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Abstract 
 
The quality of the state estimation of a system and, 
consequently, its dependability are strongly conditioned by 
the number and the location of the measurements. The 
availability of a system may be increased if this latter is able 
to function even in the presence of sensor breakdowns. So, 
the measurement planning (measurement system design) 
represent a very important stage. This communication 
presents a method for assessing the availability of the 
necessary information for the process control and defining 
the sensor locations such that the variables required for 
controlling the process remain always observable even if one 
or more sensors become defective. Underlying, the 
connections between several concepts such observability, 
redundancy, sensor location and reliability are emphasised. 
 
 
1   Introduction  
 
Monitoring a process requires a certain number of 
measurements which are usually supplied by sensors; 
unfortunately, some of these sensors may breakdown and the 
corresponding measurements become unavailable. Moreover 
if these data are essential for process monitoring, then the 
breakdown of these sensors may lead to the breakdown of the 
whole process. However, the lack of measurement due to one 
or more faulty sensors may be overcome by using the existing 
relationships between different measured variables.  
 
The problem of measurement planning covers different 
aspects such as the determination of the number of sensors, 
their location, their accuracy, their type and so on. Due to 
increasing accuracy requirements and tighter financial 
constraints, the problem of measurement system design has 
received much attention; unfortunately general methods do 
not exist to solve this problem due to the number of 
constraints to take into account. For the problem of process 
diagnosis there are many situations in which modifying the 
sensor placements will strongly improve the quality of the 
measurements; indeed modifications in the sensor locations 

change the observation equations, the variable observability 
[8] and therefore the performance of the measurement 
system. At present, only a few papers about designing the 
measurement system have been published. Some of them use 
an optimisation of the variance matrix of the estimated 
variables in respect of the coefficients of the measurement 
matrix [2]. In [3] the problem of sensor placement is 
addressed by monitoring the eigenstructure of a multivariable 
dynamical system. Furthermore, it has been addressed more 
in view of good parameter and state estimation than for 
system monitoring and diagnosis. In the field of electric 
power networks specific developments on this subject have 
also been published using topological observability 
algorithms [9], [4]. 
 
This study deals with steady state linear systems. These 
models frequently occurs when considering the mass and 
energy balance relationships. In this context, some recent 
studies have been published. Madron et al. [11] proposed an 
approach based on the analysis of the incidence matrix 
associated to the graph of the process. Immonen [7] 
formulated the problem as a linear programming one. The 
resulting optimisation problem is solved using a binary mixed 
integer programming method in order to take into account the 
occurrences and locations of sensors. The most developed 
works are undoubtedly those presented by Ali et al. [1] and 
Luong et al. [10]. Based on the analysis of the cycles of the 
process graph, these studies simultaneously take into account 
the variable observability and the reliability of the sensors in 
order to determine an optimal measurement system with 
regards to certain criteria. The design of a measurement 
system may be addressed with different goals: minimise the 
variance of the estimated variables [13], obtain a given 
redundancy level of the variables or only of a subset of 
variables, ensure that some variables are observable. This 
communication deals with a new method for optimising 
measurement system design based on a reliability and cost 
analysis in conjunction with observability constraints. 
 
In the second section, we describe the process codification 
and remember some classical transformations of graph 
theory. Then, the main results of observability analysis are 
remembered in the third section. We focus our attention on 
the method based on the cycle matrix analysis. In the fourth 
section, we propose to extend the notion of redundancy by 
defining multiple redundancy and more precisely the degree 



 

of redundancy of a variable. This concept is very important in 
the following when considering the possibility of sensor 
breakdowns. The fifth section is then dedicated to the 
presentation of a method for designing a measurement system 
guaranteeing the degree of redundancy of certain variables 
whilst minimising the installation cost of the sensors. In the 
sixth section, after defining the reliability of a process with 
regard to its measurement system, we point out the 
relationship between the notions of observability, redundancy 
and reliability. We analyse the influence of sensor 
breakdowns on the reliability of the whole measurement 
system and show that it can be increased taking into account 
the redundancy equations of the process. Then in section 
seven, we show how to select the sensor locations in order to 
have a given value of the reliability function of the whole 
measurement system; this will be done by taking into account 
constraints on the observability of given variables. For the 
simplicity of the presentation, we only use here, at the 
different steps of the presentation, small dimension processes 
and present some “by hand” treatments. However all the 
proposed treatments may be systematised and computerised. 
 
