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Introduction

The eigenvalues of an n × n complex matrix A are the roots in C of its characteristic polynomial. We label them λ 1 (A), . . . , λ n (A) so that |λ 1 (A)| • • • |λ n (A)| with growing phases. The spectral radius is |λ 1 (A)|. We also denote by s 1 (A) • • • s n (A) the singular values of A, defined for all 1 k n by s k (A) := λ k ( √ AA * ) where A * = Ā⊤ is the conjugate-transpose. The matrix A maps the unit sphere to an ellipsoid, the half-lengths of its principal axes being the singular values of A. The operator norm of A is

A 2→2 := max x 2 =1 Ax 2 = s 1 (A) while s n (A) = min x 2 =1 Ax 2 .
The matrix A is singular iff s n (A) = 0, and if not then s n (A) = s 1 (A -1 ) -1 = A -1 -1 2→2 . If A is normal (i.e. A * A = A * A) then s i (A) = |λ i (A)| for every 1 i n. Beyond normal matrices, the relationships between the eigenvalues and the singular values are captured by the Weyl inequalities (see lemma B.6). Let us define the discrete probability measures From now on, we denote " C b -→" the weak convergence of probability measures with respect to bounded continuous functions. We use the abbreviations a.s., a.a., and a.e. for almost surely, Lebesgue almost all, and Lebesgue almost everywhere respectively. The notation n ≫ 1 means large enough n. Let (X i,j ) i,j 1 be an infinite table of i.i.d. complex random variables with finite positive variance 0 < σ 2 < ∞. If one defines the square n × n complex random matrix X := (X i,j ) 1 i,j n then the quartercircular law theorem (universal square version of the Marchenko-Pastur theorem, see [START_REF] Marchenko | The distribution of eigenvalues in sertain sets of random matrices[END_REF][START_REF] Wachter | The strong limits of random matrix spectra for sample matrices of independent elements[END_REF][START_REF] Yin | Limiting spectral distribution for a class of random matrices[END_REF]) states that a.s.

ν 1 √ n X C b -→ n→∞ Q σ (1.1)
where Q σ is the quartercircular law on the real interval [0, 2σ] with Lebesgue density

x → 1 πσ 2 4σ 2 -x 2 1 [0,2σ] (x). Additionally, it is shown in [START_REF]Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix[END_REF][START_REF] Bai | A note on the largest eigenvalue of a large-dimensional sample covariance matrix[END_REF][START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]] that lim n→∞ s 1 ( 1 √ n X) = 2σ a.s. iff E(X 1,1 ) = 0 and E(|X 1,1 | 4 ) < ∞.

(1.2)

Concerning the eigenvalues, the famous Girko circular law theorem states that a.s.

µ 1 √ n X C b -→ n→∞ U σ (1.3)
where U σ is the uniform law on the disc {z ∈ C : |z| σ}, known as the circular law. This statement was established through a long sequence of partial results [START_REF] Mehta | Random matrices and the statistical theory of energy levels[END_REF][START_REF] Girko | The circular law[END_REF][START_REF]The circular law. Twenty years later. III, Random Oper[END_REF][START_REF] Hwang | A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries, Random matrices and their applications[END_REF][START_REF] Edelman | The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law[END_REF][START_REF]Strong circular law[END_REF][START_REF] Bai | Circular law[END_REF][START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF][START_REF] Pan | Circular law, extreme singular values and potential theory[END_REF][START_REF] Götze | The Circular Law for Random Matrices[END_REF][START_REF] Tao | Random matrices: the circular law[END_REF][START_REF]Random matrices: Universality of ESDs and the circular law[END_REF], the general case (1.3) being finally obtained by Tao and Vu [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF].

From (1.3) we have a.s. lim n→∞ |λ k (n -1/2 X)| σ for any fixed k 1, and we get from [START_REF] Bai | Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang[END_REF][START_REF] Pan | Circular law, extreme singular values and potential theory[END_REF] and (1.2) that if additionally E(X 1,1 ) = 0 and E(|X 1,1 | 4 ) < ∞ then a.s. The behavior of the ratio operator-norm/spectral-radius suggests that X is far from being an asymptotically normal matrix. Following [START_REF] Silverstein | The spectral radii and norms of large-dimensional non-central random matrices[END_REF][START_REF]Circular law for non-central random matrices[END_REF], if E(X 1,1 ) = 0 while E(|X 1,1 | 4 ) < ∞ then a.s. |λ 1 (n -1/2 X)| → +∞ at speed √ n while |λ 2 (n -1/2 X)| remains bounded.

The proof of (1.3) is partly but crucially based on a polynomial lower bound on the smallest singular value proved in [START_REF] Tao | Random matrices: the circular law[END_REF]: for every a, d > 0, there exists b > 0 such that for any deterministic complex n × n matrix A with s 1 (A) n d we have P(s n (X + A) n -b ) n -a .

(1.5)

In particular, by the first Borel-Cantelli lemma, there exists b > 0 which may depend on d such that a.s.

X + A is invertible with s n (X + A) n -b for n ≫ 1.
1.1. Random Markov matrices and main results. From now on and unless otherwise stated (X i,j ) i,j 1 is an infinite array of nonnegative real random variables with mean m := E(X 1,1 ) > 0 and finite positive variance σ 2 := E(X 2 1,1 ) -m 2 . Let us define the event

D n := {ρ n,1 • • • ρ n,n > 0} where ρ n,i := X i,1 + • • • + X i,n .
Since σ > 0 we get q := P(X 1,1 = 0) < 1 and thus

∞ n=1 P(D c n ) = ∞ n=1 (1 -(1 -q n ) n ) ∞ n=1 nq n < ∞.
By the first Borel-Cantelli lemma, a.s. for n ≫ 1, one can define the n × n matrix M by M i,j := X i,j ρ n,i .

The matrix M is Markov since its entries belong to [0, 1] and each row sums up to 1. We have M = DX where X := (X i,j ) 1 i,j n and D is the n × n diagonal matrix defined by

D i,i := 1 ρ n,i .
We may define M and D for all n 1 by setting, when ρ n,i = 0, M i,j = δ i,j for all 1 j n and D i,i = 1. The matrix M has equally distributed dependent entries. However, the rows of M are i.i.d. and follow an exchangeable law on R n supported by the simplex

Λ n := {(p 1 , . . . , p n ) ∈ [0, 1] n : p 1 + • • • + p n = 1}.
From now on, we set m = 1. This is actually no loss of generality since the law of the random matrix M is invariant under the linear scaling t → t X i,j for any t > 0. Since σ < ∞, the uniform law of large numbers of Bai and Yin [8,lem. 2] states that a.s. max

1 i n |ρ n,i -n| = o(n). (1.6) 
This suggests that √ nM is approximately equal to n -1/2 X for n ≫ 1. One can then expect that (1.1) and (1.3) hold for √ nM . Our work shows that this heuristics is valid.

