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Abstract

In this paper, we study the covering theory of laura algebras. We prove that if a connected laura algebra
is standard (that is, has a standard connecting component), then it has Galois coverings associated to the
coverings of the connecting component. As a consequence, the first Hochschild cohomology group of a
standard laura algebra vanishes if and only if it has no proper Galois coverings.

Introduction

Introduced in 1945, the Hochschild cohomology groups are subtle and interesting invariants of associative
algebras. The lower dimensional groups have simple interpretations: for instance, the 0* group is the
centre of the algebra, the 1st group can be thought of as the group of outer derivations of the algebra,
while the 2nd and 3rd groups are related to the rigidity properties of the algebra. In [@, §3, Pb. 1],
Skowroniski has related the vanishing of the first Hochschild cohomology group HH'(A) of an algebra A
(with coefficients in the bimodule 4 A4) to the simple connectedness of A. Recall that a basic and connected
finite dimensional algebra over an algebraically closed field k is simply connected if it has no proper Galois
covering or, equivalently, if the fundamental group (in the sense of [E]) of any presentation is trivial. In
particular, Skowronski posed the following problem: for which algebras A do we have HH'(A) = 0 if and
only if A is simply connected? This problem has been the subject of several investigations: notably this
equivalence holds true for algebras derived equivalent to hereditary algebras [@], weakly shod algebras [@]
(see also [ﬂ])7 large classes of selfinjective algebras [@] and schurian cluster-tilted algebras [LJ]. It was proved
in [[L5] that, for a representation-finite algebra, the first Hochschild cohomology group vanishes if and only if
its Auslander-Reiten quiver is simply connected. Note that if A is a representation-finite triangular algebra,
then its Auslander-Reiten quiver is simply connected if and only if A has no proper Galois covering, that is,
A is simply connected.

Here, we study this conjecture for laura algebras. These are defined as follows. Let mod A be the category
of finitely generated right A-modules, and ind A be a full subcategory consisting of exactly one representative
from each isomorphism class of indecomposable A-modules. The left part £ of mod A is the full subcategory
of ind A consisting of those modules whose predecessors have projective dimension at most one, and the right
part Ra is defined dually. These classes were introduced in [P4] in order to study the module categories
of quasi-tilted algebras. Following [E, @], we say that A is laura provided ind A\ (L4 UR4) has only
finitely many objects. Part of the importance of laura algebras comes from the fact that this class contains
(and generalises) the classes of representation-finite algebras, tilted, quasi-tilted and weakly shod algebras.
Laura algebras have appeared naturally in the study of Auslander-Reiten components: an Auslander-Reiten
component is called quasi-directed if it is generalised standard and almost all its modules are directed. It
was shown in [E] that a laura algebra which is not quasi-tilted has a unique faithful convex quasi-directed
Auslander-Reiten component (which is also the unique non-semiregular component). Conversely, any convex
quasi-directed component occurs in this way @] The techniques used for the study of laura algebras were
applied in [@] to obtain useful results on the infinite radical of the module category. Their representation
dimension is at most three and this is a class of algebras with possibly infinite global dimension which
satisfies the finitistic dimension conjecture [E] Also, laura algebras have been characterised in terms of
the Gabriel-Rojter measure as announced by Lanzilotta in the ICRA XI in Mexico, 2004 (see also [ﬂ])
For further properties of laura algebras we refer the reader to [E, E, H, E, @] Here we concentrate on the
conjecture that a laura algebra A is simply connected if and only if HH'(A) = 0.

Our approach, already used in [B0), @], uses coverings. Covering theory was introduced by Gabriel and
his school (see, for instance, [@, @, ) and consists in replacing an algebra by a locally bounded category,
called its covering, which is sometimes easier to study. We recall that a tilted algebra is characterised by the
existence of at least one, and at most two, connecting components (it has two if and only if it is concealed,
in which case the connecting components are postprojective and preinjective) see [@] If A is a laura not
quasi-tilted algebra, then its unique faithful quasi-directed component is also called a connecting component
(see [E]) Hence, by laura algebra with connecting component, we mean a connected laura algebra which is
either tilted or not quasi-tilted. We call a laura algebra with connecting component standard provided its
connecting components are all standard (it is known from [@] that the connecting components of concealed
algebras are standard). This generalises the notion of standard representation-finite algebra (see [@])



Several classes of laura algebras are standard, notably tilted algebras or weakly shod algebras. Our first
main theorem says that if I' — T is a Galois covering of the connecting component such that there exists a
well-behaved covering functor k£(I') — indI" then it induces a covering of the algebra.

