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Circular Law Theorem for Random Markov Matrices

Djalil Chafäı

August 11, 2008

Abstract

Let (Xi,j) be an infinite array of i.i.d. non negative real random variables with
unit mean, finite positive variance σ2, and finite fourth moment. Let M be the n×n
random Markov matrix with i.i.d. rows defined by Mi,j = Xi,j/(Xi,1+ · · ·+Xi,n). It
belongs to the Dirichlet Markov Ensemble when X1,1 follows an exponential law. We
show that with probability one, the empirical spectral distribution 1

n (δλ1
+ · · ·+δλn

)
of

√
nM converges weakly as n → ∞ to the uniform law on the disc {z ∈ C; |z| ≤ σ}

and moreover, the spectral gap of M is of order n−1/2 for large enough n. There
is for now a gap in the proof of Theorem 1.3 page 16.

AMS 2000 Mathematical Subject Classification: 60F15; 15A52; 62H99.
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1 Introduction

Random Matrix Theory takes its roots in the works of Wishart [1] in Statistics and of
Wigner [55] and Dyson [15] in Nuclear Physics. The spectral analysis of large random
matrices is still the source of many works and nice open problems. The eigenvalues of a
square matrix with complex entries are the roots in C of its characteristic polynomial.
For any n × n complex matrix A, we label its eigenvalues λ1(A), . . . , λn(A) so that

|λ1(A)| ≥ · · · ≥ |λn(A)| ≥ 0.

The empirical spectral distribution µA of A is the finite discrete law on C defined by

µA =
1

n

n∑

i=1

δλi(A).

The spectral radius of A is |λ1(A)|. We also denote by

s1(A) ≥ · · · ≥ sn(A) ≥ 0

the singular values of A defined for every 1 ≤ k ≤ n by

sk(A) =
√

λk(AA∗) = λk(
√

AA∗)
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where A∗ = Ā⊤ is the conjugate transpose of A. The operator norm of A is

‖A‖2→2 = max
‖x‖2=1

‖Ax‖2 = s1(A).

The matrix A is singular if and only if sn(A) = 0 and if not then

sn(A) = s1(A
−1)−1 = ‖A−1‖−1

2→2.

If A is normal then si(A) = |λi(A)| for every 1 ≤ i ≤ n, and in general, we know that

sn(A) ≤ |λn(A)| and |λ1(A)| ≤ s1(A).

Let (Xi,j)i,j≥1 be an infinite array of i.i.d. complex random variables with finite positive
variance 0 < σ2 < ∞. If X = (Xi,j)1≤i,j≤n then the strong Quartercircular Law theorem
(Universal version of the Marchenko-Pastur theorem, see [32], [52], [56]) states that

P

(
µ√

1

n
XX∗

w−→
n→∞

Qσ

)
= 1 (1)

where “
w→” denotes weak convergence of laws (with respect to continuous bounded func-

tions) and where Qσ is the Quartercircular Law on R with Lebesgue density

x 7→ 1

πσ2

√
4σ2 − x2I[0,2σ](x).

This law has mean (3π)−18σ and variance σ2. If Z ∼ Qσ then Z2 follows a Marchenko-
Pastur law [32] on [0, 4σ2] without atom. Additionally, it is shown in [7, 5, 4] that

P

(
lim

n→∞
s1( 1√

n
X) = 2σ

)
= 1 iff E(X1,1) = 0 and E(|X1,1|4) < ∞. (2)

The famous strong Circular Law theorem [47] states that

P

(
µ 1√

n
X

w−→
n→∞

Uσ

)
= 1 (3)

where Uσ is the uniform law on the centered disc {z ∈ C; |z| ≤ σ} of radius σ. This
statement, with the sole finite positive variance assumption, appears as the culminating
point of a long series of partial results [19], [33], [20], [21], [16], [3], [4], [35], [25], [46], [47]
concerning the convergence to the Circular Law of the empirical spectral distribution of
random matrices with i.i.d. entries. By (3), we have for every fixed integer k ≥ 1,

P

(
lim inf
n→∞

|λk( 1√
n
X)| ≥ σ

)
= 1.

We get from [6], [35] and (2) that if additionally E(X1,1) = 0 and E(|X1,1|4) < ∞ then

P

(
lim

n→∞
|λ1( 1√

n
X)| = σ

)
= 1 and P

(
lim

n→∞
s1(X)

|λ1(X)| = 2

)
= 1. (4)
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The behavior of the ratio norm/radius suggests in a sense that X is not “asymptotically
normal”. Following [42] and [13], if E(X1,1) 6= 0 while E(|X1,1|4) < ∞ then almost
surely, |λ1(n

−1/2X)| → +∞ at speed
√

n while |λ2(n
−1/2X)| remains bounded.

The strong Circular Law theorems derived in [46, 47] and [13] are partly (but cru-
cially) based on the Tao & Vu polynomial bound on the least singular value of random
matrices with i.i.d. entries [46, 45] (see also [40, 39] and references therein). They showed
for instance that for every a > 0 there exists b > 0 such that

P(sn(X) ≤ n−b) = O(n−a). (5)

1.1 Random Markov Matrices and main results

The present work concerns some kind of random Markov matrices with i.i.d. rows. The
entries of these random matrices are dependent. Namely, let L be a law on [0,∞) with
mean m, variance 0 < σ2 < ∞, and finite fourth moment, and set

κ =
σ

m
.

In the whole sequel, and unless otherwise stated, (Xi,j)i,j≥1 is an infinite array of real
non negative i.i.d. random variables of law L. Note that X1,1 ≥ 0 with

m = E(X1,1) > 0 and 0 < σ2 = E(X2
1,1) − m2 < ∞ and E(X4

1,1) < ∞.

We define the n × n real matrix M by

Mi,j =
Xi,j

Xi,1 + · · · + Xi,n
. (6)

The matrix M is Markov since its entries belong to [0, 1] and each row sum up to 1. We
have M = DX where X = (Xi,j)1≤i,j≤n and D is the n× n diagonal matrix defined by

Di,i =
1

Xi,1 + · · · + Xi,n
. (7)

The matrix M has equally distributed dependent entries. However, the rows of M are
i.i.d. and follow an exchangeable law on R

n supported by the non negative portion of
the ℓ1

n unit sphere. The law of the entries of M is invariant if L is dilated and one can
for instance assume that m = 1. We have

√
nM = nDn−1/2X and by the strong Law

of Large Numbers, the diagonal matrix nD is close to the identity matrix I for large
n, and thus

√
nM is close to the matrix n−1/2X which has i.i.d. entries and satisfies

to (1) and (3). Unfortunately, the spectrum of non normal matrices is very sensitive to
perturbations [49], and some rigorous work is needed.