There is however a complexity gap between (1.1) and (1.3), due to the fact that for nonnormal operators such as M , the eigenvalues are less stable than the singular values under perturbations, see e.g. the book [START_REF] Trefethen | The behavior of nonnormal matrices and operators[END_REF]. Our first result below constitutes the analog of the universal Marchenko-Pastur theorem (1.1) for √ nM , and generalizes the result of the same kind obtained in [START_REF]The Dirichlet Markov Ensemble[END_REF] in the case where X 1,1 follows an exponential law.

Theorem 1.1 (Quartercircular law theorem). We have a.s.

ν √ nM C b -→ n→∞ Q σ .
Our second result provides some estimates on the largest singular values and eigenvalues.

Theorem 1.2 (Extremes). We have

λ 1 (M ) = 1. Moreover, if E(|X 1,1 | 4 ) < ∞ then a.s. lim n→∞ s 1 (M ) = 1 and lim n→∞ s 2 ( √ nM ) = 2σ while lim n→∞ |λ 2 ( √ nM )| 2σ.
Our third result below is the analogue of (1.3) for our random Markov matrices. When X 1,1 follows the exponential distribution of unit mean, theorem 1.3 is exactly the circular law theorem for the Dirichlet Markov Ensemble conjectured in [START_REF]The Dirichlet Markov Ensemble[END_REF][START_REF] Chafaï | Aspects of large random Markov kernels[END_REF]. Note that we provide, probably for the first time, an almost sure circular law theorem for a matrix model with dependent entries under a finite positive variance assumption.

Theorem 1.3 (Circular law theorem). If X 1,1 has a bounded density then a.s.

µ √ nM C b -→ n→∞ U σ .
The proof of theorem 1.3 is crucially based on the following estimate on the norm of the resolvent of √ nM . It is the analogue of (1.5) for our random Markov matrices.

Theorem 1.4 (Smallest singular value). If X 1,1 has a bounded density then for every a, C > 0 there exists b > 0 such that for any z ∈ C with |z| C, for n ≫ 1,

P(s n ( √ nM -zI) n -b ) n -a .
In particular, for some b > 0 which may depend on C, a.s. for n ≫ 1, the matrix √ nM -zI

is invertible with s n ( √ nM -zI) n -b .
The proofs of theorems 1.1-1.2-1.3-1.4 are given in sections 2-3-4-5 respectively. These proofs make heavy use of lemmas given in the appendices A-B-C.

The matrix M is the Markov kernel associated to the weighted oriented complete graph with n vertices with one loop per vertex, for which each edge i → j has weight X i,j . The skeleton of this kernel is an oriented Erdős-Rényi random graph where each edge exists independently of the others with probability 1 -q. If q = 0 then M has a complete skeleton, is aperiodic, and 1 is the sole eigenvalue of unit module [START_REF] Seneta | Non-negative matrices and Markov chains[END_REF]. The nonoriented version of this graphical construction gives rise to random reversible kernels for which a semicircular theorem is available [START_REF]Spectrum of large random reversible markov chains: two examples[END_REF]. The bounded density assumption forces q = 0.

Since M is Markov, we have that for every integer r 0,

C z r µ M (dz) = 1 n n i=1 λ r i (M ) = 1 n n i=1 p M (r, i) (1.7) 
where p M (r, i) :=

1 i 1 ,...,ir n i 1 =ir=i M i 1 ,i 2 • • • M i r-1 ,i 1
is simply, conditional on M , the probability of a loop of length r rooted at i for a Markov chain with transition kernel M . This provides a probabilistic interpretation of the moments of the empirical spectral distribution µ M of M . The random Markov matrix M is a random environment. By combining theorem 1.2 with theorem 1.3 and the identity (1.7), we get that for every fixed r 0, a.s. Classical results on the connectivity of Erdős-Rényi random graphs [START_REF] Erdős | On the evolution of random graphs[END_REF][START_REF] Bollobás | Random graphs[END_REF] imply that a.s. for n ≫ 1 the Markov matrix M is irreducible. Hence, a.s. for n ≫ 1, the Markov matrix M admits a unique invariant probability measure κ. If κ is seen as a row vector in Λ n then we have κM = κ. Let Υ := n -1 (δ 1 + • • • + δ n ) be the uniform law on {1, . . . , n}, which can be viewed as the vector n -1 (1, . . . , 1) ∈ Λ n . By denoting • TV the total variation (or ℓ 1 ) distance on Λ n , one can ask if a.s.

lim n→∞ n r 2 1 n n i=1 p M (r, i) - 1 n = 0.
lim n→∞ κ -Υ TV = 0.
Recall that the rows of M are i.i.d. and follow an exchangeable law η n on the simplex Λ n . By "exchangeable" we mean that if Z ∼ η n then for every permutation π of {1, . . . , n} the random vector (Z π(1) , . . . , Z π(n) ) follows also the law η n . This gives

0 = Var(1) = Var(Z 1 + • • • + Z n ) = nVar(Z 1 ) + n(n -1)Cov(Z 1 , Z 2 )
and therefore Cov(Z 1 , Z 2 ) = -(n-1) -1 Var(Z 1 ) 0. One can ask if the results of theorems 1.1-1.2-1.3-1.4 remain essentially valid at least if M is a real n × n random matrix with i.i.d. rows such that for every 1 i, j = j ′ n,

E(M i,j ) = 1 n and 0 < Var(M i,j ) = O(n -2 ) and |Cov(M i,j , M i,j ′ )| = O(n -3 ).
These rates in n correspond to the Dirichlet Markov Ensemble for which X 1,1 follows an exponential law and where η n is the Dirichlet law D n (1, . . . , 1) on the simplex Λ n . Another interesting problem is the spectral analysis of M when the law of X 1,1 has heavy tails, e.g. X 1,1 = V -β with 2β > 1 and where V is a uniform random variable on [0, 1], see for instance [START_REF] Ch | Spectrum of large random reversible Markov chains -Heavy-tailed weigths on the complete graph[END_REF] for the reversible case. A logical first step consists in the derivation of a heavy tailed version of (1.3) for X. This program is addressed in a separate paper [START_REF]Spectrum of non-hermitian heavy tailed random matrices[END_REF]. In the same spirit, one may ask about the behavior of µ X•A where "•" denotes the Schur-Hadamard entrywise product and where A is some prescribed profile matrix.

Proof of theorem 1.1

Let us start by an elementary observation. The second moment ς n of ν √ nM is given by

ς n := t 2 ν √ nM (dt) = 1 n n i=1 s i ( √ nM ) 2 = Tr(M M * ) = n i=1 X 2 i,1 + • • • + X 2 i,n (X i,1 + • • • + X i,n ) 2 .
By using (1.6) together with the standard law of large numbers, we get that a.s.