Theorem A. Let A be a laura algebra with connecting component I' and w: I — T' be a Galois covering
with group G with respect to which there exists a well-behaved covering functor p: k(I') — ind". Then there
exists a covering functor F': A — A whose fibres are in bijection with G. If moreover A is standard, then F

is a Galois covering with group G.

Note that if " is standard then there always exists a well-behaved covering functor p.

In order to prove Theorem A, we consider a more general situation. We first consider an Auslander-
Reiten component, which contains a left section (in the sense of []) and show that to a Galois covering of
this component such that there is a corresponding well-behaved functor corresponds a covering of its support
algebra with nice properties, see Theorem below. Applying this result to the connecting component of
a laura algebra yields the required covering.

Because of the theorem, if A is standard, then we are able to work with Galois coverings which are
notably easier to handle than covering functors. We prove that if A is standard laura, then any Galois
covering of the connecting component induces a Galois covering of A, with the same group. This allows us
to prove our second main theorem, which settles the conjecture for standard laura algebras.

Theorem B. Let A be a standard laura algebra, and T its connecting component(s). The following are
equivalent:

(a) A has no proper Galois covering, that is, A is simply connected.
(b) HH'(A) = 0.
(c) T is simply connected.
(d) The orbit graph O(T") is a tree.
Moreover, if these conditions are verified, then A is weakly shod.

If one drops the standard condition, then the above theorem may fail. Indeed, there are examples
of non-standard representation-finite algebras which have no proper Galois covering and with non-zero first
Hochschild cohomology group (see @, @, or below). However, some implications are still true in Theorem E
without assuming standardness. Indeed, we always have: (c) and (d) are equivalent and (c) implies (a) and
(b).

Our paper is organised as follows. After a short preliminary section, we prove a few preparatory lemmata
on covering functors in Section E In Section E, we give examples of standard laura algebras. Section E is
devoted to properties of tilting modules which are in the image of the push-down functor associated to a
covering functor. In Section ff we study the coverings of Auslander-Reiten components having left sections.
The proof of Theorem JA| occupies Section E We concentrate on Galois coverings in Section ﬂ, and prove
Theorem [H in Section §.

1 Preliminaries

Categories and modules

Throughout this paper, k denotes a fixed algebraically closed field. All our categories are locally bounded
k-categories, in the sense of [B, 2.1]. We assume that all locally bounded k-categories are small and all
functors are k-linear (the categories of finite dimensional modules and their bounded derived categories are
skeletally small).

Let F': £ — B be a k-linear functor and G be a group acting on £ and B by automorphisms. Then F' is
called G-equivariant if F og = go F for every g € G.

A basic finite dimensional algebra A can be considered equivalently as a locally bounded k-category as
follows: Fix a complete set {e1,...,e,} of primitive orthogonal idempotents, then the object set of A is the
set {e1,...,en} and the morphisms space from e; to e; is ejAe;. The composition of morphisms is induced
by the multiplication in A.

Let C be a locally bounded k-category. We denote by C, its object class. A right C-module M is a k-linear
functor M : C°? — MOD k, where MOD k is the category of k-vector spaces. We write MOD C for the category
of C-modules and mod C for the full subcategory of the finite dimensional C-modules, that is, those modules
M such that > dim M(z) < co. If A is a subcategory of MOD C, we use the notation X € A to express

zeCo
that X is an object in A. For every z € C,, the indecomposable projective C-module associated to x is
C(—,z). The standard duality Hom(—, k) is denoted by D. Let M be a C-module. If B is a full subcategory
of C, then Mz is the induced B-module. If X is a subcategory of modC, then the X-module Hom¢(—, M)~
is denoted by Home (X, M). Also, Hom¢ (M, C) denotes the C°?-module Hom¢ (M, @ C(—,z)) (if A=Cis

z€Cyo
a finite dimensional algebra, this is just the left A-module Hom 4 (M, A)).