Our first result below is the analog of the strong Universal Marchenko-Pastur theorem
(1). It generalizes the result of the same kind obtained in [14] in the case where L is an
exponential law. Note that since M has real entries, we have M∗ = M⊤.
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Theorem 1.1 (Strong Quartercircular Law theorem). We have

P

(
µ√

nMM⊤
w−→

n→∞
Qκ

)
= 1

and moreover

P

(
lim

n→∞
s2(

√
nM) = 2κ

)
= 1 and P

(
lim

n→∞
s1(M) = 1

)
= 1.

Our second result below provides a strong spectrum localization for
√

nM .

Theorem 1.2 (Strong Spectrum Localization). We have

P

(
lim sup

n→∞
|λ2(

√
nM)| ≤ 2κ

)
= 1 and λ1(M) = 1.

Theorem 1.2 shows that almost surely, the spectrum of
√

nM contains one copy of√
n while the rest is included in {z ∈ C; |z| ≤ 2κ + ε} for every ε and large enough n.

Our third result states an almost sure weak convergence of µ√
nM to the Circular Law

of radius κ. This result is the analogue of (3) for our random Markov matrices.

Theorem 1.3 (Strong Circular Law theorem). We have

P

(
µ√

nM
w−→

n→∞
Uκ

)
= 1.

If L does not have atoms then P(sn(M) > 0) = P(det(M) = det(D) det(X) 6= 0) = 1.
However, if L has an atom of weight q > 0 then P(sn(M) = 0) ≥ qn2

> 0. It is quite
natural to ask about a bound similar to (5) for M . This random matrix does not have
i.i.d. entries, but concentration of measure arguments related to the law of large numbers
may help. This simple intuition is confirmed by the following theorem. Its proof was
suggested to the author by Manjunath Krishnapur. Note that only a finite variance is
needed here. We do not use theorem 1.4 in our proof of theorem 1.3.

Theorem 1.4 (Polynomial bound on least singular value). Let us drop the finite
fourth moment assumption for L. For every a > 0, there exists b′ > 0 such that

P(sn(M) ≤ n−b′) = O(n−a).

As an immediate consequence, by taking a > 1 and by using the first Borel-Cantelli
lemma, we obtain that almost surely, for large enough n,

|λn(M)| ≥ sn(M) ≥ n−b′ .
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1.2 Discussion and open problems

When L is an exponential law, theorem 1.3 appears as a strong Circular Law theorem
for the Dirichlet Markov Ensemble [14]. For an exponential law, m = σ and κ = 1.
Rigorously, the definitions (7) and (6) of D and M that we used make sense on the event

Dn = {D1,1 · · ·Dn,n > 0}.

Since σ > 0 we have q = L({0}) < 1 and hence

∞∑

n=1

P(Dc
n) =

∞∑

n=1

(1 − (1 − qn)n) ≤
∞∑

n=1

nqn < ∞.

Therefore, by the first Borel-Cantelli lemma, almost surely, for large enough n, both D
and M are well defined. From a Markovian point of view, M can be seen as the Markov
kernel associated to the oriented complete graph with n vertices with one loop per vertex
for which each edge (i, j) has weight Xi,j. The adjacency matrix of this graph is full of
ones. The skeleton of the Markov kernel M is an oriented Erdős-Rényi random graph
where each edge exists independently of the others with probability p = 1 − q. If p = 1
then almost surely, the skeleton of M is the complete graph, M is irreducible, and by
theorem 1.2 M is aperiodic for large enough n since 1 is the sole eigenvalue of M of
module 1. The non oriented version of this graphical construction gives rise to random
reversible Markov kernels for which a Semicircular theorem is available [10].

Since M is Markov, we have from (18) that for every integer r ≥ 0,

∫

C

zr dµM (x, y) =
1

n

n∑

i=1

λr
i (M) =

1

n

n∑

i=1

pM(r, i)

where z = x +
√
−1y and

pM (r, i) =
∑

1≤i1,...,ir≤n
i1=ir

Mi1,i2 · · ·Mir−1,i1

is simply, conditional on M , the probability of a loop of length r rooted at i for a
Markov chain with transition kernel M . This provides a probabilistic interpretation
of the moments of the empirical spectral distribution µM of M . The random Markov
matrix M is a random environment in the language of Probability Theory. Note that
since M has real entries, its spectrum (which is complex) is symmetric with respect to
the real axis. By combining theorem 1.2 with theorem 1.3 and the identity (19), we get
that for every fixed integer r ≥ 0, almost surely,

lim
n→∞

n
r
2

(
1

n

n∑

i=1

pM (r, i) − 1

n

)
= 0.
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The finite fourth moment assumption on L is technical and allows a reasonably simple
proof of theorem 1.3. One may try to adapt the recent work [47]. It is also likely that
the localization result of theorem 1.2 is not optimal. By theorem 1.2 and 1.3 we get

P

(
κ ≤ lim inf

n→∞
|λ2(

√
nM)| ≤ lim sup

n→∞
|λ2(

√
nM)| ≤ 2κ

)
= 1.

Also, almost surely, the “spectral gap” of M is of order n−1/2 for large n (compare with
the results of [22, 23]). Note that in contrast with (4), we have from theorems 1.1-1.2

P

(
lim

n→∞
s1(M)

|λ1(M)| = 1

)
= 1.

Numerical simulations (see figure 1) suggest that

P

(
lim

n→∞
|λ2(

√
nM)| = κ

)
= 1 and thus P

(
lim

n→∞
s2(M)

|λ2(M)| = 2

)
= 1.

Unfortunately, our method of proof of theorem 1.2 is too perturbative to extract this
result. The almost sure convergence of the sub-dominant eigenvalue to the critical radius
is not completely elucidated in the case of random matrices with i.i.d. entries (except
certain Ginibre Ensembles for which their Gaussian nature provides the law of the spec-
trum explicitly). We refer to [30], [37], [18], [31], [6], [4, Chapter 10] for the spectral
radius of random matrices with i.i.d. centered entries, and to [42] and [13] for the non
central case. Another very interesting open problem is the fluctuation of the global and
extremal spectrum for which one can find some partial answers in [43], [36], [42], [38].