ς n 1 n 2 (1 + o(1)) 2 n i,j=1 X 2 i,j = (1 + σ 2 ) + o(1) = O(1). (2.1) 
It follows by the Markov inequality that a.s. the sequence (ν √ nM ) ) n 1 is tight. However, we will not rely on tightness and the Prohorov theorem in order to establish the convergence of (ν √ nM ) n 1 . We will use instead a perturbative argument based on the special structure of M and on (1.6). Namely, since √ nM = nDn -1/2 X, we get from (B.4), for all 1 i n,

s n (nD)s i (n -1/2 X) s i ( √ nM ) s 1 (nD)s i (n -1/2 X). (2.2)
Additionally, we get from (1.6) that a.s.

lim n→∞ max 1 i n |nD i,i -1| = 0 and lim n→∞ max 1 i n |n -1 D -1 i,i -1| = 0.
This gives that a.s.

s 1 (nD) = max 1 i n |nD i,i | = 1 + o(1) and s n (nD) = min 1 i n |nD i,i | = 1 + o(1). (2.3) From (2.2), (2.
3), and (1.5), we get that a.s. for n ≫ 1,

s n ( √ nM ) > 0 and s n (n -1/2 X) > 0 (2.4)
and from (2.2) and (2.3) again we obtain that a.s. max

1 i n log(s i ( √ nM )) -log(s i (n -1/2 X)) = o(1). (2.5) 
Now, from (1.1), and by denoting L σ the image probability measure of Q σ by log(•), a.s.

1 n n i=1 δ log(s i (n -1/2 X)) C b -→ n→∞ L σ .
Next, using (2.5) with lemma C.1 provides that a.s.

1 n n i=1 δ log(s i ( √ nM )) C b -→ n→∞ L σ .
This implies by the change of variable t → e t that a.s.

ν √ nM = 1 n n i=1 δ s i ( √ nM ) C b -→ n→∞ Q σ which is the desired result. Remark 2.1 (Alternative arguments). From (2.2) and (2.3), a.s. for n ≫ 1, s k (M ) = 0 iff s k (X) = 0, for all 1 k n, and thus ν √ nM ({0}) = ν n -1/2 X ({0})
, and hence the reasoning can avoid the usage of (2.4). Note also that (2.4) is automatically satisfied when X 1,1 is absolutely continuous since the set of singular matrices has zero Lebesgue measure. On the other hand, it is also worthwhile to mention that if E(|X 1,1 | 4 ) < ∞ then one can obtain the desired result without using (2.4), by using lemma C.1 together with (3.2), and this reasoning was already used by Aubrun for a slightly different model [START_REF] Aubrun | Random points in the unit ball of l n p[END_REF].

Proof of theorem 1.2

Let us define the n × n deterministic matrix S := E(X) = (1, . . . , 1) ⊤ (1, . . . , 1). The random matrix n -1/2 (X -S) has i.i.d. centered entries with finite positive variance σ 2 and finite fourth moment, and consequently, by (1.2), a.s.

s 1 (n -1/2 (X -S)) = 2σ + o(1).
Now, since rank(n -1/2 S) = 1 we have, by lemma B.5,

s 2 (n -1/2 X) s 1 (n -1/2 (X -S))
and therefore, a.s. 

s 2 (n -1/2 X) 2σ + o(1). ( 3 
|s i ( √ nM ) -s i (n -1/2 X)| = o(1). (3.2) 
In particular, this gives from (3.1) that a.s.

s 2 ( √ nM ) 2σ + o(1). (3.3) 
From theorem 1.1, since Q σ is supported by [0, 2σ], we get by using (3.3) that a.s.

lim n→∞ s 2 ( √ nM ) = 2σ. (3.4)
Next, since M is a Markov matrix, it is known that 

λ 1 (M ) = 1. ( 3 
|λ||x i | n j=1 M i,j |x j | |x i | n j=1 M i,j = |x i |,
we get |λ| 1, which implies (3.5). Let us show now that a.s.

lim n→∞ s 1 (M ) = 1 (3.6)
Let S be as in the proof of theorem 1.1. From (B.1) and (1.2), we get a.s.

s 1 ( √ nM ) s 1 (nD)s 1 (n -1/2 X) s 1 (nD)s 1 (n -1/2 (X -S) + n -1/2 S) s 1 (nD)(s 1 (n -1/2 (X -S)) + s 1 (n -1/2 S)) = (1 + o(1))(2σ + o(1) + n 1/2 )
which gives lim n→∞ s 1 (M ) 1 a.s. On the other hand, from (B.6) and (3.5) we get s 1 (M ) |λ 1 (M )| = 1, which gives (3.6). It remains to establish that a.s.

lim n→∞ |λ 2 ( √ nM )| 2σ.
Indeed, from (B.6) we get for every non null n × n complex matrix A,

|λ 2 (A)| s 1 (A)s 2 (A) |λ 1 (A)| .
With A = √ nM and by using (3.4-3.5-3.6), we obtain that a.s.

lim n→∞ |λ 2 ( √ nM )| lim n→∞ s 2 ( √ nM ) lim n→∞ s 1 (M ) = 2σ. 4. Proof of theorem 1.3
Let us start by observing that from the Weyl inequality (B.9) and (2.1), a.s.

C |z| 2 µ √ nM (dt) ∞ 0 t 2 ν √ nM (dt) = O(1).
This shows via the Markov inequality that a.s. the sequence (µ √ nM ) n 1 is tight. However, we will not rely directly on this tightness and the Prohorov theorem in order to establish the convergence of (µ √ nM ) n 1 . We will use instead the Girko Hermitization of lemma A.2. We know, from the work of Dozier and Silverstein [START_REF] Dozier | On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices[END_REF], that for all z ∈ C, there exists a probability measure ν z on [0, ∞) such that a.s. (ν n -1/2 X-zI ) n 1 converges weakly to ν z . Moreover, following e.g. Pan and Zhou [33, lem. 3], one can check that for all z ∈ C,

U Uσ (z) = - ∞ 0 log(t) ν z (dt).
To prove that a.s. (µ √ nM ) n 1 tends weakly to U σ , we start from the decomposition

√ nM -zI = nDW where W := n -1/2 X -zn -1 D -1 .
By using (B.2), (1.6), and lemma C.1, we obtain that for a.a. z ∈ C, a.s.

ν W C b -→ n→∞ ν z .
Now, arguing as in the proof of theorem 1.1, it follows that for all z ∈ C, a.s.

ν √ nM -zI C b -→ n→∞ ν z .
Suppose for the moment that for a.a. z ∈ C, a.s. the function log(•) is uniformly integrable for (ν √ nM -zI ) n 1 . Let P(C) by as in section A. Lemma A.2 implies that there exists µ ∈ P(C) such that a.s.