We let ind C be a full subcategory of mod C consisting of a complete set of representatives of the isomor-
phism classes of indecomposable C-modules. We write projC and injC for the full subcategories of indC of
projective and injective modules, respectively. Whenever we speak about an indecomposable C-module, we
always mean that it belongs to indC.



For a full subcategory A of modC, we denote by add.A the full subcategory of modC with objects the
direct sums of summands of modules in A. If M is a module, then add M denotes add {M}.

The Auslander-Reiten translations in mod C are denoted by 7¢ = D Tr and 7/ L' = Tr D. The Auslander-
Reiten quiver of C is denoted by I'(modC). For a component I' of I'(mod C), we denote by O(T") its orbit
graph (see [@, 4.2], or Section E below). The component I' is non-semiregular if it contains both an injective

and a projective module. It is faithful if its annihilator AnnT' = () AnnX is zero. Following [@], a
XerT
component I' is generalised standard if rad®(X,Y) = 0 for every X,Y € I'. Denoting by k(I') the mesh

category of I" (see [@, 2.5]), T is standard if there exists an isomorphism of k-categories k(I') — ind I which
extends the identity on vertices, and which maps meshes to almost split sequences. Let 7: I 5Thea
morphism of translation quivers. Let X be a full convex subquiver of L. We let k(X) be the full subcategory
of k(I') with objects the vertices in X. Following [@, 3.1], a functor p: k(X) — ind " is well-behaved (with
respect to ) if it satisfies:

1. p(X) =n(X) for every X € X.

2. Let X € X. Let (us: Z; — X)i=1,....+ be all the arrows in X ending at X (or (v;: X — Yj);j=1,....s be

t
all the arrows in X starting from X), then the morphism [p(u1) ... p(u:)]: @ p(Z:) — p(X) (or
i=1
[p(v1) ... p(vs)]t :p(X) — @ Yj, respectively) is irreducible.
j=1

Condition 2 above imply that if a mesh in T is contained in X , then p maps this mesh to an almost split
sequence.

For notions and results on modules, we refer the reader to @] For coverings and fundamental groups
of translation quivers, we refer the reader to [B, §1]. Note that the translation quivers we consider are not
valued translation quivers and may have multiple arrows

Paths
Let C be a locally bounded k-category. Let X,Y be in indC. Following the convention used in [Q], a
path X ~»Y from X to Y in indC is a sequence of non-zero morphisms:

f) X=Xo L x;— =X, X =Y (t>0)

where X; € indC for all i. We then say that X is a predecessor of Y and that Y is a successor of X. A path
from X to X involving at least one non-isomorphism is a cycle. A module X € ind C which lies on no cycle
is directed. If each f; in (%) is irreducible, we say that (%) is a path of irreducible morphisms or a path in
I'(modC). A path (%) of irreducible morphisms is sectional if 7¢ X1 # X;_1 for all ¢ with 0 < i < ¢.

An indecomposable module M € L4 is Ext-injective in add L4 if Extly(—, M)z, = 0 (see [@]) This is
the case if and only if 77'M & La.

The endomorphism algebra of the direct sum of the indecomposable projective modules lying in £4 is
called the left support of A. If A is laura with connecting component, then its left support is a product of
tilted algebras (see [E, 4.4, 5.1]).

An algebra A is weakly shod if the length of any path in ind A from an injective to a projective is bounded
[ﬂ] Also, A is quasi-tilted if its global dimension gl.dim A is at most two and ind A = L4 UR 4, see @]

2 Covering functors

A k-linear functor F': £ — B is a covering functor if (see [Q, 3.1]):
1. F7(z) # 0 for every z € B,.

2. For every z,y € &,, the two following k-linear maps are bijective:

P c@y)— BF@),F@), and @ @ y) - BF(2),Fy) .

F(y)=F(y) F(z')=F(z)

Following [@, §3], F' is a Galois covering with group G if there exists a group morphism G — Aut(€) such
that G acts freely on &,, Flog = F for every g € G and the functor £/G — B induced by F' is an isomorphism.
We refer the reader to [}, 3.1] for the definition of £/G. Galois coverings are covering functors.

