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Abstract: The quality of the state estimation of a system and, consequently, its
dependability are strongly conditioned by the number and the location of the
measurements. So, the measurement planning represents a very important stage. This
communication presents a method for assessing the availability of the necessary
information for the process control and defining the sensor locations such that the variables
required for controlling the process remain always observable even if one or more sensors
become defective.
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1. INTRODUCTION be judiciously placed in order to give an “image” of
the totality of the process. Moreover, it is necessary
to consider the realistic case in which initially
provided sensors can fail. Consequently to these
failures, the control of a process can be performed
only if variables measured by these faulty sensors
can be estimated. Considering these remarks, one can
assert that the choice of the instrumentation (number,
position and characteristics of sensors) is a crucial
problem. In the following, our purpose is limited to
the study of systems described by linear equations
(for example, they can correspond to equations of
matter or energy conservation).

The availability of a system may be increased if this
latter is able to function even in the presence of
sensor breakdowns. So, the measurement planning
(measurement system design) represents a very
important stage. The problem of designing a measu-
rement system is not new, though, in many previous
works, the optimisation aspect is not explicitly
discussed. In fact, measurement placement is closely
connected with the problem of variable classification
into observable and unobservable quantities. All
variables that can be estimated through their
measurements or indirectly through some relation-
ships with other measured variables are defined as
observable. Moreover, if a measured variable can
also be indirectly estimated by using measurements
of other variables, then it is termed as redundant.

Many works on observability analysis of steady-state
linear systems have already been published. Among
the firsts of them, those of Vaclaveck et al., (1969)
may be mentioned; afterwards, Stanley and Mah
(1981) and Crowe et al. (1983) have largely
contributed to develop this analysis. Algorithms of
observability that have been proposed are generally
based on graph theory (Mah et al., 1976) or on a
classification of variables from a projection matrix
(Crowe, 1989), (Ragot et al., 1990).

Studying the observability of a system consists in
answering the question: can the value of the variables
of a system from a given set of measurements be
determined ? If the process is non observable,
observable and non observable parts may however be
determined. As we can quite imagine, the state
estimation of a system is possible only if some
conditions are satisfied and especially requires to
have a minimum amount of information that is to say
a minimum amount of sensors; these sensors have to

After the analysis phase, making in evidence not
only redundancy but also the possible weaknesses of
the measurement system, it is advisable to propose
modifications of the existent sensor placements or
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even sensor addition. These modifications are
studied considering precise objectives: to render
observable a particular variable, to increase the
degree of redundancy of another one, to enhance the
precision of the estimation of a particularly useful
variable for the control of the process, to tolerate
sensor failures (Maquin et al., 1994). At present,
there are only few works dealing with the design of a
measurement system satisfying the previous
constraints. Madron et al. (1992) proposed a solution
based on the analysis of the incidence matrix of the
graph describing the process. Immonen (1994) for-
mulated the problem as a linear programming one.
The resulting optimisation problem is solved using a
mixed integer programming method in order to take
into account the occurrences and locations of
sensors. The most developed works are undoubtedly
those presented by Ali et al. (1993) and Luong et al.
(1994). Based on the analysis of the cycles of the
process graph, these studies simultaneously take into
account the variable observability and the reliability
of the sensors in order to determine an optimal
measurement system with regard to certain criteria.

x1 - x2 - x3 = 0 (1a)
x3 + x4 - x5 = 0 (1b)
x2 + x5 - x6 = 0 (1c)

The process is equipped with sensors measuring
different flow variables. They are represented by a
point on the figures and are written in boldface in the
equations. The preceding set of linear equations may
also be written using a matricial form by defining the
following vector X = (x1  x2  x3  x4  x5  x6)T. The
four equations are then written M X = 0, where M is
the so-called incidence matrix which contains only 1,
0 and -1 elements.