Recall that the rows of M are i.i.d. and follow an exchangeable law ηn on the simplex

{(x1, . . . , xn) ∈ [0, 1]n; |x|1 = x1 + · · · + xn = 1}.

By “exchangeable” we mean that if Z ∼ ηn then for every permutation π of {1, . . . , n}
the random vector (Zπ1

, . . . , Zπn) follows also the law ηn. This gives

0 = Var(1) = Var(Z1 + · · · + Zn) = nVar(Z1) + n(n − 1)Cov(Z1, Z2)

and therefore

Cov(Z1, Z2) = − 1

n − 1
Var(Z1) ≤ 0.

We believe that an averaged form of theorems 1.1-1.2-1.3-1.4 remain valid at least if M
is a real n × n random matrix with i.i.d. rows such that for every 1 ≤ i, j 6= j′ ≤ n

E(Mi,j) =
1

n
and 0 < Var(Mi,j) = O(n−2) and |Cov(Mi,j ,Mi,j′)| = O(n−3).

These rates in n correspond to the Dirichlet Markov Ensemble for which L is exponential
and ηn is Dirichlet Dn(1, . . . , 1). Another interesting problem is the spectral analysis of
M or even of X when the law L has heavy tails (e.g. the law of W−β with 2β > 1 and
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W uniform on [0, 1]), or the case where X has independent entries, equally distributed
on the diagonal and outside the diagonal, and with heavy tails on the diagonal.

The rest of the present article is divided as follows. The proofs of theorems 1.1-1.2-
1.3-1.4 are given in the next sections (one section for each theorem). We give two proofs
of theorem 1.4. In the Appendix, we gather for convenience some tools from Potential
Theory used in our proof of theorem 1.3. The article ends with numerical simulations
(figures 1 and 2) performed with GNU Octave 3.0.1 on the Debian GNU/Linux personal
desktop computer of the author. The spectra were computed with the Octave func-
tion eig which is based on LAPACK numerical algorithms for the Schur decomposition
(Hessenberg decomposition, Householder reflections, QR iteration, see [24]).

2 Proof of theorem 1.1

For a complex n × n matrix A, the second moment of 1
n

∑n
i=1 δsi(A) is given by

1

n
(s1(A)2 + · · · + sn(A)2) =

1

n

n∑

i,j=1

|Ai,j |2 =
1

n
‖A‖2

2→2.

In particular, the second moment ρn = 1
n

∑n
i=1 si(

√
nM)2 of 1

n

∑n
i=1 δsi(

√
nM) satisfies

ρn =
n∑

i=1

X2
i,1 + · · · + X2

i,n

(Xi,1 + · · · + Xi,n)2
.

Since L has finite second moment, the strong Uniform Law of Large Numbers [7, Lemma
2] together with the standard strong Law of Large Numbers give that almost surely,

ρn ≤ 1

n2(m + o(1))2

n∑

i,j=1

X2
i,j = (1 + κ2) + o(1) = O(1). (8)

It follows by Markov’s inequality that almost surely, the sequence ( 1
n

∑n
i=1 δsi(

√
nM)) is

tight. Theorem 1.1 goes beyond tightness and provides weak convergence.

Proof of theorem 1.1. One may assume that m = 1 by a simple scaling. We follow the
method used by Aubrun in [2]. The Courant-Fischer variational formulas for the singular
values imply (see [29, Theorem 3.3.16 page 178]) that for every n × n complex matrix
A, every complex diagonal matrix D, and every 1 ≤ i ≤ n,

sn(D)si(A) ≤ si(DA) ≤ s1(D)si(A) (9)

Since
√

nM = nDn−1/2X, we get for every 1 ≤ i ≤ n

sn(nD)si(n
−1/2X) ≤ si(

√
nM) ≤ s1(nD)si(n

−1/2X). (10)

7



Since L has finite second moment, the Uniform Law of Large Numbers taken from [7,
Lemma 2] gives that almost surely,

lim
n→∞

max
1≤i≤n

|nDi,i − 1| = 0 and lim
n→∞

max
1≤i≤n

|n−1D−1
i,i − 1| = 0. (11)

In particular, this gives that almost surely,

s1(nD) = max
1≤i≤n

|nDi,i| = 1 + o(1) and sn(nD) = min
1≤i≤n

|nDi,i| = 1 + o(1). (12)

Let us define the column n-vector u and the n × n matrix S by

u = (1, . . . , 1)⊤ and S = u⊤u.

The random matrix n−1/2(X − S) has i.i.d. centered entries with variance σ2 and finite
fourth moment, and consequently, by the main result of [7], we have, almost surely,

s1(n
−1/2(X − S)) = 2σ + o(1).

Now, since n−1/2S has rank one we have, by a result of Thompson [48],

s2(n
−1/2X) ≤ s1(n

−1/2(X − S))

and therefore, almost surely,

s2(n
−1/2X) ≤ 2σ + o(1). (13)

By combining (10) with (12) and (13) we get that almost surely, for every 1 ≤ i ≤ n,

max
2≤i≤n

|si(
√

nM) − si(n
−1/2X)| = o(1).

In particular, this gives from (13) that almost surely,

s2(
√

nM) ≤ 2σ + o(1). (14)

Another consequence, by lemma 4.1, is that almost surely, the empirical distributions

1

n

n∑

i=2

δsi(
√

nM) and
1

n

n∑

i=2

δsi(n−1/2X)

have the same weak limit. Now, the contribution of s1 in

νn =
1

n

n∑

i=1

δsi(n−1/2X)

is negligible (its weight is 1/n). Moreover, since X has i.i.d. entries with variance κ = σ,
almost surely, the sequence (νn) converges to Qσ by (1). This shows that almost surely,

1

n

n∑

i=1

δsi(
√

nM)

8



converges weakly to Qσ, which is the first result of theorem 1.1. Since Qσ is supported
by [0, 2σ], we get by using (14) that

P

(
lim

n→∞
s2(

√
nM) = 2σ

)
= 1

which is nothing else but the second result of theorem 1.1. It remains to show now that
P(limn→∞ s1(M) = 1) = 1. Almost surely, we have

s1(
√

nM) ≤ s1(nD)s1(n
−1/2X)

≤ s1(nD)(s1(n
−1/2(X − S) + n−1/2S))

≤ s1(nD)(s1(n
−1/2(X − S)) + s1(n

−1/2S))

= (1 + o(1))(2σ + o(1) + n1/2)

which gives

P

(
lim sup

n→∞
s1(M) ≤ 1

)
= 1. (15)

Let us show now that P (lim infn→∞ s1(M) ≥ 1) = 1. It is known [29, Theorem 3.3.16
page 178] that for any n × n complex matrices A and B and every 1 ≤ i ≤ n, we have

|si(A) − si(B)| ≤ s1(A − B). (16)

By using this bound, we get, almost surely,

|s1(X) − s1(S)| ≤ s1(X − S) = (2σ + o(1))
√

n.