If F': £ — B is a covering functor, then F' defines an adjoint pair (F), F.) of functors F: MODE —
MOD B and F.: MOD B — MODE& (see [@, 3.2]). The functor F is the pull-up functor and Fj is the push-
down. We recall their construction: If M € MOD B, then FFM = M o F°P; if M € MOD &, then F\M is the

B-module such that FxM(z) = @ M(), for every x € B,. Both F\ and F. are exact.
F(z)=z
Let F': £ — B be a covering functor between locally bounded k-categories. We prove a few facts relative
to F'. Some are easy to prove in case F' is a Galois covering. However, in general, the proofs are more
complicated. This can be explained by the following fact: F°P: £°? — B°P is also a covering functor, and



DF? ~ F, D if F is Galois. However, this isomorphism no longer exists in the general case of covering
functors (see [B, 3.4], for instance).

As a motivation for the results in this section, we start with the following construction. We recall that the
universal covering of a translation quiver I' was introduced in @, 1.2] using a homotopy relation denoted as
H. We define H to be the smallest equivalence relation containing H and satisfying the following additional
relation: Let a and 8 be two arrows in I having the same source and the same target, then o and ( are
equivalent for H. Using the construction of [[14, 1.3] with respect to the relation H we construct a covering
of I which we call the generic covering of I'. It is an immediate consequence of this definition and of [@, 1.3]
that the generic covering is a Galois covering and is a quotient of the universal covering. They coincide if I’
has no multiple arrows (for example, if I" is the Auslander-Reiten quiver of a representation-finite algebra).

The following proposition is mainly due to Riedtmann (see [@, 2.2]).

Proposition 2.1. Let A be a basic finite dimensional algebra. Let I' be a component of I'(mod A). Let
m: I' = T be the generic covering. Then there exists a well-behaved functor p: k(I') — indI'. If, moreover,
I" is generalised standard, then p is a covering functor.

Proof: The functor p was constructed in [@, 2.2] for the stable part of the Auslander-Reiten quiver of a
self-injective representation-finite algebra. The covering property was proved in [@, 2.3] under the same
setting. The construction of p was generalised to any Auslander-Reiten component in @], 3.1]. It is easily
seen that the arguments given in [E, 2.3] to prove that p is a covering functor apply to the case of generalised
standard components. |

Note that if ' is a standard Auslander-Reiten component, then, by definition, there exists a well-behaved
functor k(T') — ind T'. In particular, any covering of translation quivers p: I'' — T' gives rise to a well-behaved
covering functor k(I') — indT" by composing the functors k(p): k(I'") — k(T') and k(T') — ind .

The results of this section will be applied to covering functors as in R.1. We now turn to the general
situation where F': £ — B is a covering functor between locally bounded k-categories.

Since F) and F are exact, we still have an adjunction at the level of derived categories. Here and in
the sequel, D(MOD &) and D’(mod £) denote the derived category of £-modules and the bounded derived
category of finite dimensional £-modules, respectively. The following lemma is immediate. For a background
on derived categories, we refer the reader to [@, Chap. III].

Lemma 2.2. Fy and F. induce an adjoint pair (Fx, F.) of exact functors:

Fx
D(MOD £) > D(MOD B)
F.
Moreover F\(D’(mod £)) C D®(mod B). [ ]

Let z € &. By condition 2 in the definition of a covering functor, F' induces a canonical isomorphism
F\(E(—,z)) = B(—, F(x)) of B-modules (see [@, 3.2]). In the sequel, we always identify these two modules
by means of this isomorphism. Using this identification we get the following result.

Lemma 2.3. Let M € D(MODE). Then F\ induces two linear maps for every x € Bo:

ev: € DMODE)(M,E(—,F)) — D(MOD B)(FAM, B(—,z)) ,
F(T)=x
and par: @ D(MOD E)(E(—,7), M) — D(MOD B)(B(—,z), FAM) .
F(z)==z
These maps are functorial in M, and are bijective if M is quasi-isomorphic to a bounded complez of finite
dimensional projective modules (for example, if gl.dim& < co and M € mod £).
Proof: If M = P[l] wherel # 0 and P is a projective £-module, then ¢ is bijective (because Ext; ' (P, £(—, 7)) =
0). Also, if M is an indecomposable projective £-module, then ¢ is bijective (because F is a covering func-
tor). Finally, if M — M’ — M" — M][1] is a triangle in D(MOD &), then @ar, par and @ are bijective
as soon as two of them are so. Consequently, ¢as is bijective if M is quasi-isomorphic to a bounded complex
of finite dimensional projective £-modules. The second map is handled similarly. ]

In general, F does not commute with the Auslander-Reiten translations. However, we have the following.
Lemma 2.4. Let X €ind & be such that F>\X € ind B and pd X < co. Then dim7e X = dim s\ X.

