c can be characterised by a finite pattern
u ∈ Σp such that for all i ∈ Z, c(i) = ui[p]. A coloring is ultimately periodic
with period p ∈ Z

+ and defect k ∈ N, if for all element i ∈ Z, |i| > k implies
c(i+p) = c(i). Ultimately periodic colorings correspond to colorings which are
periodic out of a finite support. They can also be characterised by three finite
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words u, v ∈ Σp and w ∈ Σ2k+1 such that for all element i ∈ Z, c(i) = ui[p] if
i < −k, c(i) = vi[p] if i > k and c(i) = wi+k otherwise. Notice that periodicity
is a special case of ultimate periodicity.

2.2 Automata with no counter

Theorem 4. A Z-coloring is a Z-0-map if and only if it is periodic.

Proof. Let g : Z → S be the mapping function of a 0-CMA A. S being finite,
there exists two elements undistinguished by A. By lemma 1, the automaton
is periodic.

Conversely, let c be a periodic Z-coloring with period p ∈ Z
+. Let A be the

0-CMA (Z, 0, Zp, 0, δ) where δ(i, l) = i− 1 and δ(i, r) = i + 1. The coloring of
A by ϕ : i 7→ c(i) is c. �

2.3 Automata with 1 counter

Theorem 5. A Z-coloring is a Z-1-map if and only if it is ultimately periodic.

Proof. Let g : Z → S × N be the mapping function of a 1-CMA A. Z-0-maps
being Z-1-maps, we can assume that g is one to one (i.e., has no undistin-
guished elements). Thus, there exists k ∈ N such that g−1(S ×{0}) ⊆ [−k, k].
By lemma 3, on both ]−∞,−k[ and ]k, +∞[, g is periodic and thus c is ulti-
mately periodic.

Conversely, Let c be an ultimately periodic Z-coloring with period p ∈ Z
+ and

defect k ∈ N. Let A be the 1-CMA over set of states [−k − p, k + p] whose
mapping function is defined for all elements i ∈ Z by:

g(i) =



























(i, 0) if |i| ≤ k + p

((i − k)[p] + k, ⌊(i − k)/p⌋) if i > k + p

(i + k[p] − k − p, ⌊(k − i)/p⌋) if i < −k − p

The coloring of A by ϕ : i 7→ c(i) is c. �
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2.4 Automata with 2 counters

It is well known that finite automata with two counters can simulate any
Turing machine (see Minsky [2]). Morita [3], improved the result proving that
the simulation can be done in a reversible way. It is therefore no surprise that
those machines can embed any computation of a Turing machine and encode
any recursively enumerable language.

Theorem 6. There exists a ∅′-complete Z-2-map.

Sketch of the proof. Let K be a ∅′-complete language containing 0 and (ni)i∈N

be a computable enumeration without repetition of K satisfying n0 = 0. There
exists a one to one computable function that on input ni computes ni+1. Com-
bining Morita construction [3] with techniques of [4], one can construct a re-
versible 2-counters machine with set of states SA ∪ {sα, sω} such that, for
all i ∈ N, starting from (sα, (ni, 0)), the machine eventually halts in config-
uration (sw, (ni+1, 0)). It is also possible to construct a reversible 2-counter
machine with set of states SB ∪{sα, sω} such that, for all i ∈ N, starting from
(sw, (ni, 0)), the machine halts in configuration (sα, (ni, 0)) after exactly 2ni

steps of computations. By making disjoint union of these two machines, one
can construct 2-CMA A with set of states S = SA ∪ SB ∪ {sα, sω} sharing
transitions of both machines. The transition function works by the applying
2-counter machine transition on generator r and reverse transition on gener-
ator l. Let c be the coloring of A by ϕ : S → {0, 1} defined for all s ∈ S by
ϕ(s) = 1 if and only if s ∈ SB. The coloring c contains the factor 012n0 if and
only if n ∈ K. �

3 Map Automata on Z
2

In the following, we denote by Z
2 the two-dimensional grid

(Z2, +) = 〈n, s, e, w|ns = ǫ, sn = ǫ, ew = ǫ, we = ǫ, ne = en〉 ,

the presentation is embed with the canonical morphism e =
(

1
0

)

and n =
(

0
1

)

.

3.1 Regular Colorings of Z
2

The case of Z
2 is strongly linked with the previous case as the following lemma

suggests.
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Lemma 7. Each line (resp. column) of a Z
2-k-map is a Z-k-map.

Proof. Let c be a Z
2-k-map. By definition, the restriction of c to {0}×Z (resp.