Since s1(S) = n we obtain that s1(X) ≥ n− (2σ + o(1))
√

n almost surely. By combining
this result with (10) and (12) we get that almost surely,

s1(M) ≥ s1(nD)
1

n
s1(X) ≥ (1 + o(1))(1 − o(1)) = 1 + o(1)

and therefore P(lim infn→∞ s1(M) ≥ 1) = 1, which achieves the proof.

3 Proof of theorem 1.2

For every n × n complex matrix A and for every 1 ≤ i ≤ n,

|λ1(A)|2 + · · · + |λi(A)|2 ≤ s1(A)2 + · · · + si(A)2,

see [29, Theorem 3.3.13 pages 175–176]. In particular, the second moment of

1

n

n∑

i=1

δ|λi(A)|

9



is majorized by the second moment ρn of

1

n

n∑

i=1

δsi(A).

This shows via Markov’s inequality and (8) that almost surely, (µ√
nM ) is tight. Theorem

1.2 goes beyond tightness and provides strong support localization.

Proof of theorem 1.2. Since M is Markov, it is known that λ1(M) = 1. Let us briefly
recall the proof for the sake of completeness. If u = (1, . . . , 1)⊤ then Mu = u and thus 1
belongs to the spectrum of M . Next, let λ ∈ C be an eigenvalue of M and let x ∈ C

n\{0}
be such that Mx = λx. There exists i ∈ {1, . . . , n} such that |xi| = max{|x1|, . . . , |xn|}.
Since |xi| 6= 0 and

|λ||xi| ≤
n∑

j=1

Mi,j|xj | ≤ |xi|
n∑

j=1

Mi,j = |xi|,

we get |λ| ≤ 1. This shows that λ1(
√

nM) =
√

n. It remains to establish that

P(lim sup
n→∞

|λ2(
√

nM)| ≤ 2κ) = 1.

For every square n × n complex matrix A and every 1 ≤ i ≤ n,

|λ1(A)| · · · |λi(A)| ≤ s1(A) · · · si(A),

see the paper [54] by Hermann Weyl. In particular, we have the useful bound

|λ2(A)| ≤ s1(A)s2(A)

|λ1(A)| .

With A =
√

nM and by using theorem 1.1 and λ1(M) = 1, we obtain, almost surely,

lim sup
n→∞

|λ2(
√

nM)| ≤ lim sup
n→∞

s2(
√

nM) lim sup
n→∞

s1(M) = 2κ.

We used s2(
√

nM) to bound λ2(
√

nM) and this explains the presence of a factor 2
in the result. It is tempting to try to remove this factor 2 by using a Wedderburn rank
one reduction [53, p. 69]. Namely by the Schur unitary triangularization theorem [28,
Theorem 2.3.1 page 79], for every n×n complex matrix A, there exists a unitary matrix
U and an upper triangular matrix T with diagonal λ1(A), . . . , λn(A) such that

A = UTU∗. (17)

Moreover, if Av = λ1v for some column vector v in the unit sphere of C
n then one can

choose U such that the first column of U is v. It follows that

A − λ1(A)v∗v = U(T − diag(0, λ2(A), . . . , λn(A))U∗.

10



As a consequence, the matrix A − λ1(A)v∗v has spectrum

{0, λ2(A), . . . , λn(A)}.

This allows to control |λ2(A)| by the spectral radius of a rank one perturbation since

|λ2(A)| = |λ1(A − λ1v
∗v)|.

If A = M is Markov then λ1(M) = 1, and with v = n−1/2(1, . . . , 1) we get

|λ2(M)| = |λ1(M − n−1S)|

where S = (1, . . . , 1)(1, . . . , 1)⊤ is the n × n matrix full of ones (it is symmetric, with
rank 1 and norm n). If M = DX is our random Markov matrix, we have, with m = 1,
by arguing as in the proof of theorem 1.1,

√
nM − n−1/2S = (nD − I)n−1/2X + n−1/2(X − S).

It turns out that this approach via a rank one perturbation is successful for random
reversible Markov kernels [10]. We ignore if it helps in our case. Note that since L has
finite fourth moment, the spectral radius of n−1/2(X − S) tends to κ almost surely.

4 Proof of theorem 1.3

If L is diffuse (no atoms) then MM∗ 6= M∗M almost surely which means that M is
not normal with probability one. The spectrum of non normal matrices is a delicate
object very sensitive to perturbations, even of finite rank. Non normal matrices include
non diagonalizable matrices such as nilpotent matrices. Let us recall a striking example
taken from [44] (see also [4, p. 292]). Consider the n × n matrices A and B defined by

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




and B =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
εn 0 0 · · · 0




where εn = n−α with α > 0. We have rank(A−B) = 1 and ‖A−B‖2→2 = εn. However,
the empirical spectral distribution of A is δ0 while the empirical spectral distribution of

B is supported on the centered circle of radius ε
1/n
n of the complex plane. Moreover,

ε
1/n
n → 1 and the limiting spectral distribution of B is the uniform distribution on the

unit circle of the complex plane! In numerical analysis, the sensitivity of the spectrum is
captured by the notion of pseudo-spectrum [49]. For any any ε > 0 and any fixed matrix
norm ‖·‖, the ε-pseudo-spectrum Λε(A) of A is given by

Λε(A) =
⋃

‖A−B‖≤ε

{λ1(B), . . . , λn(B)} = {z ∈ C : sn(A − zI) ≤ ε}.

11



If A is a normal matrix, its pseudo-spectrum for the operator norm ‖·‖2→2 is just the
Euclidean ε-neighborhood of its spectrum. The pseudo-spectrum can be larger for non-
normal matrices, due to the possible big difference between singular values and eigen-
values. The continuity of the spectrum with respect to the matrix entries implies that
Λε(A) → Λ(A) as ε → 0, for any fixed n × n matrix A. However, this says nothing on
the behavior of Λεn(A) as n → ∞ where A is the n × n truncation of an infinite array.