Proof: Let X € mod& be any module. Let P — Py — X — 0 be a minimal projective presentation in
mod £. By [@, 3.2], we deduce that FxP1 — FxPo — F)\X — 0 is a minimal projective presentation in
mod B. So we have exact sequences in mod £°P and mod B°?, respectively:

0 — Homg (X, E) — Home (P, E) — Home(P1,E) — TreX — 0,
and 0 — Homg(F)\ X, B) — Homg(F\Po, B) — Homg(F\P1,B) — TrgFh X — 0,

Let X € mod £ be of finite projective dimension, thus quasi-isomorphic to a bounded complex of finite dimen-

sional projective £-modules. The bijections of R.J imply that dim Homg (X, €) = > dimHomg (X, E(—,z)) =
zeE,



> dimHomp(FA\ X, B(—,z)) = dimHomg(F\X,B). Using the above exact sequences, we deduce that
zeB,
dim Trg X = dim TrgF)\ X. Thus dim 7¢ X = dim 7 F, X if both X and F)\X are indecomposable. [ ]

3 Standard laura algebras

We now derive sufficient conditions for a laura algebra to be standard. Weakly shod algebras are particular
cases of laura algebras. It is proved in @, 84] that if A is weakly shod and not quasi-tilted, then A can be
written as a one-point extension A = B[M] such that the connecting component of A can be recovered from
M and from the connecting components of B. This motivates the following definition.

Definition 3.1. Let A be a laura algebra with connecting components. An indecomposable projective
A-module P lying in a connecting component I' is a maximal projective if it has an injective predecessor
and no proper projective successor in ind A. Furthermore, A is a maximal extension of B if there exists a
maximal projective P = eA such that B = (1 —e)A(1 —e) and A = B[M], where M = radP.

By definition, a maximal projective belongs to R . In particular, by [ﬂ, 2.2], it is directed. The notions
of minimal injective or maximal coextension are dual. If A is a tilted algebra which is the endomorphism
algebra of a regular tilting module, then it has neither maximal projective, nor minimal injective (see [@])

Proposition 3.2. Let A = B[M] be a mazimal extension. Then B is a product of laura algebras with
connecting components. Moreover, if every connected component of B is standard, then so is A.

Proof: By [E], every connected component of B is a laura algebra. Let P, € ind A be the maximal projec-
tive such that rad P, = M and denote by I" the component of I'(mod A) in which Py, lies. So P € RaNT.
In particular, P,, is directed. Note that every proper predecessor of P,, is an indecomposable B-module.

Let us prove the first assertion. If it is false, then a connected component B’ of B is quasi-tilted and
not tilted (and, therefore, quasi-tilted of canonical type). Since A is connected, at least one indecomposable
summand M’ of M lies in ind B’. Assume first that M’ is not directed. In particular, M’ € I" implies that
M’ & LoURa. Therefore there is a non-sectional path M’ ~» P in ind A with P projective. If P = P,,, then
there exists a non-sectional path M’ ~» M" with M" an indecomposable summand of M = radP,,. This is
impossible because P, is directed (see [@, Thm. 1 of §2]). So P # P,,. By maximality of P,,, the path
M’ ~~ P is a non-sectional path in ind B’ ending at a projective. So M’ € Rg/. On the other hand, M’ & L4
means that there exists a non-sectional path I ~» M’ in ind A, where I is injective. By maximality of P,
this is a non-sectional path in ind B’. For the same reason, we have Homa (P, I) = 0, so that I is injective
as a B’-module. So M’ ¢ Lz URp/. This is impossible because B’ is quasi-tilted. Therefore M’ is directed.
Since B’ is quasi-tilted of canonical type, the component I'" of T'(mod B’) containing M’ is either the unique
postprojective or the unique preinjective component (see @, Prop. 4.3]). Assume that I is the unique
postprojective component of I'(mod B’). Then I' C Lp/\Rp/ (see [B, 5.2]). In particular, there exists a
non-sectional path M’ ~ P in ind B’ with P projective. Since P,, is maximal, this is also a non-sectional
path in ind A. Since P is projective and since M’ € I", we deduce that P € I" and that the path is refinable
to a non-sectional path in I'(mod A) and therefore in I'(mod B’) because Py, is maximal. Consequently, M’
lies in the postprojective component I of T'(mod B’) and is the starting point of a non-sectional path in
I'(mod B’) ending at a projective. This is absurd. If I is the unique preinjective component of I'(mod B’),
then, using dual arguments, we also get a contradiction. Thus, B’ is either tilted or not quasi-tilted.