3. INTUITIVE APPROACH - DEFINITIONS

3.1 Observability

The variable classification based on the observability
analysis consists in pointing out two categories of
variables: the observable variables, the value of
which  may be known (by direct measurement or by
deduction from other measurements) and the
unobservable variables. Taking into account the
small dimensions of the proposed example, this
analysis may be done intuitively. The addition of the
equations (1a), (1b) and (1c) allow a redundancy
equation to be extracted: x1 + x4 - x6 = 0. Such
equation involves measured variables only. The
equations (1a) and (1c) are equations of deduction;
they allow unmeasured variables x3 and x5 to be
deduced. This analysis leads to the classification of
the variables into the four following distinct
categories:

This paper is organised as follows. In the second
section, the process codification is described. The
third section is dedicated to the presentation of the
different problems via an intuitive approach. The
notion of multiple redundancy (degree of redundan-
cy) which allows sensor failures or breakdowns to be
tolerated without being prejudicial to the control of
the process is presented and formalised. Then the
problem of sensor location is approached. Some
definitions, principles and rules are also described in
this section. In the fourth section, the previous
notions are generalised in a systematic approach.
Some algorithms are described and methods for
designing a measurement system guaranteeing the
degree of redundancy of certain variables whilst
minimising the installation cost of the sensors are
presented.

Lme = {x1, x4, x6} Lme
_ = {x2}

Lm
_

e = {x3, x5} Lm
_

e
_ = Ø

The first subscript (m or m
_

) indicates whether a
variable is measured or unmeasured and the second
one (e or e

_
) whether it is estimable or non estimable.

From this notion of observability, one can now define
that of degree of redundancy which will be very
useful when taking into account sensor breakdowns.

2. PROCESS CODIFICATION

Here, we consider only processes which may be
described by a carriage network (figure 1), the nodes
(processing units) of which correspond to elementary
equations and the arcs (material or energy transfer
stream) to variables.

3.2 Minimal observability of a variable

An observable variable is redundant of degree 0
(minimal observability) if there exists, at least, a
configuration such that the breakdown of only one
sensor make this variable inaccessible. For example,
it is the case of the measured but non estimable
variables. Some unmeasured variables may also own
this property. Let us consider the network of figure 2
where measurements are indicated by a point.

I II III
x1

x2

x3

x4

x5 x6

I II III
x1

x2

x3

x4

x5 x6
Figure 1: a carriage network

The associated graph is obtained by adding a so-
called “environment node” to which all the
input/output are linked on. In order to simplify the
figures, this node has not be drawn. The corres-
ponding equation is obtained by adding all the other
equations. Such process may be described by a set of
linear equations:

Figure 2: network number 1



The variable x6 may be deduced from the equation
issued from the “aggregation” of nodes I, II and III:
x1 + x4 - x6 = 0. In a normal situation, when
measurements of x1 and x4 are available, the variable
x6 is deducible. But, when one of the sensors
measuring x1 or x4 is faulty, the variable x6 becomes
inaccessible. The variable x6 is said to be a
“redundant variable of degree 0” or a “variable of
minimal observability”.

First principle: All the variables which intervene in a
redundancy equation are, at least, redundant of
degree 1.

Second principle: An unmeasured variable is
redundant of degree 1 if, and only if, it intervenes at
least in an equation in which all the other variables
are redundant of degree 1.

Let us now consider the configuration of figure 4; the
variable x6 is redundant of degree 0 (observable
variable).

3.3. Redundancy of any degree

I II III
x1

x2

x3

x4

x5 x6

This previous notion may be extended. A redundant
variable of degree k is an observable variable which
value remains deducible even when k whatever
sensors simultaneously breakdown. Let us illustrate a
redundancy of degree 2 considering the process of
figure 3.

I II III
x1

x2

x3

x4

x5 x6

Figure 4: network number 3

x1 - x2 - x3 = 0 (3a)
x3 + x4 - x5 = 0 (3b)
x2 + x5 - x6 = 0 (3c)

Let us search where to place a sensor in order that
the variable x6 becomes redundant of degree 1. The
value of this unmeasured variable may be deduced
from those of x2 and x5 (eq. 3c). The variable x2 is
redundant of degree 1 because it intervenes in a
redundancy equation (eq. 3a). On the other hand, x5
is of minimal observability (redundancy degree equal
to 0). If the sensor measuring x5 is faulty, this
variable becomes unobservable, consequently x6 is
no more deducible. So, for the variable x6 to be
redundant of degree 1, one can either measure the
variable x6 (application of the first principle) or
measure x4 in order to render x5 redundant of degree
1 (application of the second principle).