Let us recall some basic useful and enlightening facts before we enter the proof of
theorem 1.3. If A is a complex n × n random matrix then for every integer r ≥ 0,

n

∫

C

zr dµA(x, y) =
n∑

i=1

λr
i (A) = Tr(Ar) =

∑

1≤i1,...,ir≤n
i1=ir

Ai1,i2 · · ·Air−1,ir (18)

where z = x +
√
−1y. If A is random then (18) allows to express the rth moment of

the mean empirical spectral distribution EµA of A in terms of a sum of moments of the
entries of A leading to combinatorics of paths. Suppose for instance that we want to
show that EµA converges weakly to some compactly supported law µ on the real line. By
the Weierstrass theorem, µ is fully characterized by its sequence of moments. Moreover,
if µA is also supported on the real line then the convergence of its moments to the
moments of µ implies weak convergence, and actually convergence in any Wasserstein
transportation distance [50]. This method of moments is a very efficient tool for the
spectral analysis of large dimensional Hermitian random matrices because their empirical
spectral distribution is supported by the real line. It allows to establish the Universal
Wigner Semicircular Law theorem and the Universal Marchenko-Pastur Quartercircular
Law theorem via some paths combinatorics. The case where the entries of the matrix
have unbounded moments is typically addressed by using truncation techniques, and the
strong convergence without the expectation (i.e. almost sure weak convergence) can be
obtained via the control of the speed of convergence of moments (see for instance [27]
and [4] for more details). For non Hermitian matrices, the spectrum does not necessarily
belong to the real line, and in general, the limiting spectral distribution is not supported
in the real line. The problem here is that the moments are not enough to characterize
laws on C. For instance, if Z is a complex random variable following the uniform law
Uκ on the centered disc {z ∈ C; |z| ≤ κ} of radius κ then for every r ≥ 0,

E(Zr) = 0 (19)

and thus Uκ is not characterized by its moments. Any rotational invariant law on C

with light tails shares with Uκ the same sequence of null moments. One can try to
circumvent the problem by using “mixed moments” which uniquely determine µ by the
Stone-Weierstrass theorem. Namely, if A = UTU∗ is the Schur unitary triangularization
of A as in (17) then for every integers r, r′ ≥ 0 and with z = x +

√
−1y,

n

∫

C

zrzr′ dµA(x, y) =

n∑

i=1

λr
i (A)λi(A)

r′
= Tr(T rT

r′
) 6= Tr(T rT ∗r′) = Tr(ArA∗r′).

12



Equality holds true when T = T ∗, i.e. when A is normal. This explains why the method
of moments looses its strength for non normal matrices. Another tool commonly used
in Random Matrix Theory is the Cauchy-Hilbert-Stieltjes transform Sµ : C

+ → C of a
law µ on R, defined for every z ∈ C

+ = {z ∈ C : Im(z) > 0} by

Sµ(z) =

∫

C

1

z′ − z
dµ(z′).

The transform Sµ determines uniquely µ and moreover, the pointwise convergence on
C

+ of this transform along a sequence of laws is equivalent to the weak convergence of
the sequence. When µ is supported in a compact subset of R, then Sµ encodes, at a
neighborhood of infinity, the moments of µ via the expansion (for any r ≥ 0)

Sµ(z) =

r∑

k=0

mk

zk+1
+ o

(
z−(r+1)

)
where mk =

∫

R

xk dµ(x).

See [27] and [4] for an account on the properties and usage of Sµ. For a complex n × n
matrix A, the quantity SµA

(z) makes sense at any point z 6∈ {λ1(A), . . . , λn(A)} and is
linked to the resolvent (A − zI)−1 of A since

SµA
(z) =

1

n

n∑

k=1

1

λk(A) − z
=

1

n
Tr((A − zI)−1). (20)

In particular, |SµA
(z)| ≤ |Im(z)|−1 for every z ∈ C

+ when A is Hermitian. Unfortu-
nately, Sµ is not necessarily bounded when µ is a law on C and this makes problematic
its usage for the characterization of weak convergence for the empirical spectral distri-
bution of non normal matrices. However, since SµA

is analytic on C except on a finite
set of poles {λ1(A), . . . , λn(A)}, the function Re(SµA

) determines the spectrum of A.
We have seen that the method of moments and the Cauchy-Hilbert-Stieltjes trans-

form, which are so successful for the spectral analysis of large dimensional Hermitian
random matrices, are not efficient for non normal random matrices with complex spec-
trum. This explains in part why Circular Law theorems are more difficult to establish
than Semicircular Law theorems (Wigner) or Quartercircular Law theorems (Marchenko-
Pastur). A successful hermitization approach due to Girko [20] (see also the work of Bai
[3]) consists in replacing the study of the empirical spectral distribution of a non normal
square random matrix A by the study of the empirical spectral distribution of the family
of Hermitian matrices (Hz)z∈C where

Hz =
√

(A − zI)(A − zI)∗.

The eigenvalues of Hz are the singular values of A − zI. The technique that we use to
establish theorem 1.3 is based on this hermitization and on logarithmic potentials, as in
[35], [25], [13], [46], [47]. For convenience, we gather in the Appendix some tools used
in our proof of theorem 1.3. The logarithmic potential UµA

: C → (−∞,+∞] of the

13



empirical spectral distribution µA of A is given for every z ∈ C by

UµA
(z) = − 1

n

n∑

i=1

log |λi(A) − z|

= − 1

n
log |det(A − zI)|

= − 1

n
log det(Hz)

= − 1

n

n∑

i=1

log si(A − zI)

= UµHz
(0).

Roughly speaking, the logarithmic potential characterizes the law and for a sequence of
laws supported in a common compact set, the convergence of their logarithmic potentials
for every z is equivalent to weak convergence (see the Appendix). The logarithmic
potential is related to the Cauchy-Hilbert-Stieltjes transform via the identity

∂Re(z)UµA
(z) = Re(SµA

(z)).

The main problem when using logarithmic potentials for the convergence of empirical
spectral distributions is their singularity at 0 and ∞ in the right hand side of the identity

UµA
(z) = −

∫ ∞

0
log(t) dµHz (t).