 

2   Process Codification 
 
Here, we consider only processes which may be described by 
a carriage network (figure 1), the nodes of which correspond 
to elementary equations and the arcs to variables. For a 
physical interpretation, a node may be a processing unit and 
an arc, a material or energy transfer stream. 
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Figure 1: a carriage network 

 

This process may be described by a set of linear equations: 
 
A X = 0 (1) 
 
where A (4,8) is the so-called node incidence matrix and X 
(8,1) is the variable vector. More generally, the size of A is 
(n,v) with n giving the number of equations and v the number 
of variables. It is full row rank. The incidence matrix (table 
1) corresponding to the network is written as follows (for 
convenience, the "." states for the value 0): 
 

 1 2 3 4 5 6 7 8 
I 1 -1 -1 . . . . . 
II . . 1 1 -1 . . . 
III . 1 . . 1 -1 . .  
IV . . . . . 1 -1 -1 

Table 1: incidence matrix 
 

In a certain number of applications, it is much easier to use 
the cycle matrix of the associated graph. In order to transform 
the network into a graph, all the input/output arcs are linked 
to the so-called environment node {0}. 

The matrix B of the fundamental cycles of the graph may be 
easily deduced from the incidence matrix [6]. For that 
purpose, the following transformations may be used. First, 
the incidence matrix is partitioned (using simple permutation 
of columns) according to its regular part Ar: 
 

A = (Ar   As) (2) 
 

Then, the fundamental cycle matrix may be written: 
 

B = (Bs     I) (3) 
 

where Bs is obtained from the relation: 
 

B
T
s  = - A

-1
r   As (4) 

 

and I is the identity matrix with appropriate dimensions. 
 
From this fundamental cycle matrix and using linear 
combinations of them, it is then possible to generate the 
matrix of all the cycles of the graph. The matrix of all these 
cycles associated to the figure 2 is given in table 2. It 
comprises ten cycles among which only four are independent 
(fundamental cycles). 
 

 1 2 3 4 5 6 7 8 
1 -1 . -1 1 . . . . 
2 . -1 1 . 1 . . . 
3 1 1 . . . 1 1 .  
4 1 1 . . . 1 . 1 
5 -1 -1 . 1 1 . . . 
6 . 1 -1 1 . 1 1 . 
7 . 1 -1 1 . 1 . 1 
8 1 . 1 . 1 1 1 . 
9 1 . 1 . 1 1 1 1 
10 . . . . . . 1 -1 

Table 2: matrix of all the cycles of the graph 
 
 

3   Observability Analysis  
 

Due to technical and economic feasibility, it is not possible to 
measure each and every process variable. However, it is very 
important to determine the observability of the whole process 
and the “state” of each variable. In this section we only report 
some classical results about the observability of linear 
systems [12], [14]. From the analysis of the node incidence 
matrix A, it is possible to classify the variables into different 
categories. 
 
Consider for example Lm = {x1, x2, x4, x6} the list of the 
measured variables and Lm

_  = {x3, x5, x7, x8} the list of the 
unmeasured variables. In the equations (5) of the process, the 
boldfaced characters denote the measured variables: 
 

x1 - x2 - x3 = 0 (5a) 
x3 + x4 - x5 = 0 (5b) 
x2 + x5 - x6 = 0 (5c) 
x6 - x7 - x8 = 0 (5d) 
 
The variable classification based on the observability analysis 
consists in pointing out two categories of variables: the 
observable variables, the value of which  may be known (by 



 

direct measurement or by deduction from other 
measurements) and the unobservable variables. Taking into 
account the small dimensions of the proposed example, this 
analysis may be done intuitively. The addition of the 
equations (5a), (5b) and (5c) allow a redundancy equation to 
be extracted: x1 + x4 - x6 = 0. Such equation involves 
measured variables only. The equations (5a) and (5c) are 
equations of deduction; they allow unmeasured variables x3 
and x5 to be deduced. Finally, variables x7 and x8 are 
unobservable due to a lack of information. This analysis leads 
to the classification of the variables into the four following 
distinct categories: 
 

Lme = {x1, x4, x6}  Lme
_  = {x2}  

Lm
_ e = {x3, x5} Lm

_
e
_  = {x7, x8} 

 

The first subscript (m or m
_

 ) indicates whether a variable is 
measured or unmeasured and the second one (e or e

_
 ) 

whether it is estimable or non estimable. 
 