µ √ nM C b -→ n→∞ µ and U µ = U Uσ a.e.
where U µ is the logarithmic potential of µ as defined in section A. Now by lemma A.1, we obtain µ = U σ , which is the desired result. It thus remains to show that for a.a. z ∈ C, a.s. the function log(•) is uniformly integrable for (ν √ nM -zI ) n 1 . For every z ∈ C, a.s. by the Cauchy-Schwarz inequality, for all t 1, and n ≫ 1, 

∞ t log(s) ν √ nM -zI (ds) 2 ν √ nM -zI ([t, ∞)) ∞ 0 s 2 ν √ nM -zI ( 
-log(s) ν √ nM -zI (ds) = 0.
For convenience, we fix z ∈ C and set s i := s i ( √ nM -zI) for all 1 i n. Now we write

- δ 0 log(t) ν √ nM -zI (dt) = 1 n ⌊2n 0.99 ⌋ i=0 1 (0,δ) (s n-i ) log(s -1 n-i ) + 1 n n-1 i=⌊2n 0.99 ⌋+1 1 (0,δ) (s n-i ) log(s -1 n-i ) log(s -1 n ) n ⌊2n 0.99 ⌋ i=0 1 (0,δ) (s n-i ) + 1 n n-1 i=⌊2n 0.99 ⌋+1 1 (0,δ) (s n-i ) log(s -1 n-i ).
From theorem 1.4 (here we need the bounded density assumption) we get that a.s.

lim δ→0 lim n→∞ log(s -1 n ) n ⌊2n 0.99 ⌋ i=0 1 (0,δ) (s n-i ) = 0
and it thus remains to show that a.s.

lim δ→0 lim n→∞ 1 n n-1 i=⌊2n 0.99 ⌋+1 1 (0,δ) (s n-i ) log(s -1 n-i ) = 0.
This boils down to show that there exists c 0 > 0 such a.s. for n ≫ 1 and 2n 0.99 i n-1,

s n-i c 0 i n . (4.1) 
To prove it, we adapt an argument due to Tao and Vu [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF]. We fix 2n 0.99 i n -1 and we consider the matrix M ′ formed by the first n -⌈i/2⌉ rows of

√ n( √ nM -zI) = nDX - √ nzI.
By the Cauchy interlacing lemma B.4, we get

n -1/2 s ′ n-i s n-i
where s ′ j := s j (M ′ ) for all 1 j n -⌈i/2⌉ are the singular values of the rectangular matrix M ′ in nonincreasing order. Next, by the Tao and Vu negative moment lemma B.3,

s ′-2 1 + • • • + s ′-2 n-⌈i/2⌉ = dist -2 1 + • • • + dist -2 n-⌈i/2⌉
, where dist j is the distance from the j th row of M ′ to H j , the subspace spanned by the other rows of M ′ . In particular, we have

i 2 s -2 n-i n n-⌈i/2⌉ j=1 dist -2 j . (4.2)
Let R j be the j th row of X. Since the j th row of M is D j,j R j , we deduce that dist j = dist(nD j,j R j -z √ ne j , H j ) nD j,j dist(R j , span(H j , e j ))

where e 1 , . . . , e n is the canonical basis of R n . Since span(H j , e j ) is independent of R j and dim(span(H j , e j ))

n - i 2 n -n 0.99 , lemma (C.2) gives n≫1 P   n-1 i=2n 0.99 n-⌈i/2⌉ j=1 dist(R j , span(H j , e j )) σ √ i 2 √ 2   < ∞
(note that the exponential bound in lemma C.2 kills the polynomial factor due to the union bound over i, j). Consequently, by the first Borel-Cantelli lemma, we obtain that a.s. for n ≫ 1, all 2n 0.99 i n -1, and all 1 j n -⌈i/2⌉,

dist j nD j,j σ √ i 2 √ 2 = √ i σ 2 √ 2 n ρ n,j . 
Now, the uniform law of large numbers (1.6) gives that a.s.

lim n→∞ max 1 j n ρ n,j n -1 = 0.
We deduce that a.s. for n ≫ 1, all 2n 0.99 i n -1, and all 1 j n -⌈i/2⌉,

dist j √ i σ 4 
Finally, from (4.2) we get

s 2 n-i i 2 n 2 σ 2 32 ,
and (4.1) holds with c 0 := σ/(4 √ 2).

Remark 4.1 (Proof of the circular law (1.3) and beyond). The same strategy allows a relatively short proof of (1.3). Indeed, the a.s. weak convergence of (µ n -1/2 X ) n 1 to U σ follows from the Girko Hermitization lemma A.2 and the uniform integrability of log(•) for (ν n -1/2 X-zI ) n 1 as above using (1.5). This direct strategy does not rely on the replacement principle of Tao and Vu. The replacement principle allows a statement which is more general than (1.3) involving two sequences of random matrices (the main result of [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF] on universality). Our strategy allows to go beyond the circular law (1.3), by letting E(X i,j ) possibly depend on i, j, n, provided that (1.5) and the result of Dozier and Silverstein [START_REF] Dozier | On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices[END_REF] hold. Set A := (E(X i,j )) 1 i,j n . If Tr(AA * ) is large enough for n ≫ 1, the limit is no longer the circular law, and can be interpreted by using free probability theory [START_REF] Śniady | Random regularization of Brown spectral measure[END_REF].

Remark 4.2 (Beyond the circular law). It is likely that the Tao and Vu replacement principle [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF] allows a universal statement for our random Markov matrices of the form M = DX, beyond the circular law, by letting E(X i,j ) possibly depend on i, j, n. This is however beyond the scope of the present work.

Proof of theorem 1.4

Note that when z = 0, one can get some b immediately from (B.3, 1.5, 1.6). Thus, our problem is actually to deal with z = 0. Fix a, C > 0 and z ∈ C with |z| C. We have

√ nM -zI = √ nDY where Y := X -n -1/2 zD -1 .
For an arbitrary δ n > 0, let us define the event

A n := n i=1 ρ n,i n -1 δ n .
By using the union bound and the Chebyshev inequality, we get P(A c n ) σ 2 δ -2 n . Now with c > a/2 and δ n = n c we obtain P(A c n ) n -a for n ≫ 1. Since we have s n (D) -1 = max

1 i n |ρ n,i |,
we get by (B.3), on the event A n , for n ≫ 1,

{s n ( √ nM -zI) t n } ⊂ { √ ns n (D)s n (Y ) t n } ⊂ {s n (Y ) √ nt n (1 + n c )}
for every t n > 0. Now, for every b ′ > 0, one may select b > 0 and set

t n = n -b such that √ nt n (1 + n c ) n -b ′ for n ≫ 1.
Thus, on the event A n , for n ≫ 1,