Figure 3: network number 2

There exist ten distinct combinations of two sensors
simultaneously faulty among five. Let us consider the
variable x6. The combinations involving the
breakdowns of two sensors which do not measure the
variable x6 are not injurious to the observability of
this variable because its value remains known by its
direct measurement. There exist six combinations of
this type, let us analyse the four remaining ones. Let
us begin by remembering the equations describing
the system:

x1 - x2 - x3 = 0 (2a)
x3 + x4 - x5 = 0 (2b)
x2 + x5 - x6 = 0 (2c) The degrees of freedom concerning this very little

example are rather limited. The goal was just to
sensitise the reader to these concepts. However, we
can now state the rules which allow any variable to
be redundant of degree 1:

If the sensors measuring the variables x1 and x6 are
faulty, then equation (2c) allows the variable x6 to be
deduced because it is the only unknown quantity of
this equation. The situation is identical if the sensors
measuring the variables x4 and x6 are simultaneously
faulty. If one of the following couple of sensor (x2,
x6) or (x5, x6) is faulty, it is the equation issued from
the “aggregation” of nodes I, II and III (x1 + x4 - x6
= 0) that allows the variable x6 to be deduced. In
conclusion, the variable x6, which remains
observable even when two whatever sensors are
simultaneously faulty, is said to be redundant of
degree 2.

Rule 1: Measure all the variables of an equation
comprising the concerned variable.

Rule 2: Measure all the variables which intervene in
two independent equations involving the concerned
variable except this later.

The generalisation of the previous rules to the case of
a redundancy of any degree is immediate.

3.4  Sensor placement and redundancy constraints
4. SYSTEMATIC APPROACH - ALGORITHMS

The preceding definitions allow any process variable
to be characterised by its degree of redundancy
which represent its availability with regard to sensor
breakdowns. In order to simplify the presentation, let
us consider a degree of redundancy equal to one
only. The reader will easily verify, taking into
account what it has been said before, the two
following principles:

4.1 Observability analysis

Graph theory offers the possibility to describe a
graph with different tools. In the first paragraph, we
have mention the use of the incidence matrix.
Another possibility consists in using the matrix of the
fundamental cycles of this graph (Berge, 1983). This
matrix may be easily deduced from the incidence



matrix. From this matrix of fundamental cycles, one
can generate, by linear combinations, the matrix of
all the cycles of the graph. The analysis of this cycle
matrix allows the classification of variables to be
obtained. It is based on the four fundamental
following rules:

sing at most two measured variables is given in table
2. The analysis of this last matrix leads to the
following classification:

Lme = {x3, x4, x5, x9, x10} Lme
_ = {x8}

Lm
_

e = {x1, x2, x6, x7} Lm
_

e
_ = Ø

Rule I: A measured variable is estimable (redundant
variable) if and only if it only belongs to cycles
where at least two variables are measured.

1 2 3 4 5 6 7 8 9 10
1 1 . . . 1 . 1 . .
. . . . . . 1 . 1 1Rule II: A measured variable is not estimable if and

only if it belongs at least to a cycle where it is the
only measured variable.

1 . 1 . . . 1 . 1 .
1 1 . 1 1 . 1 . 1 .
1 1 . . . 1 1 1 1 1

Rule III: An unmeasured variable is deducible
(estimable) if and only if it only belongs to cycles
with at least one measured variable.

. 1 1 . . 1 1 1 1 .

. . . 1 1 1 1 1 1 .
1 . 1 . . . . . . 1
1 1 . 1 1 . . . . 1Rule IV: An unmeasured variable is not deducible

(non estimable) if and only if it belongs at least to a
cycle where not any variable is measured.

. 1 1 1 1 . . . . .