The above classification has been easily achieved from a 
simple exam of the network owing to its small dimensions. In 
a more general case, the extraction of observable variables 
must be systematised using an algebraic formulation. This 
systematisation may be done either from the analysis of the 
incidence matrix [5] or from that of the cycle matrix. In this 
latter case, the analysis is based on the four fundamental 
following rules: 
 
Rule I: A measured variable is estimable (redundant variable) 
if and only if it only belongs to cycles where at least two 
variables are measured. 
 

Rule II: A measured variable is not estimable if and only if it 
belongs at least to a cycle where it is the only measured 
variable. 
 

Rule III: An unmeasured variable is deducible (estimable) if 
and only if it only belongs to cycles with at least one 
measured variable. 
 

Rule IV: An unmeasured variable is not deducible (non 
estimable) if and only if it belongs at least to a cycle where 
not any variable is measured. 
 

So, the classification algorithm of variables includes the four 
following steps: 
 

1) Determine the matrix of all the cycles of the graph, let Ct 
this matrix. 
 

2) Extract from Ct the sub-matrix which comprises at most 
two measured variables (the knowledge of cycles which 
comprise more than two measurements is not necessary at 
this step) 
 

3) Detect the cycles which do not involve measured 
variables; the unmeasured variables which belong to these 
cycles are the unmeasured but estimable variables (rule IV). 
The other unmeasured variables of the process are the 
unmeasured but deducible variables. 
 

4) Detect the cycles involving only one measured variable; 
the measured variables that belong to these cycles are the 
measured but non estimable variables (rule II). The other 
measured variables of the process are the measured and 
estimable variables). 
 
Let us consider the process described by figure 1 and the lists 
Lm and Lm

_  previously defined. The sub-matrix comprises at 
most two measured variables is given in table 3: 
 

 1 2 3 4 5 6 7 8 
1 -1 . -1 1 . . . . 
2 . -1 1 . 1 . . . 
8 1 . 1 . 1 1 1 . 
9 1 . 1 . 1 1 1 1 
10 . . . . . . 1 -1 

Table 3: matrix of the cycles involving at most two measured 
variables 

 

Following the different described steps, the reader will verify 
that one finds again the previous classification. 
 
 

4   Degree of Redundancy Concept 
 
From the preceding notion of observability, one may define 
the concept of degree of redundancy. It will be very useful 
when taking into account sensor breakdowns. Let us begin by 
the notion of minimal observability. A variable is redundant 
of degree 0 (minimal observability) if there exists, at least, a 
configuration such that the breakdown of only one sensor 
make this variable inaccessible. For example, it is the case of 
the measured but estimable variables. Some unmeasured 
variables may also own this property. Let us consider the 
network of figure 1 with Lm = {x1, x4}. Then x6 may be 
deduced from the equation issued from the “aggregation” of 
nodes I, II and III: x1 + x4 - x6 = 0. In a normal situation, 
when measurements of x1 and x4 are available, the variable 
x6 is deducible. But, when one of the sensors measuring x1 or 
x4 is faulty, the variable x6 become inaccessible. The 
variable x6 is said to be a “redundant variable of degree 0” or 
a “variable of minimal observability”. 
 