M n := {s n ( √ nM -zI) n -b } ⊂ {s n (Y ) n -b ′ } =: Y n .
Consequently, for every b ′ > 0 there exists b > 0 such that for n ≫ 1,

P(M n ) = P(M n ∩ A n ) + P(M n ∩ A c n ) P(Y n ) + P(A c n ) P(Y n ) + n -a .
The desired result follows if we show that for some b ′ > 0 depending on a, C, for n ≫ 1,

P(Y n ) = P(s n (Y ) n -b ′ ) n -a .
(5.1)

Let us prove (5.1). At this point, it is very important to realize that (5.1) cannot follow form a perturbative argument based on (1.5,B.2,1.6) since the operator norm of the perturbation is much larger that the least singular value of the perturbed matrix. We thus need a more refined argument. We have Y = X -wD -1 with w := n -1/2 z. Let A w = A n -1/2 z be as in lemma C.3. For every 1 k n, let P k be the n × n permutation matrix for the transposition (1, k). Note that P 1 = I and for every 1 k n, the matrix P k A w P k is n × n lower triangular. For every column vector e i of the canonical basis of R n ,

(P k AP k )e i = e i if i = k, e k -w(e 1 + • • • + e n ) if i = k. Now, if R 1 , . . . , R n and R ′ 1 , . . . , R ′ n are the rows of the matrices X and Y then Y =    R ′ 1 . . . R ′ n    =    R 1 P 1 A w P 1 . . . R n P n A w P n    .
Define the vector space R ′ -i := span{R j : j = i} for every 1 i n. From lemma B.2, min

1 i n dist(R ′ i , R ′ -i ) √ n s n (Y ).
Consequently, by the union bound, for any u 0,

P( √ n s n (Y ) u) n max 1 i n P(dist(R ′ i , R ′ -i ) u).
The law of dist(R ′ i , R ′ -i ) does not depend on i. We take i = 1. Let V ′ be a unit normal vector to R ′ -1 . Such a vector is not unique, but we just pick one, and this defines a random variable on the unit sphere S n-1 := {x ∈ C n :

x 2 = 1}. Since V ′ ∈ R ′⊥ -1 and V ′ 2 = 1, |R ′ 1 • V ′ | dist(R ′ 1 , R ′ -1 ).
Let ν be the distribution of V ′ on S n-1 . Since V ′ and R ′ 1 are independent, for any u 0,

P(dist(R ′ 1 , R ′ -1 ) u) P(|R ′ 1 • V ′ | u) = S n-1 P(|R ′ 1 • v ′ | u) dν(v ′ ).
Let us fix v ′ ∈ S n-1 . If A w , P 1 = I, R 1 are as above then

R ′ 1 • v ′ = R 1 • v where v := P 1 A w P 1 v ′ = A w v ′ . Now, since v ′ ∈ S n-1 , lemma C.3 provides a constant K > 0 such that for n ≫ 1, v 2 = A w v ′ 2 min x∈S n-1 A w x 2 = s n (A w ) K -1 . But v 2 K -1 implies |v j | -1 K
√ n for some j ∈ {1, . . . , n}, and therefore

|Re(v j )| -1 K √ 2n or |Im(v j )| -1 K √ 2n.
Suppose for instance that we have |Re(v j )| -1 K √ 2n. We first observe that

P(|R ′ 1 • v ′ | u) = P(|R 1 • v| u) P(|Re(R 1 • v)| u). The real random variable Re(R 1 •v
) is a sum of independent real random variables and one of them is X 1,j Re(v j ), which is absolutely continuous with a density bounded above by BK √ 2n where B is the bound on the density of X 1,1 . Consequently, by a basic property of convolutions of probability measures, the real random variable Re(R 1 •v) is also absolutely continuous with a density ϕ bounded above by BK √ 2n, and therefore,

P(|Re(R 1 • v)| u) = [-u,u] ϕ(s) ds BK √ 2n2u.
To summarize, for n ≫ 1 and every u 0,

P( √ ns n (Y ) u) BK(2n) 3/2 u.
Lemma C.3 shows that the constant K may be chosen depending on C and not on z, and (5.1) holds with b ′ = d+ 1/2 by taking u = n -d such that BK(2n) 3/2 n -d n -a for n ≫ 1.

Remark 5.1 (Assumptions). Our proof of theorem 1.4 still works if the entries of X are just independent and not necessarily i.i.d. provided that the densities are uniformly bounded and that (1.6) holds. The bounded density assumption allows to bound the small ball probability P(|R 1 • v| u) uniformly over v. If this assumption does not hold, then the small ball probability may depend on the additive structure of v, but the final result is probably still valid. A possible route, technical and uncertain, is to adapt the Tao and Vu proof of (1.5). On the opposite side, if X 1,1 has a log-concave density (e.g. exponential) then a finer bound might follow from a noncentered version of the results of Adamczak et al [START_REF] Adamczak | Smallest singular value of random matrices with independent columns[END_REF]. Alternatively, if X 1,1 has sub-Gaussian or sub-exponential moments then one may also try to adapt the proof of Rudelson and Vershynin [START_REF] Rudelson | The Littlewood-Offord problem and invertibility of random matrices[END_REF] to the noncentered settings.

Remark 5.2 (Away from the limiting support). The derivation of an a.s. lower bound on s n ( √ nM -zI) is an easy task when |z| > 2σ and E(|X 1,1 | 4 ) < ∞, without assuming that X 1,1 has a bounded density. Let us show for instance that for every z ∈ C, a.s.

s n ( √ nM -zI) |z| -2σ + o(1). (5.2) 
This lower bound is meaningful only when |z| > 2σ. For proving (5.2), we adopt a perturbative approach. Let us fix z ∈ C. By (B.3) and (1.6) we get that a.s.

s n ( √ nM -zI) n -1 (1 + o(1)) s n ( √ nX -zD -1 ). (5.3) 
Now we write, with

S = EX = (1, . . . , 1)(1, . . . , 1) ⊤ , √ nX -zD -1 = √ nS -znI + W where W := √ n(X -S) + nzI -zD -1 .
The identity (A.3) bridges the eigenvalues with the singular values, and is at the heart of the following lemma, which allows to deduce the convergence of µ A from the one of ν A-zI . The strength of this Hermitization lies in the fact that in contrary to the eigenvalues, one can control the singular values with the entries of the matrix. The price payed here is the introduction of the auxiliary variable z and the uniform integrability. We recall that on a Borel measurable space (E, E), we say a Borel function f : E → R is uniformly integrable for a sequence of probability measures (η n ) n 1 on E when We will use this property as follows: if (η n ) n 1 converges weakly to η and f is continuous and uniformly integrable for (η n ) n 1 then f is η-integrable and lim n→∞ f dη n = f η. The idea of using Hermitization goes back at least to Girko [START_REF]Theory of random determinants[END_REF]. However, the proofs of lemmas A.2 and A.3 below are inspired from the approach of Tao and Vu [START_REF]Random matrices: Universality of ESDs and the circular law[END_REF].