. 1 1 . . 1 . 1 . 1

. . . 1 1 1 . 1 . 1
So, the classification algorithm of variables includes
the four following steps:

1 . 1 1 1 1 . 1 . .
. 1 1 1 1 . 1 . 1 1
1 . 1 1 1 1 1 1 1 1

1) Determine the matrix of all the cycles of the graph,
let Ct this matrix. Table 1: matrix Ct of all the cycles of the graph

1 2 3 4 5 6 7 8 9 102) Extract from Ct the sub-matrix which comprises at
most two measured variables (the knowledge of
cycles which comprise more than two measurements
is not necessary at this step)

1 1 . . . 1 . 1 . .
. . . . . . 1 . 1 1
1 . 1 . . . 1 . 1 .
1 . 1 . . . . . . 1

3) Detect the cycles which do not involve measured
variables; the unmeasured variables which belong to
these cycles are the unmeasured and non estimable
variables (rule IV). The other unmeasured variables
of the process are the unmeasured but deducible
variables.

Table 2: matrix of the cycles involving at most two
measured variables

4.2 Determination of the redundancy degree

The determination of the degree of redundancy of a
variable is obtained by applying the following rule
which is an extension of the rule I involving the
redundant variables (redundancy degree equal to 1):

4) Detect the cycles involving only one measured
variable; the measured variables that belong to these
cycles are the measured but non estimable variables
(rule II). The other measured variables of the process
are the measured and estimable variables).

Rule V: A variable is redundant of degree k if, and
only if, it belongs to cycles comprising at least k+1
measured variables.

Let us consider the process described by the graph of
figure 5: The degree of redundancy of a variable is easily

determined by counting the minimum number of
measured variables in the cycles where it intervenes.
One may immediately deduce, for the considered
example, that the variables x1, x2, x6 and x8 are of
minimal observability; they intervene in a cycle
comprising only one measurement. The variables x3,
x7, x9 and x10 are redundant of degree 1 and the
variables x4 and x5 are redundant of degree 2.

I

II III

x8

x2

x4

x3

x5

x6

IV

x1

x9

x7

VI

x10
V

4.3 Sensor placement and redundancy constraints

Now, we propose a method for designing a measure-
ment system satisfying some redundancy require-
ments. We first specify the lists the variables of
which we ought to ensure a given degree of redun-
dancy (list Lk for the variables which must be
redundant of degree k). Moreover, a weight, propor-
tional to the installation cost of the corresponding
sensor, is associated to each variable. The main goal

Figure 5: an elementary process

The matrix of all the cycles of this graph is given in
table 1. Only the first four cycles are the fundamental
cycles from which all the other cycles have been
generated. The sub-matrix involving cycles compri-



of the design then consists in determining the
variables which must be measured in order to satisfy
the constraints on the degrees of redundancy whilst
minimising the global cost of installation. Let n be
the maximum required degree of redundancy, the
proposed algorithm then comprises n+1 sequential
steps. The kth step ensures a redundancy degree
equal to k to the variables of the list Lk.

measured are {x7} or {x10} and for the second one
{ x10} or {x3}.

The constraints on the degree of redundancy will be
satisfied if one of the following sets of variables: {x7,
x10}, { x7, x3}, { x3, x10} or {x10} is measured. The
minimal cost solution then consists in measuring the
variables x3 and x7. It is very important to note that
the minimisation of the cost implies the installation
of the two sensors measuring x3 and x7 (cost equal to
8) whilst the sole respect of constraints on the
redundancy degrees will lead to the installation of
only one sensor measuring the variable x10 (cost
equal to 9). This remark points out the importance of
the choice of the optimised criterion which could, for
example, take also into account the number of
sensors to be installed. In conclusion, the set of
variables which must be measured for satisfying the
different given constraints whilst minimising the cost
is the following: {x1, x2, x3, x4, x7, x9}. The
corresponding cost is equal to 17 (3+3+4+1+4+2).

Step n°k: Degree of redundancy of the variables
belonging to Lk (for k = 0, ..., n)
According to rule V , it is sufficient to measure k+1
variables per cycle comprising a variable belonging
to Lk. This analysis is a combinatorial one; after
having considered all the possibility of measurements
for each cycle, we generate all the possible
combinations of variables to be measured taking into
account the measurements already chosen during the
previous steps. We then select that corresponding to
the minimal cost.