Z × {0}) is a Z-k-map. By lemma 2, this result is valid for every line (resp.
column). �

An easy corollary is that periodic map automaton on Z
2 acts as periodic

copies of map automaton on Z. To define regular coloring of Z
2, we chose

the approach presented in [1]. Simplest element is a biperiodic coloring. A
particle is a coloring with one direction of periodicity and ultimate periodicity
in every other direction. Let ∢v(u, u′) be the angular portion of the plane,
on the right hand side of u, starting in position v ∈ Z

2 and delimited by the
vectors u, u′ ∈ Z

2. A collision as a coloring c characterised by a sequence
of m vectors (ui)i∈Zm

such that for all i ∈ Zm, the coloring is ui-periodic in
the cone between ui−1 and ui+1 starting from ui, i.e., for all i ∈ Zm, and
z ∈ ∢ui

(ui−1, ui+1), c(z + ui) = c(z). The ball of radius r and center (x, y) is
the set [x − r, x + r] × [y − r, y + r]. When no center is specified, it implicitly
refers to center (0, 0).

3.2 Automata with no counter

Theorem 8. A Z
2-coloring is a Z

2-0-map if and only if it is biperiodic.

Proof. Let g : Z → S be the mapping function of a 0-CMA A. S being finite,
there exists two elements undistinguished by A. Thus, there is only a finite
number of lines or columns. By lemma 7 and theorem 4, each of them is
periodic.

Let c be a biperiodic Z
2-coloring with period (m, 0) and (0, n) (such canonical

periods always exists). Let A be the 0-CMA (Z2, 0, Zm × Zn, (0, 0), δ) where
δ((x, y), e) = (x + 1, y) and δ((x, y), n) = (x, y + 1). c is the coloring of A by
ϕ : Zm ×Zn → Σ defined, for all x ∈ Zm and y ∈ Zn, by ϕ(x, y) = c(x, y). �

3.3 Automata with 1 counter

Theorem 9. A Z
2-coloring is a Z

2-1-map if and only if it is a particle.

Proof. Let c be a Z
2-1-map. Suppose that c is not periodic. By lemma 7, all

lines of c are non periodic Z-1-map and by lemma 3 each of them contains at
least one discriminative point. S × {0} being finite, we reach a contradiction.
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Thus, c is made of a finite number of lines (or columns) which are Z-1-map.
Since each of those map is ultimately-periodic, c is a particle.

Conversely, let c be a particle with period u = (x, y) with y > 0 (this can
always be achieved up to exchanging axes). Thus c consists of periodic rep-
etitions of y ultimately periodic lines. Without loss of generality, we can as-
sume that all the lines are p ∈ Z

+ periodic with defect p satisfying p > x.
Thus, we can use the same construction as in proof of theorem 5 on the
whole block of lines. Let A be a 1-CMA automaton over the set of states
[−k − p, k + p] × [0, y − 1] whose mapping function is defined for all element
(i, j) ∈ Z

2 by g(i, j) = g̃(i + ⌊j/y⌋ x, j[y]) where

g̃(̃ı, ̃) =



























((̃ı, ̃), 0) if |̃ı| ≤ 2p

((̃ı[p] + p, ̃), ⌊ı̃/p⌋ − 1) if ı̃ > 2p

((̃ı[p] − 2p, ̃), ⌊−ı̃/p⌋ − 1) if ı̃ < −2p

The coloring of A by ϕ : (i, j) 7→ c(i, j) is c. �

3.4 Automata with 2 counters

Theorem 10. There exists a ∅′-complete Z
2-2-map.

Proof. It is possible to extend any Z-k-map to a Z
2-k-map by using identity

function on e, w. Thus, existence of a ∅′-complete Z-2-map induces existence
of a ∅′-complete Z

2-2-map. �

Theorem 11. Every collision is a Z
2-2-map.

Proof. Let c be a collision. For all k ∈ N, let w(k) = c|[−k,k]×{k} be the k-
th northern sphere word of c. There exists a integer K ∈ N such that for
all k > K, w(k) is only included in cones (i.e., avoid the central perturba-
tion). The number of cones being finite, let l ∈ N be a multiple of vertical
component of all the involved vectors. Then, for all l′ ∈ [0, . . . , l − 1], there
exists n ∈ N, a(l′, 0) . . . a(l′, n) ∈ Σ∗ and b(l′, 0) . . . b(l′, n − 1) ∈ Σ∗ such that
for all k ∈ N, kl > K, w(kl + l′) = a(l′, 0)b(l′, 0)ka(l′, 1)b(l′, 1)k . . . a(l′, n −
1)b(l′, n − 1)ka(l′, n). Notice that the set of constructed words W = {a(i, j) |
i ∈ [0, . . . , l′ − 1], i ∈ [0, . . . , n]} ∪ {b(i, j) | i ∈ [0, . . . , l′ − 1], i ∈ [0, . . . , n− 1]}
is finite. Using similar techniques as previously, let us consider the partial
mapping function g which maps any element to the corresponding letter in
W . Moreover, local transition function is chosen such that, for any element in
w(kl + l′), counter are equal to (0, k) (resp. (k, 0)) if the corresponding letter
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is in a(l′, 2i) (resp. a(l′, 2i + 1)) and (i, k− i) (resp. (k− i, i)) if the letter is in
the i-th repetition of the word b(l′, 2i) (resp. b(l′, 2i + 1)). One can note that
g can be achieved by a local transition function. The last remaining problem
is that g is, for now, only defined on the northern quarter of the plane.