Lemma A.2 (Girko Hermitization). Let (A n ) n 1 be a sequence of complex random matrices where A n is n × n for every n 1, defined on a common probability space. Suppose that for a.a. z ∈ C, there exists a probability measure ν z on [0, ∞) such that a.s.

(i) (ν An-zI ) n 1 converges weakly to ν z as n → ∞ (ii) log(•) is uniformly integrable for (ν An-zI ) n 1 Then there exists a probability measure µ ∈ P(C) such that (j) a.s. (µ An ) n 1 converges weakly to µ as n → ∞ (jj) for a.a. z ∈ C,

U µ (z) = - ∞ 0 log(t) ν z (dt).
Moreover, if (A n ) n 1 is deterministic, then the statements hold without the "a.s."

Proof. Let z and ω be such that (i-ii) hold. For every 1 k n, define Consequently, a.s. µ ∈ P(C) and U µ = U a.e. for every adherence value µ of (µ An ) n 1 . Now, since U does not depend on µ, by lemma A.1, a.s. (µ An ) n 1 has a unique adherence value µ, and since (µ n ) n 1 is tight, (µ An ) n 1 converges weakly to µ by the Prohorov theorem. Finally, by (A.2), µ is deterministic since U is deterministic, and (j-jj) hold.

The following lemma is in a way the skeleton of the Girko Hermitization of lemma A.2. It states essentially a propagation of a uniform logarithmic integrability for a couple of triangular arrays, provided that a logarithmic majorization holds between the arrays. 

(ν n ) n 1 , then (j) (µ n ) n 1 is tight, (jj) log(•) is uniformly integrable for (µ n ) n 1 , (jjj) we have, as n → ∞, ∞ 0 log(t) µ n (dt) = ∞ 0 log(t) ν n (dt) → ∞ 0 ν(dt),
and in particular, for every adherence value µ of (µ

n ) n 1 , ∞ 0 log(t) µ(dt) = ∞ 0 log(t) ν(dt).
Proof. Proof of (jjj). From the logarithmic majorizations (ii-iii) we get, for n ≫ 1,

n k=1 a n,k = n k=1 b n,k ,
and (v) gives b n,k > 0 and a n,k > 0 for every 1 k n and n ≫ 1. Now, (iv-v) give

∞ 0 log(t) µ n (dt) = 1 n log n k=1 a n,k = 1 n log n k=1 b n,k = ∞ 0 log(t) ν n (dt) → ∞ 0 log(t) ν(dt).
Proof of (j). From (ii) and (v) we get Proof of (jj). We start with the uniform integrability in the neighborhood of infinity. Let us show that for n ≫ 1, for any ε > 0 there exists t 1 such that If ν((s, ∞)) > 0 then (A.7) holds with σ := ν((s, ∞)) and k n := ⌊nν n ((s, ∞))⌋. Otherwise, ν((s, ∞)) = 0, and if k ′ n := ⌊nν n ((s, ∞))⌋ then lim n→∞ k ′ n /n = 0, while for any δ > 0,

∞ t log(s) µ n (ds) < ε. (A.6) If ν((1, ∞)) = 0 then (iv) implies
1 n k ′ n +⌊nδ⌋ i=1 log(b n,i ) ε 2 + δ log(s).
Taking k n := k ′ n + ⌊nδ⌋ with δ small enough, we deduce that (A.7) holds. We have thus shown that (A.7) holds in all case. Now, from (ii) and (A.7) we get for every 1 k k n ,

1 n k i=1 log(a n,i ) < ε.
In particular, by using (i), we get log(a n,kn ) εn/k n and ∞ e εn/kn log(u)µ n (du) < ε.

Since lim n→∞ k n /n = δ > 0, we deduce that (A.6) holds with t := e εδ . Now, by following the same reasoning, with (ii) replaced by (iii), we obtain that for all ε > 0, there exists 0 < t < 1 such that for n ≫ 1, -t 0 log(s)µ n (ds) < ε, which is the counterpart of (A.6) needed for (jj).

Remark A.4 (Other fundamental aspects of the logarithmic potential). The logarithmic potential is related to the Cauchy-Stieltjes transform of µ via

S µ (z) := C 1 z ′ -z µ(dz ′ ) = (∂ x -i∂ y )U µ (z) and thus (∂ x + i∂ y )S µ = -2πµ in D ′ (C)
. The term "logarithmic potential" comes from the fact that U µ is the electrostatic potential of µ viewed as a distribution of charges in C ≡ R 2 [START_REF] Saff | Logarithmic potentials with external fields[END_REF]. The logarithmic energy

E(µ) := C U µ (z) µ(dz) = - C C log z -z ′ µ(dz)µ(dz ′ )
is up to a sign the Voiculescu free entropy of µ in free probability theory [START_REF] Voiculescu | Free entropy[END_REF]. The circular law U σ minimizes µ → E(µ) under a second moment constraint [START_REF] Saff | Logarithmic potentials with external fields[END_REF]. In the spirit of (A.3) and beyond matrices, the Brown [START_REF] Brown | Lidskiȋ's theorem in the type II case, Geometric methods in operator algebras[END_REF] spectral measure of a nonnormal bounded operator a is µ a := (-4π) -1 ∆ ∞ 0 log(t) ν a-zI (dt) where ν a-zI is the spectral distribution of the self-adjoint operator (a -zI)(a -zI) * . Due to the logarithm, the Brown spectral measure µ a depends discontinuously on the * -moments of a [START_REF] Ph | Computation of some examples of Brown's spectral measure in free probability[END_REF][START_REF] Śniady | Random regularization of Brown spectral measure[END_REF]. For random matrices, this problem is circumvented in the Girko Hermitization by requiring a uniform integrability, which turns out to be a.s. satisfied for random matrices such as n -1/2 X or √ nM .