Now, we assume that every connected component of B is standard, and prove that A is standard. Later,
in E, we shall see that, if A is tilted, then its connecting components are standard. So assume that A is
not tilted. Let T be the connecting component of I'(mod A) and I be the disjoint union of the connecting
components of the Auslander-Reiten quivers of the connected components of B. We compare I'" and I".
More precisely, let X be the full subquiver of I' with vertices those modules which are not successors of Pp,.
So X is a full subquiver of I'(mod B) stable under predecessors in I'(mod B), and it contains I'\Ra. We
claim that X is contained in I''. We prove a series of assertions.

(a) The left supports of A and B coincide. Indeed, we have L4 Nind B C L (see [E, 2.1]). Om
the other hand, if P € ind B is a projective not lying in L4, then there is a non-sectional path I ~» P in
ind A with [ injective. Since P,, is maximal, this is a non-sectional path in ind B. For the same reason,
Homa(Pm,I) = 0, so that I is injective as a B-module. So P ¢ Lp. Thus A and B have the same left
support.

(b) Let P # P, be a projective lying in I'. Then P € I''. Indeed, if there exists a path I ~ P
in I' with I injective, then the maximality of P, implies that this path lies entirely in ind B and starts in
an injective B-module. So P € I'. If there is no such path, then P € L4 NT. So P lies in a connectin,
component of one of the components of the left support of A, which is also the left support of B. From [Eg,
5.4], we deduce that P lies in I".

(c) Let X € X. There exists m > 0 such that 74'X € I'. By assumption on X, we have 75 X = 74 X.
Assume first that 7{'X = P for some m > 0 and some projective P. So P # Pp,. From (b), we get that
P e T’. Now assume that X is left stable and non-periodic. If X € R4, there exists [ > 0 such that 74X



is Ext-projective in R 4. Since X is left stable, we deduce that Tfle € '\Ra. So assume that X € I'\Ra4.
Since A is laura, there exists m such that 75'X € T'NL4. So 74" X lies in one of the connecting components
of the left support of A. So 74'X € IV because the left supports of A and B are equal. Finally, assume that
X is periodic. Then there exists a projective module P € I'| a periodic direct summand Y of radP, and a
path Y ~» X in I'\R 4, and therefore in I'(mod B). Since Y is periodic, then P # P, (otherwise P, would
be a proper successor of itself). Since P € I, we have Y € I'" and therefore X € I".

(d) X is contained in I'. Indeed, we already know that X is a full subquiver of I'(mod B). Also, we
proved that for every X € X, there exists m > 0 such that 7;'X = 75X € I"". So X is contained in I".

We now show that T is standard. By hypothesis, there exists a well-behaved functor ¢: k(I') — ind I,
Since X is a full subquiver of IV stable under predecessors in I'(mod B), there exists a well-behaved functor
¥: k(Y) — indT" where ) is a full subquiver of I such that:

. Y contains X.

. Y is stable under predecessors in I'(mod A).

w N =

. 1 and ¢ coincide on X.
4. Y is maximal for these properties.