Of course, the previous construction can be also achieved on all other quarters
of the plane. What is left is to prove that those four constructions can be
chosen so that they match on boundaries. To do this, one has just to look at
the diagonals (it is the only place where two or more constructions overlap).
Firstly, remark that value of the maximum counter depends on l which, up
to taking a common multiple, can be set equal for all quarters. Secondly, the
empty counter depends on the parity of number of particle involved. Since
background can also be seen as particle, one can easily introduce “phantom”
particles to get rid of this problem.

The last point is that the mapping resulting of the union of the four con-
structions is defined on all but the center which consists on a finite number of
points. Up to introducing new states, on can extend this mapping function to
the one of a 2-CMA on Z

2. �

Theorem 12. Every aperiodic Z
2-2-map is a collision.

Proof. Let us take A a 2-CMA (Z2, 2, S, s0, δ). A being aperiodic, its mapping
function g is one to one. In a first step, let us prove that for any ball of radius
r containing n discriminative points under A, there is n + 1 discriminative
points under A in the ball of radius r + |S| + 1.

ll

ur

z z′

Fig. 1. Finding a new discriminative point

Let B be a ball of radius r containing n discriminative points. Assume that
B′ the ball of radius r + |S| + 1 does not contain any discriminative points.
Let ul (resp. ur, ll) be one extremal upper-left (resp. upper-right, lower-left)
discriminative point (see Fig. 1). Note that those points does not need to
be distinct. Without loss of generality, one can assume that ur and ll have
both the first counter empty. Let us consider the set {ll − (i, 0) | i ∈ N} of
elements left of ll. S being finite, there exists two elements z and z′ in B′ \B

such that g(z) = (s, (a0, a1)) and g(z′) = (s, (b0, b1)) for some s ∈ S and
a0, a1, b0, b1 ∈ Z

+. One can assume that z is the left one. There exist a path
ri, i ∈ N

+ from z′ to ll. Since the same path starting from z′ does not encounter
any disciminative point, a0 − (b0 − 0) > 0. By doing the same reasoning on
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the path from z′ to ur in B′ avoiding B, we can deduce that b0 − (a0 − 0) > 0
which gives a contradiction.

With this property on discriminative points, it is possible to establish a strong
property on distribution of discriminative points and show that each discrim-
inative point is located either in a fixed finite ball B or on an infinite half-line
starting from this ball. Moreover, there is only a finite number of such half-
lines.

Let B be the ball containing all discriminative points whose counters are both
less than (|S| + 1)3. By iterating previous result on discriminative points, for
each discriminative point z, there is at least |S|+1 discriminative points in the
ball of radius (|S|+1)2 centered around this point. Thus for each discriminative
point, there exists, a path of length less than (|S| + 1)3 containing |S| + 1
discriminative points. Either two discriminative points have distinct empty
counter which implies that non empty counter of z is less the (|S|+1)3, or there
exists two points za and zb such that g(za) = (s, (a, 0)) and g(zb) = (s, (b, 0))
for some s ∈ S and b > a ∈ N

+. Let z ∈ G∗ such that zaz = zb. One can check
that g(zaz

n) = (s, (a−n(b−a), 0)) for all n such that a− (b−a)n > (|S|+1)3.
Thus za is on a half-line starting from an elements in B. Slope of this half-line
depends only on the point in the ball and b − a < (|S| + 1)3 which only leave
a finite number of possibilities.

The last intermediate result needed is that any point z ∈ Z
2 such that mincz <

N has one discriminative point under A at distance at most N(|S| + 1). To
prove this, let B be the ball of center z ∈ Z

2 and of radius |S|. This ball
contains two distinct points za, zb ∈ Z

2 whose mapping has the same state.
Applying same reasoning as previously allow to obtain the desired result. A
useful corollary of this result is that any connected component between two
consecutive (but not parallel) half-lines of discriminative points is independent
since it contains ball of arbitrary size.

To conclude the proof, let us show that the map is a collision chracterised by
the sequence u ∈ Z

2p
of half-lines ordered by slope. Since all half-lines start

inside a finite ball, there exist an element k ∈ N such that all discriminative
points in the cone ∢kui

(kui−1, kui+1) are on a half-line of vector ui for all i ∈ Zp.
In this cone, we have elements of the half-line (which are by construction ui

periodic) and elements of connected components between two consecutive half-
lines. Those connected components are independent by the previous corollary.
By lemma 3, they are bi-periodic and thus also kui periodic for some k ∈ N

+.

�
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