The singularity at ∞ is not so serious and can be circumvented by using upper bounds
on the norm s1(A − zI) of A − zI via the moments of the entries of A. The singularity
at point 0 is more serious, and leads to the control of the least singular value sn(A− zI)
of A − zI. In the works [35], [25], [46, 47], [13], the regularization of the logarithmic
potential at point 0 is obtained by using lower bound on sn(A− zI) similar to (5). Our
proof of theorem 1.3 is perturbative, and does not involve these delicate singular aspects.

Free Probability Theory (tracial von Neumann operators algebras) provides a natural
algebraic language for large (infinite!) dimensional random matrices [51]. The notions
of operator, trace, and freeness are the analogue of the notions of matrix, expectation,
and independence respectively. In this theory, the analogue of the empirical spectral
distribution of a non normal operator is the so called Brown spectral measure [11] while
the analogue of its logarithmic potential is up to a sign the Fuglede-Kadison determinant
[17] (via the identity tr log (aa∗) = log(det(aa∗))). Roughly speaking, the Circular Law
is the Brown spectral measure of Voiculescu’s Circular operators [27]. If W1 and W2 are
two free Semicircular operators then the sum W1 +

√
−1W2 is Circular. If U and R are

two free operators such that U is Haar unitary and H is Hermitian Quartercircular then
the product UH is Circular (think about the polar factorization of matrices). This last
construction is related to the notion of R-diagonal operators/pairs considered by Nica &
Speicher [34] and Haagerup & Larsen [26, Example 5.1 page 358]. In [44], Śniady shows
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that the convergence of “∗-moments” (i.e. trace of words with letters A and A∗) implies
some sort of weak Circular Law theorem by using least singular value regularization
and the Fuglede-Kadison determinant. Several examples of Brown spectral measures
are given by Biane and Lehner in [8].

Proof of theorem 1.3. One can assume that m = 1 by a simple scaling. By theorem 1.2,
the sequence (µ√

nM ) is almost surely tight, and therefore it suffices to show that almost
surely, the law Uσ is the unique adherence value of (µ√

nM ). For notational convenience,
we will show that almost surely, if (µ√

nM ) converges to a compactly supported law µ
then µ = Uσ. Let (Ω, B, P) be the probability space associated to the array (Xi,j)i,j≥1.
By (11), we have, on an event A ∈ B of probability one,

lim
n→∞

1

n
log |det(nD)| = 0. (21)

Let us fix ω ∈ A and let us assume that (µ√
nM ) converges to a compactly supported

law µ (which may depend on ω a priori). We have to show that µ = Uσ. By theorems
1.2 and A.2, there exists C ⊂ C with zero capacity such that for every z 6∈ C,

lim inf
n→∞

Uµ√
nM

(z) = Uµ(z). (22)

We have Uµ√
nM

(z) < ∞ iff z 6∈ {λ1(
√

nM), . . . , λn(
√

nM)} and if we write

√
nM − zI = nDY with Y = n−1/2X − zn−1D−1

then thanks to (21), for large enough n and every z 6∈ {λ1(
√

nM), . . . , λn(
√

nM)}

Uµ√
nM

(z) = − 1

n
log |det(

√
nM − zI)|

= − 1

n
log |det(nD)| + UµY

(z).

Therefore, thanks to (21) and (22), for every z 6∈ C such that Uµ(z) < ∞,

Uµ(z) = lim inf
n→∞

UµY
(z). (23)

The strong Uniform Law of Large Numbers (11) suggests that Y is close to n−1/2X − zI
when n is large. Let us make precise this intuitive fact. Since X1,1 − 1 is centered with
finite positive variance and finite fourth moment, we get from [35], for every z ∈ C,

νn,z =
1

n

n∑

i=1

δsi(n−1/2(X−S)−zI)
w−→

n→∞
νz

where S = E(X) = (1, . . . , 1)(1, . . . , 1)⊤ and where νz is a law on C such that

Uνz(0) = UUσ(z). (24)
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From [48] (see also [4, Lemma 2.6 p. 621]), for every n × n complex matrices A and B,

‖F√
AA∗ − F√

BB∗‖∞ ≤ 1

n
rank(A − B)

where F√
AA∗ and F√

BB∗ are the cumulative distribution functions of the empirical

spectral distributions of
√

AA∗ and
√

BB∗. Since rank(S) = 1, we get, for every z ∈ C,

νn,z =
1

n

n∑

i=1

δsi(n−1/2X−zI)
w−→

n→∞
νz.

By using (16) together with (11) and lemma 4.1 we deduce that for every z ∈ C,

ν̃n,z =
1

n

n∑

i=1

δsi(Y )
w−→

n→∞
νz.

Moreover, we have s1(n
−1/2X) ≥ |λ1(n

−1/2X)| which blows up to +∞ at speed
√

n
while s2(n

−1/2X) = O(1) (see [42] or [13] and (13)). As a consequence, by using (16)
and (11), we see that s1(Y ) → +∞ at speed

√
n while s2(Y ) remains bounded. Also,

the assumptions of theorem A.2 are satisfied by ν̃n,z → νz for every z ∈ C. Now, for
every z ∈ C, theorem A.2 applied at point 0 gives,

lim inf
n→∞

Uν̃n,z(0) ≥ Uνz(0).

By using the identities Uν̃n,z(0) = UµY
(0) and (24) we thus have

lim inf
n→∞

UµY
(0) ≥ UUσ(z).

From (23), we obtain that Uµ(z) ≥ UUσ(z) for every z 6∈ C such that Uµ(z) < ∞, and
this holds true obviously for every z 6∈ C. The gap is here: we have only shown
that Uµ(z) ≥ UUσ(z) for every z ∈ C, and thus for almost every z ∈ C. It
remains to show that Uµ(z) ≤ UUσ(z) for almost every z ∈ C. If so, we will
then get µ = Uσ by theorem A.5.

Lemma 4.1 (Weak convergence of atomic laws under uniform perturbation).
For every couple of triangular arrays of complex numbers

(λn,i)1≤i≤n<∞ and (λ̃n,i)1≤i≤n<∞

and every law µ on C,

if
1

n

n∑

i=1

δλn,i

w−→
n→∞

µ and lim
n→∞

max
1≤i≤n

|λn,i − λ̃n,i| = 0 then
1

n

n∑

i=1

δλ̃n,i

w−→
n→∞

µ.
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Proof. Let us fix ε > 0. Since µ is a law, there exists a compact subset K ⊂ C such that
µ(C \ K) ≤ ε, and a disc D = {z ∈ C; |z| ≤ r} such that K ⊂ D and

κ = dist(K, C \ D) > 0.