Lemma B.5 (Thompson-Lidskii interlacing for finite rank perturbations [START_REF] Thompson | The behavior of eigenvalues and singular values under perturbations of restricted rank[END_REF]). For any n × n complex matrices A and B with rank(A -B) k, we have, for any i ∈ {1, . . . , n},

s i-k (A) s i (B) s i+k (A). (B.5)
Even if lemma B.5 gives nothing on the extremal singular values s i (B) where i k or n -i < k, it provides however the useful "bulk" inequality F A -F B ∞ rank(A -B)/n where F A and F B are the cumulative distribution functions of ν A and ν B respectively. Lemma B.6 (Weyl inequalities [START_REF] Weyl | Inequalities between the two kinds of eigenvalues of a linear transformation[END_REF]). For every n × n complex matrix A, we have

k i=1 |λ i (A)| k i=1 s i (A) and n i=k s i (A) n i=k |λ i (A)| (B.6)
for all 1 k n, with equality for k = n. In particular, by viewing |det(A)| as a volume,

| det(A)| = n k=1 |λ k (A)| = n k=1 s k (A) = n k=1 dist(R k , span{R 1 , . . . , R k-1 }) (B.7)
where R 1 , . . . , R n are the rows of A. Moreover, for every increasing function ϕ from (0, ∞) to (0, ∞) such that t → ϕ(e t ) is convex on (0, ∞) and ϕ(0) := lim t→0 + ϕ(t) = 0, we have

k i=1 ϕ(|λ i (A)| 2 ) k i=1 ϕ(s i (A) 2 ) (B.8)
for every 1 k n. In particular, with ϕ(t) = t for every t > 0 and k = n, we obtain |A i,j | 2 . (B.9)

It is worthwhile to mention that (B.5) and (B.6) are optimal in the sense that every sequences of numbers satisfying these inequalities are associated to matrices, see [START_REF] Thompson | The behavior of eigenvalues and singular values under perturbations of restricted rank[END_REF][START_REF] Horn | On the eigenvalues of a matrix with prescribed singular values[END_REF].

Appendix C. Additional lemmas

Lemma C.1 below is used in the proof of theorem 1.1. We omit its proof since it follows for instance quite easily from the Paul Lévy criterion on characteristic functions. The proof of lemma C.2 is based on a concentration inequality for convex Lipschitz functions and product measures due to Talagrand [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF], see also [30, cor. 4.9]. The power 0.01 is used here to fix ideas and is obviously not optimal. This is more than enough for our purposes (proof of theorem 1.3). A careful reading of the proof of theorem 1.3 shows that a polynomial bound on the probability with a large enough power on n suffices.

We end up this section by a lemma used in the proof of theorem 1.4. Here we have fixed n = 250, and X 1,1 follows the Bernoulli law 1 2 (δ 0 + δ 1 ). In both graphics, the solid circle has radius m -1 σ = 1. The left hand side graphic is the superposition of the plot of λ 2 , . . . , λ n for 10 i.i.d. simulations of √ nM , made with the GNU Octave free software. The right hand side graphic is the Voronoï tessellation of λ 2 , . . . , λ n for a single simulation of √ nM . Since √ nM has real entries, its spectrum is symmetric with respect to the real axis. On the left hand side graphic, it seems that the spectrum is slightly more concentrated on the real axis. This phenomenon, which disappears as n → ∞, was already described for random matrices with i.i.d. real Gaussian entries by Edelman [START_REF] Edelman | The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law[END_REF], see also the work of Akemann and Kanzieper [START_REF] Akemann | Integrable structure of Ginibre's ensemble of real random matrices and a Pfaffian integration theorem[END_REF]. Our simulations suggest that theorem 1.3 remains valid beyond the bounded density assumption. 

. 5 )

 5 Let us briefly recall the proof. If u := (1, . . . , 1) ⊤ then M u = u and thus 1 is an eigenvalue of M . Next, let λ ∈ C be an eigenvalue of M and let x ∈ C n be such that x = 0 and M x = λx. There exists 1 i n such that |x i | = max{|x 1 |, . . . , |x n |}. Since |x i | = 0 and

a

  n,k := |λ k (A n -zI)| and b n,k := s k (A n -zI) and set ν := ν z . Note that µ An-zI = µ An * δ -z . Thanks to the Weyl inequalities (B.6) and to the assumptions (i-ii), one can use lemma A.3 below, which gives that (µ An ) n 1 is tight, that log |z -•| is uniformly integrable for (µ An ) n 1 , and that lim n→∞ U µ An (z) = -∞ 0 log(t) ν z (dt) =: U (z).

Lemma A. 3 (δ

 3 Logarithmic majorization and uniform integrability). Let (a n,k ) 1 k n and (b n,k ) 1 k n be two triangular arrays in [0, ∞). Define the discrete probability measuresµ b n,k . If the following properties hold (i) a n,1 • • • a n,n and b n,1 • • • b n,n for n ≫ 1, (ii) k i=1 a n,i k i=1 b n,i for every 1 k n for n ≫ 1, (iii) n i=k b n,i n i=k a n,ifor every 1 k n for n ≫ 1, (iv) (ν n ) n 1 converges weakly to some probability measure ν as n → ∞, (v) log(•) is uniformly integrable for

1 ∞ 0 |

 10 n,i ) and C := sup n log(s)| ν n (ds) < ∞ respectively. Now the tightness of (µ n ) n 1 follows from ∞ 1 log(s) µ n (ds) ∞ 1 log(s) ν n (ds) C. (A.5)

∞ 1 log 1 log

 11 (t) ν n (dt) < ε for n ≫ 1 and (A.6) follows then from (A.5). If otherwise ν((1, ∞)) > 0 then c := ∞ (t) ν(dt) > 0 and one can assume that ε < c. Let us show that there exists a sequence of integers (k n ) n 1 such that lim n→∞ k n /n → σ > 0 and for n ≫ 1, sup 1 k kn 1 n kn i=1 log(b n,i ) < ε. (A.7) For 0 < ε/2 < c, let t be the infimum over all s > 1 such that There exists s t such that ν({s}) = 0, and from (v) we get lim n→∞ ν n ((s, ∞)) = ν((s, ∞)) 0 and lim n→∞ ∞ s log(u) ν n (du) = ∞ s log(u) ν(du) 1 ε.

Lemma C. 1 (

 1 Convergence under uniform perturbation). Let (a n,k ) 1 k n and (b n,k ) 1 k n be triangular arrays of complex numbers. Let µ be a probability measure on C. is used for the rows of random matrices in the proof of theorem 1.3.Lemma C.2 (Tao-Vu distance lemma [41, prop. 5.1]). Let (X i ) i 1 be i.i.d. random variables on C with finite positive variance σ 2 := E(|X 1 -EX 1 | 2 ).For n ≫ 1 and every deterministic subspace H of C n with 1 dim(H) n -n 0.99 , setting R := (X 1 , . . . , X n ), P dist(R, H) σ 2 ndim(H) exp(-n 0.01 ).
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 1 Figure1. Here we have fixed n = 250, and X 1,1 follows the Bernoulli law1 2 (δ 0 + δ 1 ). In both graphics, the solid circle has radius m -1 σ = 1. The left hand side graphic is the superposition of the plot of λ 2 , . . . , λ n for 10 i.i.d. simulations of √ nM , made with the GNU Octave free software. The right hand side graphic is the Voronoï tessellation of λ 2 , . . . , λ n for a single simulation of √ nM . Since √ nM has real entries, its spectrum is

  ds). Now the Markov inequality and (2.1) give that for all z ∈ C, a.s. for all t 1 This means that for all z ∈ C, a.s. the function 1 [1,∞) log(•) is uniformly integrable for (ν √ nM -zI ) n 1 . It remains to show that for all z ∈ C, a.s. the function 1 (0,1) log(•) is uniformly integrable for (ν √ nM -zI ) n 1 . This is equivalent to show that for all z ∈ C, a.s.