This previous notion may be extended. A redundant variable 
of degree k is an observable variable which value remains 
deducible even when k whatever sensors simultaneously 
breakdown. Let us illustrate a redundancy of degree 2 
considering again the process of figure 1 and the list Lm = 
{ x1, x2, x4, x5, x6}. There exist ten distinct combinations of 
two sensors simultaneously faulty among five. Let us 
consider the variable x6. The combinations involving the 
breakdowns of two sensors which do not measure the 
variable x6 are not injurious to the observability of this 
variable because its value remain known by its direct 
measurement. There exist six combinations of this type, let us 
analyse the four remaining ones. Let us begin by 
remembering the equations describing the system: 
 

x1 - x2 - x3 = 0 (6a) 
x3 + x4 - x5 = 0 (6b) 
x2 + x5 - x6 = 0 (6c) 
x6 - x7 - x8 = 0 (6d) 



 

If the sensors measuring the variables x1 and x6 are faulty, 
then equation (6c) allows the variable x6 to be deduced 
because it is the only unknown quantity of this equation. The 
situation is identical if the sensors measuring the variables x4 
and x6 are simultaneously faulty. If one of the following 
couple of sensor (x2, x6) or (x5, x6) is faulty, it is the 
equation issued from the “aggregation” of nodes I, II and III 
(x1 + x4 - x6 = 0) that allows the variable x6 to be deduced. 
In conclusion, the variable x6, which remains observable 
even when two whatever sensors are simultaneously faulty, is 
said to be redundant of degree 2. 
The determination of the degree of redundancy of a variable 
is obtained by applying the following rule which is, in fact, an 
extension of the rule I involving the redundant variables 
(redundancy degree equal to 1): 
 

Rule V: A variable is redundant of degree k if, and only if, it 
belongs to cycles comprising at least k+1 measured variables. 
 
The degree of redundancy of a variable is easily determined 
by counting the minimum number of measured variables in 
the cycles where it intervenes. One may immediately 
deduced, for the considered example, that the variables x1, 
x2, x3, x4 and x5 are redundant of degree 1; they intervene in 
cycles comprising at least two measurement. The variable x6 
is a redundant variable of degree 2 and the variables x7 and 
x8 are unobservable. 
 
 
5  Sensor Placement subject to 
    Redundancy Constraints 

 

Now, we propose a method for designing a measurement 
system satisfying some redundancy requirements. In order to 
take into account industrial constraints, we first specify the 
list of variables which are absolutely necessary for 
controlling the process (list L1); these variables ought to be 
of minimal observability. Then, we specify the lists the 
variables of which we ought to ensure a given degree of 
redundancy (list Ldk for the variables which must be 
redundant of degree k). Moreover, a weight, proportional to 
the installation cost of the corresponding sensor, is associated 
to each variable. The main goal of the design then consists in 
determining the variables which must be measured in order to 
satisfy the constraints on the degrees of redundancy whilst 
minimising the global cost of installation. Let n the maximum 
degree of redundancy required, the proposed algorithm then 
comprises the n+2 following steps: 
 

Step n° 1: Cycle matrix 
We first generate the matrix of all the cycles of the graph. 
This matrix is issued from the matrix of the fundamental 
cycles. 
Step n° 2: Minimal observability of required variables 
According to rule V, it is sufficient to measure, at least, one 
variable per cycle comprising a variable belonging to L1. 
This analysis is a combinatorial one; after having considered 
all the possibility of measurements for each cycle, we 
generate all the possible combinations of variables to be 
measured. We then select that corresponding to the minimal 
cost. 

Step n° 2+k: Degree of redundancy of the variables 
belonging to Ldk (for k = 1, ..., n) 
According to rule V again, it is sufficient to measure k+1 
variables per cycle comprising a variable belonging to Ldk. 
We proceed similarly to the previous step, taking into 
account the measurements already chosen during the previous 
steps. After having generated all the possible combinations, 
we keep that of minimal cost. 
 
Consider the example described by the graph of figure 2. 
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Figure 2: an elementary process 

 

Let us assume that the list of the variables required for the 
control is the following: L1 = {x1, x4, x6, x9, x10}. In order 
to present a comprehensive example, let us specify a list of 
variables which must be redundant of degree 1 only: Ld1 = 
{ x1, x9}. The costs associated to each sensor are given in 
table 4: 
 

Var. Cost Var. Cost 
x1 3 x6 4 
x2 3 x7 4 
x3 4 x8 7 
x4 1 x9 2 
x5 9 x10 9 

Table 4: costs associated to sensors 
 

The matrix of all the cycles is generated during step n°1; it is 
given in Table 5. 
 