Let f : C → R be a bounded continuous function. By Heine’s theorem, there exists
η > 0 such that |f(z) − f(z′)| ≤ ε for every z, z′ ∈ D with |z − z′| ≤ η. On the other
hand, there exists an integer nη such that if n ≥ nη then

max
1≤i≤n

|λn,i − λ̃n,i| ≤ max(η, κ).

Consequently, if λn,i ∈ K and n ≥ nη then λn,i and λ̃n,i belong to D and therefore

|f(λn,i) − f(λ̃n,i)| ≤ ε.

Thus, for n ≥ nη and by denoting In = {1 ≤ i ≤ n;λn,i 6∈ D}, we have

1

n

n∑

i=1

|f(λn,i) − f(λ̃n,i)| ≤ 2‖f‖∞
1

n
card(In) + ε.

It remains to control card(In) by using the tightness of µ. Namely, by considering a
continuous function gD : C → [0, 1] such that gD ≡ 0 on K and gD ≡ 1 on C \D, we get

1

n
card(In) ≤ 1

n

n∑

i=1

gD(λn,i) −→
n→∞

∫

C

gD dµ(z) ≤ µ(C \ K) ≤ ε.

5 Proofs of theorem 1.4

We give two similar but different proofs of theorem 1.4. The first one, based on lemma
5.1, was suggested to the author by Manjunath Krishnapur. The second one is based on
(9). Both proofs are consequences of (5).

First proof of theorem 1.4. Recall that M = DX and set X̃ = M for convenience. For
any real δ > 0 and integer n > 0, let us define the event An,δ by

An,δ = ∩n
i=1{|Xi,1 + · · · + Xi,n − nm| ≤ nδ} =

{
max
1≤i≤n

∣∣∣∣
Xi,1 + · · · + Xi,n

n
− m

∣∣∣∣ ≤ δ

}
.

Let R1, . . . , Rn and R̃1, . . . , R̃n be the rows of X and X̃ respectively. By using lemma
5.1 for the rows of X and X̃, we get on the event An,δ and for every t ≥ 0

{sn(X̃) ≤ t} ≤ ∪1≤i≤n{dist(R̃i, R̃−i) ≤ n1/2t}
≤ ∪1≤i≤n{dist(Ri, R−i) ≤ n3/2t(m + δ)}
≤ {sn(X) ≤ n3/2t(m + δ)}.
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Now the Bienaymé-Chebyshev inequality gives

P(Ac
n,δ) ≤ 1 − (1 − σ2δ−2)n.

For some prescribed a > 0 one may select c > 0 and δ = δn = nc such that

P(Ac
n,δn

) = O(n−a) (25)

for large enough n. On the other hand, for any prescribed b > 0 one may select

t = tn = n−b−3/2(m + δn)−1

which gives for some ε > 0, on the event An,δn and for large enough n,

S̃n := {sn(X̃) ≤ n−b−3/2−c−ε} ⊂ {sn(X̃) ≤ tn} ⊂ {sn(X) ≤ n−b} =: Sn.

Now by selecting b with (5) we finally obtain

P(S̃n) = P(An,δn ∩ S̃n) + P(Ac
n,δn

∩ S̃n) ≤ P(Sn) + P(Ac
n,δn

) = O(n−a)

which is exactly the desired result with b′ = b + 3/2 + c + ε.

Alternative proof of theorem 1.4. Let X̃ and Aδ,n as above. From (9), we have

sn(D)sn(X) ≤ sn(X̃).

Note that
sn(D)−1 = max

1≤i≤n
|Xi,1 + · · · + Xi,n|.

As before, for some δ = δn = nc we have (25), and on the event An,δn we have

{sn(X̃) ≤ t} ⊂ {sn(X)sn(D) ≤ t} ⊂ {sn(X) ≤ t(nm + n1+c)}.

For any prescribed b > 0 one may select b′ > 0 and t = tn = t−b′ such that

tn(nm + n1+c) ≤ n−b

for large enough n. In particular, on the event An,δn and for large enough n,

S̃n := {sn(X̃) ≤ n−b′} ⊂ {sn(X) ≤ n−b} =: Sn.

Now, if b is as in (5), one can write

P(S̃n) = P(S̃n ∩An,δn) + P(S̃n ∩ Ac
n,δn

) ≤ P(Sn) + P(Ac
n,δn

) = O(n−a).
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Lemma 5.1 (Least singular value under diagonal perturbation). For a square
n × n real matrix A with columns C1, . . . , Cn and rows R1, . . . , Rn, we define for every
1 ≤ i ≤ n

C−i = span({Cj ; j 6= i}) and R−i = span({Rj ; j 6= i}).
Then for every t ≥ 0,

∪1≤i≤n{dist(Ci, C−i) ≤ t} ⊂ {sn(A) ≤ t} ⊂ ∪1≤i≤n{dist(Ci, C−i) ≤ n1/2t}

and

∪1≤i≤n{dist(Ri, R−i) ≤ t} ⊂ {sn(A) ≤ t} ⊂ ∪1≤i≤n{dist(Ri, R−i) ≤ n1/2t}.

Proof. Since A is a square real matrix, we have sn(A) = sn(A∗) and it suffices for
instance to prove the statement for the columns of A. For every x ∈ R

n and 1 ≤ i ≤ n,
by using the triangle inequality and the identity Ax = x1C1 + · · · + xnCn we get

‖Ax‖ ≥ dist(Ax,C−i) = min
y∈C−i

‖Ax − y‖ = min
y∈C−i

‖xiCi − y‖ = |xi|dist(Ci, C−i).

Now, if ‖x‖ = 1 then necessarily |xi| ≥ n−1/2 for some 1 ≤ i ≤ n and therefore

sn(A) = min
‖x‖=1

‖Ax‖ ≥ n−1/2 min
1≤i≤n

dist(Ci, C−i).

Conversely, for every 1 ≤ i ≤ n, there exists y ∈ R
n with yi = 1 such that

dist(Ci, C−i) = ‖C1 + y2C2 + · · · + ynCn‖ = ‖Ay‖ ≥ ‖y‖ min
‖x‖=1

‖Ax‖ ≥ sn(A)

where we used the fact that ‖y‖2 = 1 + y2
2 + · · · + y2

n ≥ 1.