		t	∞	log(s) ν √	nM -zI (ds)	O(1) t 2
	where the O(1) is uniform in t. Consequently, for all z ∈ C, a.s. lim t→∞ lim n→∞ ∞ t log(s) ν √ nM -zI (ds) = 0.
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	lim δ→0	lim n→∞	0
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We observe that (B.2) gives s n ( √ nX -zD -1 ) s n ( √ nS -znI) -s 1 (W ).

For the symmetric complex matrix √ nS -znI we have for any z ∈ C and n ≫ 1,

On the other hand, since E(|X 1,1 | 4 ) < ∞, by (1.2) and (1.6), a.s. for every z ∈ C, s 1 (W ) s 1 ( √ n(X -S)) + s 1 (nzI -zD -1 ) = n(2σ + o(1)) + |z|no [START_REF] Adamczak | Smallest singular value of random matrices with independent columns[END_REF].

Putting all together, we have shown that a.s. for any z ∈ C,

Combined with (5.3), this gives finally (5.2).

Remark 5.3 (Invertibility). Let (A n ) n 1 be a sequence of complex random matrices where A n is n × n for every n 1, defined on a common probability space (Ω, A, P). For every ω ∈ Ω, the set ∪ n 1 {λ 1 (A n (ω)), . . . , λ n (A n (ω))} is at most countable and has thus zero Lebesgue measure. Therefore, for all ω ∈ Ω and a.a. z ∈ C, we have s n (A n (ω) -zI) > 0 for all all n 1. Note that (1.5) theorem 1.4 imply respectively that for A n = X or A n = M , this holds for all z ∈ C, a.s. on ω, and n ≫ 1.

Appendix A. Logarithmic potential and Hermitization

Let P(C) be the set of probability measures on C which integrate log |•| in a neighborhood of infinity. For every µ ∈ P(C), the logarithmic potential U µ of µ on C is the function

For instance, for the circular law U 1 of density π -1 1 {z∈C:|z| 1} , we have, for every z ∈ C, [START_REF] Saff | Logarithmic potentials with external fields[END_REF]. Let D ′ (C) be the set of Schwartz-Sobolev distributions (generalized functions). Since log |•| is Lebesgue locally integrable on C, one can check by using the Fubini theorem that U µ is Lebesgue locally integrable on C. In particular, U µ < ∞ a.e. and U µ ∈ D ′ (C). Since log |•| is the fundamental solution of the Laplace equation in C, we have, in D ′ (C),

This means that for every smooth and compactly supported "test function" ϕ :

, and thus µ = ν as measures since µ and ν are Radon measures.

If A is an n×n complex matrix and P A (z) := det(A-zI) is its characteristic polynomial,

for every z ∈ C \ {λ 1 (A), . . . , λ n (A)}. We have also the alternative expression

We gather in this section useful lemmas on deterministic matrices. We provide mainly references for the most classical results, and sometimes proofs for the less classical ones.

Lemma B.1 (Basic inequalities [START_REF] Horn | Topics in matrix analysis[END_REF]). If A and B are n × n complex matrices then

and max

Lemma B.2 (Rudelson-Vershynin row bound). Let A be a complex n × n matrix with rows R 1 , . . . , R n . Define the vector space R -i := span{R j : j = i}. We have then

The argument behind lemma B.2 is buried in [START_REF] Rudelson | The Littlewood-Offord problem and invertibility of random matrices[END_REF]. We give a proof below for convenience.

Proof of lemma B.2. Since A, A ⊤ have same singular values, one can consider the columns C 1 , . . . , C n of A instead of the rows. For every column vector x ∈ C n and 1 i n, the triangle inequality and the identity Ax

If x 2 = 1 then necessarily |x i | n -1/2 for some 1 i n and therefore

Conversely, for every 1 i n, there exists a vector y with

where we used the fact that y

Recall that the singular values s 1 (A), . . . , s n ′ (A) of a rectangular n ′ × n complex matrix A with n ′ n are defined by s i (A) := λ i ( √ AA * ) for every 1 i n ′ .

Lemma B.4 (Cauchy interlacing by rows deletion [START_REF] Horn | Topics in matrix analysis[END_REF]). Let A be an n×n complex matrix. If B is n ′ × n, obtained from A by deleting n -n ′ rows, then for every

i.e. row deletions produce a compression of the singular values interval. Another way to express this phenomenon consists in saying that if we add a row to B then the largest singular value increases while the smallest is diminished. Closely related, the following result on finite rank additive perturbations. If A is an n × n complex matrix, let us set s i (A) := +∞ if i < 1 and s i (A) := 0 if i > n.

Lemma C.3 (A special matrix). For every w ∈ C, let us define the n × n complex matrix

Then for every z ∈ C we have s

and the convergence is uniform on every compact subset of C.

Proof. Note that A 0 = I and A w A w ′ = A ww ′ -(w+w ′ ) for every w, w ′ ∈ C. Moreover, A w is invertible if and only if w = 1 and in that case (A w ) -1 = A w/(w-1) . It is a special case of the Sherman-Morrison formula for the inverse of rank one perturbations. It is immediate to check that s 1 (A w -I) = A w -I 2→2 = √ n|w| for every w ∈ C. An elementary explicit computation reveals that the symmetric matrix A w A * w -I has rank at most 2, and thus A w has at least n -2 singular values equal to 1 and in particular s n (A w ) 1 s 1 (A w ). From now, let us fix z ∈ C and set w = n -1/2 z and A = A w for convenience. The matrix A is nonsingular for n ≫ 1 since w → 0 as n → ∞. Also, we have s n (A) > 0 for n ≫ 1. Since A is lower triangular with eigenvalues 1 -w, 1, . . . , 1, by (B.7),

where u -u + are two singular values of A. We have also and the O(n -1/2 ) is uniform in z on every compact. From this formula we get that u -1 and u + 1 for n ≫ 1, and thus u -= s n (A) and u + = s 1 (A).

The result of lemma C.3 is more than enough for our purposes. More precisely, a careful reading of the proof of theorem 1.4 shows that a polynomial (in n) lower bound on s n (A n -1/2 z ) for n ≫ 1, uniformly on compact sets on z, is actually enough.