Let us consider the example of figure 5 without any
sensors. Let us assume that the list of the variables
required for the control is the following: L0 = {x1, x4,
x6, x9, x10}. In order to present a comprehensive
example, let us specify a list of variables which must
be redundant of degree 1 only: L1 = {x1, x9}. The
costs associated to each sensor are given in table 3:

Usage of mixed linear programming approach

Recently, some authors have introduced the usage of
mixed linear programming for solving both the
problem of variable classification according to their
observability and that of sensor placement
(Immonen, 1994), (Bagajewicz, 1995). The
following presentation uses these ideas. Indeed,
sensor placement subject to redundancy constraints
may easily be transformed into linear programming
problem.

Var. Cost Var. Cost
x1 3 x6 4
x2 3 x7 4
x3 4 x8 7
x4 1 x9 2
x5 9 x10 9 The formulation of the problem comes from the

analysis of the preceding proposed algorithm. Let us
assume that the matrix of all the cycles of the graph
has already been generated. Sensor placement
consists in measuring a given number of variables
per cycles depending on the redundancy degree
which must be ensured whilst minimising the
associated cost. We claim that this problem can be
formulated as follows:

Table 3: costs associated to sensors

Now, we propose two approaches for solving the
problem. The first one uses a matricial analysis while
the second has recourse to linear programming.

Usage of matricial analysis

The number of all the combinations of variables
which must be measured for ensuring the minimal
observability of the variables belonging to L0 is too
important for being presented here. The reader may
verify, generating these combinations, that the mini-
mal cost solution consists in measuring the variables
x1, x2, x4 and x9. During step n°1, one searches to
ensure to variables x1 and x9, a degree of redundancy
equal to one. It is then necessary to consider cycles
comprising less than two already measured variables.
The sub-matrix of these cycles, where the measured
variables are boldfaced, is given table 4.

Minimise CT U
Subject to A U ≥ B

where C is the cost vector of dimension v. U = [ui] is
the unknown vector of Boolean numbers which
indicates the variables which must be measured to
meet the redundancy constraints (1 : must be
measured, 0 : elsewhere). A is a cycle matrix the
construction of which will be explained latter and B
is a vector which entries are equal to the minimum
number of measurements per cycle for satisfying the
redundancy constraints.

1 2 3 4 5 6 7 8 9 10
. . . . . . 1 . 1 1 Let us now explain the construction of A and B. The

matrix A is built from the matrix of all the cycles of
the graph from which the cycles involving variables
which do not belong to any lists Lk have been
removed. Indeed, there is not any constraints on the
variables belonging to these cycles. The entries of
the vector B are computed as follows. If a cycle
contains a variable belonging to the list Lk, the

1 . 1 . . . . . 1 1
. 1 1 . . 1 . 1 . 1
. . . 1 1 1 . 1 . 1

Table 4: sub-matrix of the useful cycles

Only the first two cycles comprise the variables x1
and x9 and they are already measured. For the first
cycle, the possible combinations of variables to be



redundancy constraints will be satisfied only if k+1
variables belonging to this cycle are measured. As a
cycle may contain variables belonging to different
lists Lk , the entry b   i will be equal to the maximum
number of variables which must be measured. If a
given cycle contains less variables than this
minimum number of variables to be measured, the
problem has no solution, except if we accept to use
hardware redundancy, that is to say to place more
than one sensor for measuring a variable.

dependability with regard to sensor breakdowns.
During the synthesis step, the measurement system
design is done by optimising a unique criterion
related to cost of installation subject to redundancy
constraints. Others criteria could have been taken
into account. The formulation of a multicriteria
problem including observability, reliability, degree
of redundancy, accuracy of deduction, costs of
sensors is undoubtedly a fruitful future research
direction.

Let us again consider the example of figure 5 with
the same constraints and the same costs. The matrix
of all the cycles of the graph is given in table 1. For
this example, the reader will verify that, as one
variable belonging either to L0 or L1 intervenes, at
least, in each cycle, the matrix A is equal to the
matrix of all the cycles, Ct. Moreover, except for the
10th, 11th and 12th cycles, which do not contain
variables x1 or x9, that is to say that b10, b11 and b12

are equal to 1, the other entries of B are all equal to
2. The problem has been solved by using the public
domain code LP_SOLVE1. The entry file is given
below:
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