Note that for a square n × n complex matrix A with rows R1, . . . , Rn, we also have

|det(A)| =
n∏

i=1

|λi(A)| =
n∏

i=1

si(A) =
n∏

i=1

di(A)

where di = dist(Ri, span(R1, . . . , Ri−1)). This identity is used for instance in [47].

A Logarithmic Potential Tools

We give here for convenience some logarithmic potentials tools. The logarithmic potential
Uµ of a compactly supported law µ on C is the function Uµ : C → (−∞,+∞] defined by

Uµ(z) = −
∫

C

log |z − z′| dµ(z′)

for every z ∈ C. The logarithmic energy E(µ) ∈ (∞,+∞] of µ is defined by

E(µ) =

∫

C

Uµ(z) dµ(z) = −
∫

C

∫

C

log |z − z′| dµ(z) dµ(z′).
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In Free Probability Theory [51], the quantity −E(µ) is known as Voiculescu’s free entropy,
see for instance [27, Section 5.3]. The energy E(K) of a compact subset K of C is

E(K) = inf{E(µ);µ is a law supported in K}.

The logarithmic capacity of a compact subset K of C is defined by

Cap(K) = e−E(K).

The capacity of a Borel subset B of C is defined by

Cap(B) = sup{Cap(K);K is a compact subset of C included in B}.

We have Cap(B) > 0 if and only if B carries a law of finite logarithmic energy. If
Cap(B) = 0 then B has zero Lebesgue measure but the converse is false (e.g. compact
sets with positive Hausdorff dimension [12]). A property is said to hold quasi-everywhere
if the set where it does not hold has zero capacity. Also, “quasi-everywhere” implies
“almost everywhere”.

Theorem A.1. Let (νn) be a sequence of laws on C with support in a common compact
subset of C, (an) be a sequence of complex numbers such that |an| → +∞, and (pn) be
a sequence of real numbers in [0, 1] such that pn → 0. Define µn = (1 − pn)νn + pnδan .
If pn log |an| → 0 and lim infn→∞ Uµn = Uµ quasi-everywhere on C for some compactly
supported law µ on C, then µn → µ and νn → µ weakly as n → ∞.

Proof. For every fixed z ∈ C and large enough n,

Uµn(z) = −pn log |z − an| + (1 − pn)Uνn(z).

By hypothesis, we have for every fixed z ∈ C and large enough n,

pn log |z − an| = pn log |an| + pn log

∣∣∣∣
z

an
− 1

∣∣∣∣→ 0. (26)

Consequently, lim infn→∞ Uνn = lim infn→∞ Uµn = Uµ quasi-everywhere on C. Since the
sequence (νn) is is supported in a common compact subset of C, it is tight and thus
weakly relatively compact (a standard result due to Prohorov states that the set of laws
on a compact space equipped with the weak topology is metrizable and compact [9]).
Let µnk

→ η be a weakly converging subsequence, to some law η (necessarily supported
in the same compact subset). By the Lower Envelope theorem A.4, lim infn→∞ Uνn = Uη

quasi-everywhere in C. In particular, Uµ = Uη quasi-everywhere in C, and thus almost
everywhere for the Lebesgue measure. Now, by the Unicity theorem A.5, we get η = µ.
Therefore, µ is the unique weak adherence value of (νn). It follows then that νn → µ
weakly. Since pn → 0, we get also that µn = (1 − pn)νn + pnδan → µ weakly.

Theorem A.2. Let (νn) be a sequence of laws on C with support in a common compact
subset of C, (an) be a sequence of complex numbers such that |an| → +∞, and (pn) be a
sequence of real numbers in [0, 1] such that pn → 0. If (µn) (equivalently (νn)) converges
weakly to some law µ then Uµ(z) ≤ lim infn→∞ Uµn(z) for every z ∈ C, and equality is
achieved for quasi-every z.
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Proof. The desired results follow from the Principle of Descent (theorem A.3) and the
Lower Envelope theorem (theorem A.4) applied for νn

w→ µ together with (26).

Theorems A.3-A.4-A.5below are extracted from the book [41] by Saff & Totik.

Theorem A.3 (Principle of Descent). If (µn) is a sequence of laws all having support
in a fixed compact set of C and converging weakly to some law µ then for every z ∈ C,

Uµ(z) ≤ lim inf
n→∞

Uµn(z). (27)

Theorem A.4 (Lower Envelope). Equality is achieved in (27) for quasi-every z.

Theorem A.5 (Unicity). If µ and ν are two compactly supported laws on C and if
their logarithmic potential Uµ and Uν coincide almost everywhere with respect to the
Lebesgue measure on R

2, then µ = ν.

Note that the uniform law U1 on the disc {z ∈ C; |z| ≤ 1} has finite logarithmic
energy and logarithmic potential given for every z ∈ C by (see [35] for instance)

U(z) =

{
− log |z| if |z| > 1
1
2(1 − |z|2) if |z| ≤ 1.
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Figure 1: Plot of the circle of radius κ and the set of points {λ2(
√

nM), . . . , λn(
√

nM)}
for a single realization of

√
nM with n = 2000 and X1,1 = W−1/α − 1 where W is

uniformly distributed on [0, 1] and α = 3.001. Here M = DX as in (6-7) and the law L
of the i.i.d. entries of X has Lebesgue density t 7→ α(1+ t)−(1+α) on [0,∞). It has finite
positive variance with κ ≈ 1.73, finite third moment, but infinite fourth moment. This
simulation illustrates theorems 1.2 and 1.3. It suggests that the moment assumption can
be weakened and also that 2κ might be replaced by κ in theorem 1.2.
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Figure 2: We consider here a random matrix shifted by a deterministic matrix as in [47].
The upper plot is the set of points {λ2(n

−1/2X+Sn), . . . , λn(n−1/2X+Sn)} with n = 4000
where X1,1 is uniformly distributed on [0, 1] and Sn = diag(1, . . . , 1, 1.5, . . . , 1.5) where 1
appears ⌊n/2⌋ times. The limiting spectral distribution of the deterministic shift matrix
Sn is the Bernoulli law 1

2(δ1 + δ1.5). The lower picture is the plot of the set of points

{λ2(
√

nM), . . . , λn(
√

nM)} where the Markov matrix M is built from n−1/2X + Sn by
dividing each row by its ℓ1-norm. This simulation suggests to explore the universality
approach of [47] for our Markov matrices with i.i.d. rows.
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