We show that J = I'. Assume that Y # I'. Since ) contains X, it contains I'\'Ra, so there exists a
source X in I'\Y. If X is projective, then X = P,,. So v is defined on every indecomposable summand
Y of radP,,. Set ¥(X) = Pm. Let a1: X1 — Pm,...,0z: Xt — P be the arrows ending at X. Then
X1® - @ Xy = radPy,, and let ¢(a;) be the inclusion X; — P,,. If X is not projective, then the mesh
ending at X has the following shape:

ul/, X1, (*)
TAX \X

o~ . T
Since X is a source of I'\}, then v is already defined on the full subquiver of the mesh consisting of all
vertices except X. In particular, the following map is right minimal almost split:

[p(ur) oo Pun)]  TAX = X1 BB Xy

Let (X) = X, and [¢(v1) ... ¥(vn)]: X1 @@ X, — X be the cokernel of the above map, following

, 3.1, Ex. b]. Clearly, this construction contradicts the maximality of Y. So Y = I' and there exists a
well-behaved functor ¢: k(') — ind I’ which is the identity on objects. The arguments in the proof of [@,
5.1] show that this is an isomorphism. So I' is standard. |

Since weakly shod algebras are laura, it makes sense to speak of weakly shod algebras with connecting
components. We have the following corollary.

Corollary 3.3. Let A be a (connected) weakly shod algebra with connecting components, then A is standard.

Proof: By [ﬂ, 3.3], there exists a sequence of full convex subcategories
C=ACAC---CA,=A4

with C tilted and, for each ¢ > 0, the algebra A;+; is a maximal extension of A;. The result follows from
@ and induction because C is standard (see @ below). [ ]

The preceding result motivates the following definition, inspired from [ﬂ, 2.3].

Definition 3.4. Let A be a laura algebra. We say that A admits a maximal filtration if there exists a
sequence
C=A4CAC - CAn=A (f)
of full convex subcategories with C' a product of representation-finite algebras and, for each ¢ > 0, the algebra
Ait1 is a maximal extension, or a maximal coextension, of A;.
Corollary 3.5. Let A be a laura algebra admitting a maximal filtration (f):
(a) If C is a product of standard representation-finite algebras, then A is standard.

(b) If the Auslander-Reiten quiver of every connected component of C is simply connected, then A is
standard.

(c) If HH'(A) = 0, then A is standard.

Proof: Statement (a) follows directly from @

(b) This follows from @ and the fact that if a representation-finite connected algebra C has HH'(C) = 0,
or equivalently, if its Auslander-Reiten quiver is simply connected, then C is standard [@, 4.2].

(c) We use induction on the length m of a maximal filtration. If m = 0, then A is representation-finite and
the result follows from [E, 4.2]. Assume that m > 1 and that the statement holds for algebras admitting
maximal filtrations of length less than m. Without loss of generality, we may assume that A = A,,—1[M]



is a maximal extension. We claim that EXti\m,l(M: M) = 0. Indeed, if this is not the case, then there
exists an indecomposable summand N of M such that Extly _ (M,N) # 0. Write M ~ N ® N’ and let
P be the indecomposable projective such that M = radP. Then N’ is a submodule of P and L = P/N’ is
indecomposable. By @, I11.2.2, (a)] we have id L > 2. But this contradicts the fact that L € R4 because it
is a successor of the maximal projective P. So EXti\m,l (M, M) = 0. Applying [E, 5.3], the exact sequence

HH'(A) — HH'(Aj—1) — Exty, (M, M)

yields HHI(Amfl) = 0. By the induction hypothesis, A,,—1 is standard. By @, so is A. [ |

Ezamples 3.6. (a) Let A be the radical-square zero algebra given by the quiver

K\Qr\

1 C2<—3<—4__ "5 .

This is a laura algebra (see [E, 2.3]). Here and in the sequel, we denote by Py, I, and S, the indecom-
posable projective, the indecomposable injective, and the simple module corresponding to the vertex
x, respectively. Clearly P; is maximal projective and Is is minimal injective. Letting C' be the full
convex subcategory with objects {2, 3,4} we see that

CC[Ss@S4CCA

is a maximal filtration. Since C' is standard, so is A. Its connecting component is drawn below:

where the two copies of Ss are identified.

(b) Let B,C be products of standard laura algebras, and A an articulation of B,C (in the sense of [@])
Then A is laura with connecting components (see [@]) Using [E, 3.9] it is easy to check that A is
standard.