1 2 3 4 5 6 7 8 9 10 
1 1 . . . 1 . 1 . . 
. . . . . . 1 . 1 1 
1 . 1 . . . 1 . 1 . 
1 1 . 1 1 . 1 . 1 . 
1 1 . . . 1 1 1 1 1 
. 1 1 . . 1 1 1 1 . 
. . . 1 1 1 1 1 1 . 
1 . 1 . . . . . . 1 
1 1 . 1 1 . . . . 1 
. 1 1 1 1 . . . . . 
. 1 1 . . 1 . 1 . 1 
. . . 1 1 1 . 1 . 1 
1 . 1 1 1 1 . 1 . . 
. 1 1 1 1 . 1 . 1 1 
1 . 1 1 1 1 1 1 1 1 

Table 5: matrix Ct of all the cycles of the graph 



 

The number of all the combinations of variables which must 
be measured for ensuring the minimal observability of the 
variables belonging to L1 is too important for being presented 
here. The reader may verify, generating these combinations, 
that the minimal cost solution consists in measuring the 
variables x1, x2, x4 and x9. During step n°3, one searches to 
ensure to variables x1 and x9, a degree of redundancy equal 
to one. It is then necessary to consider cycles comprising less 
than two already measured variables. The sub-matrix of these 
cycles, where the measured variables are boldfaced, is given 
table 6. 
Only the first two cycles comprise the variables x1 and x9 
and they are already measured. For the first cycle, the 
possible combinations of variables to be measured are {x7} 
or {x10} and for the second one {x10} or {x3}. 
 

1 2 3 4 5 6 7 8 9 10 
. . . . . . 1 . 1 1 
1 . 1 . . . . . 1 1 
. 1 1 . . 1 . 1 . 1 
. . . 1 1 1 . 1 . 1 

Table 6: sub-matrix of the useful cycles 
 

 The constraints on the degree of redundancy will be satisfied 
if we measure one of the following sets of variables: {x7, 
x10}, {x7, x3}, { x3, x10} or {x10}. The minimal cost 
solution then consists in measuring the variables x3 and x7. It 
is very important to note that the minimisation of the cost 
implies the installation of the two sensors measuring x3 and 
x7 (cost equal to 8) whilst the sole respect of constraints on 
the redundancy degrees will lead to the installation of only 
one sensor measuring the variable x10 (cost equal to 9). This 
remark points out the importance of the choice of the 
optimised criterion which could, for example, take also into 
account the number of sensors to be installed. In conclusion, 
the set of variables which must be measured for satisfying the 
different given constraints whilst minimising the cost is the 
following: {x1, x2, x3, x4, x7, x9}. The corresponding cost is 
equal to 17 (3+3+4+1+4+2). 
 

 

6   Reliability Calculation 
 
For a given configuration of the measurement system (i.e. 
number, location and reliability of the sensors) it is important 
to analyse the influence of a sensor breakdown; for that 
purpose, we now compute the whole measurement system 
reliability. This will takes into account the constraint that the 
data required for the control be always available (either by 
direct measurement or by deduction if the observability 
conditions are satisfied). By definition, sensor reliability is 
the probability r(t) that at the time t, there is no failure 
knowing that no failure had occurred at time t=0. By using 
the law of Poisson, we have: 
 

r(t) = exp(-λt) (7) 
 

where λ is a constant which represents the rate of sensor 
failure. The reliability of a set of n sensors is then expressed 
in terms of reliability of each sensor: 
 

R(t) = f(r1(t), ..., rn(t)) (8) 

In the following discussion, the sensor failure rates ri(t) are 
equal. However, the proposed strategy may be extended to 
the general case where specific reliabilities are considered. In 
practice, the evaluation of the system reliability uses the mean 
time to failure function (MTTF) defined by: 

MTTF = ⌡⌠
0

∞

   R(t) dt (9) 

 

In order to define the link between reliability and 
observability, let us return to the example of figure 1 with 
measured variables Lm = {x1, x2, x4, x5}. 
 

When considering the case where all the measured variables 
are necessary for process monitoring, L1 = {x1, x2, x4, x5}, 
the probability that all the sensors are well functioning is 
given by: 
 

R0(t) = r(t)4 = exp(-4λt) (10) 
 

MTTF0 = 0.25/λ (11) 
 

Let us now examine how the redundancy due to the process 
model can be used in order to increase this MTTF. With the 
given measurements there exists only one redundancy 
equation: x1 - x2 + x4 - x5 (it is obtained the aggregation of 
the two first nodes of the graph). As all the variables in that 
equation are known, we can remove one of the sensors 
without modifying variable observability. Indeed, a defective 
sensor can be tolerated provided the value it measures may be 
deduced from data obtained from sound sensors. Thus, if one 
sensor (among the sensors measuring x1, x2, x4 or x5) is 
defective, the corresponding variable may be easily deduced 
from the remaining measurements. The probability that one 
sensor is defective and that the three others well function is: 
 

R1(t) = (1 - r(t)) r(t)3 (12) 
 

There are four possibilities of one sensor breakdown each 
ensuring the observability of the corresponding variable. 
Considering now the whole probability that the system 
remains controllable, in the sense that the variables of L1 are 
observable, yields the result: 
 

R(t) = R0(t) + 4 R1(t) (13) 
 

from which we deduce: 
 

MTTF = 0.58/λ (14) 
 

This value must be compared with that obtained in (11) when 
the redundancy due to the process model is not taken into 
account. The reader should now ask if there exist admissible 
configurations with two sensor breakdowns. The analysis of 
the cycle matrix (table 2) shows that if two sensors are 
simultaneously faulty, then the variables of L1 are not all 
observable (second rule of observability); therefore equation 
(14) gives the best reliability. However, more generally the 
reliability of a measurement system with c sensors is given 
by: 
 

R(t) = ∑

i=0
c  ai (1 - r(t))i r(t)c-i (15) 



 

where the coefficients ai give the number of configurations 
admitting i sensor breakdowns and ensuring the system 
control. To calculate R(t) one must determine the coefficients 
ai; a systematic procedure is developed in [15]. 
 
The MTTF gives a global characterisation of the reliability of 
a system. It is obvious that if we want to improve this MTTF, 
one have to reduce the number of “non reliable” components 
that is to say the cycles having the less number of measured 
variables. So, this remark emphasised the link between the 
reliability of a system and the degree of redundancy of the 
different variables. However, we clearly justify the use of the 
degree of redundancy previously introduced in section 4 
rather than that of the ordinary concept of redundancy 
(section 3), by presenting the following example. We 
consider the process of figure 1 with two configurations of 
measurements. The first one is such that Lm = {x1, x2, x4, 
x5} and the second one such that Lm = {x1, x3, x5, x6}. The 
list of variables required for controlling the process is L1 = 
{ x1, x3, x6}. Applying the proposed method for assessing the 
reliability of the whole system, one may ascertain that the 
MTTF corresponding to these two configurations of 
measurements is identical and is equal to 0.58/λ. However, 
the classical analysis of observability shows that, for the first 
configuration, x1 is the only redundant variable, whilst for the 
second one all of the required variables are redundant. Using 
the proposed classification and analysis based on multiple 
redundancy, one may establish that, in fact, for both 
configurations, all the variables are redundant of degree 1 
although some of them are not measured at all. This last 
remark emphasised the importance to use the proposed 
characterisation of the variables using their degree of 
redundancy rather than the classical one. 
 
 

7   Conclusion 
 

A new classification method based on the degree of 
redundancy of the variables was developed. Based on this 
analysis, a method for designing a measurement system 
guaranteeing the degree of redundancy of certain variables 
whilst minimising the installation cost of the sensors was 
proposed. After characterising a process by its MTTF, we 
have pointed out the relationships between the concepts of 
degree of redundancy and that of reliability highlighting the 
superiority of the proposed classification with respect to the 
classical one. The formulation of a multicriteria problem 
including observability, reliability, degree of redundancy, 
accuracy of deduction, costs of sensors is undoubtedly a 
fruitful future research direction. 
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