The section motivates the following questions.
Problem 1. Which laura algebras admit maximal filtrations?

Problem 2. Assume that A is a laura algebra which does not admit a maximal filtration. If HH'(A4) = 0,
do we have that A is standard?

4 Tilting modules of the first kind with respect to covering functors

For tilting theory, we refer to [EI] Let B be a product of tilted algebras and n be the rank of its
Grothendieck group. In [@, Cor. 4.5], it is proved that tilting modules are of the first kind with respect
to any Galois covering of B. More precisely, let F': B — B be a Galois covering with group G, where B is
locally bounded. Denote by 7 the class of complexes T € D”(mod B) such that:

1. T is multiplicity-free and has n indecomposable summands.
2. D*(mod B)(T,T[i]) = 0 for every i > 1 (so T is a silting complez in the sense of [@])
3. T generates the triangulated category Db(mod B).

Any multiplicity-free tilting module lies in 7. It was proved in [@, §4] that for any 7' € 7 and for any
indecomposable summand X of 7', there exists X € D®(mod B) such that:

1. ;X ~ X.
2. 9X £ "X for g # h.
3. If Y € D’(mod B) is such that FAY ~ X, then Y ~ 9X for some g € G.

Given T € T and an indecomposable summand X of T, we fix X € D’(mod B) arbitrarily such that
X ~X.

For later reference, we recall some facts. The following result was proved in [@, Cor. 4.5, Prop. 4.6,
Lem. 4.8].



Lemma 4.1. Let F: B — B be a Galois covering with group G. Let T' € mod B be a multiplicity-free tilting
module. Let 7: =T1¢--- BTy be such that Ty, ..., T, are indecomposable. For every i, there exists T; € ind B
such that F\T; = T;. Moreover:

(a) Ty ;ﬁ th fOT’ (977’) 7é (h7])

(b) pdTi < 1 for every i.

(c) Ext%(g’fi, "T3) =0 for every g,h € G, i,j € {1,...,n}.

(d) For every indecomposable projective B-module P, there ezists an ezact sequence 0 — P — T —

T® — 0 with T, T® inadd {9T; | g€ G, i € {1,...,n}}.

|
We need similar facts about covering functors which need not be Galois. Thus we prove the following
result.
Proposition 4.2. Let F': B — B be a Galois covering with group G, where B is locally bounded. With the
above setting, let p: B — B be a covering functor such that F(xz) = p(z) for every x € B,. Let T € T and
X be an indecomposable summand of T'. Then:
(a) There exists an isomorphism px(?X) = X, for every g € G.
(b) If L € D*(mod E) is such that pxL ~ X, then L ~ 9X for some g € G.
(¢) For every L € D*(mod B), the following maps induced by px and by the isomorphisms of (a) are linear
bijections:
¢x..: @D’ (mod B)(?X, L) = D’(mod B)(X,paL)
geG
and ¢x,.: @) D’(mod B)(L, ?X) = D"(mod B)(prL, X) .
geG
In order to prove the proposition, we need the following lemma. In case p is a Galois covering, the lemma

was proved in [EI, Lems. 4.2, 4.3] (see also [@, Lems. 3.2, 3.3]). For simplicity, we write Hom(X,Y) for the
space of morphisms in the derived category.

Lemma 4.3. Let T,T' € T be such that @ holds true for T and for T'. Consider a triangle in D®(mod B):

t
X-@Pxi-vy-x[], (A)
i=1
where X € addT and X1, ..., X} are indecomposable summands of T'. Assume that Hom(Y, X/[1]) = 0 for
all i (we do not assume that Y € addT orY € addT’). Then for every g € G, there exist Y € D’(mod B)
and g1,...,g: € G such that the triangle A is isomorphic to the image under px of a triangle in D®(mod B)
as follows:

t
g)?ﬂ@ %X Y — 9X[1] .
i=1

Dually, consider a triangle in D’(mod B):

t
Y - @PXxi-x-Y[], (A
i=1
where X € addT and X1,...,X{ are indecomposable summands of T'. Assume that Hom(X;,Y[1]) = 0 for
all i. Then for every g € G, there exist Y € D’(mod B) and g1,...,9: € G such that the triangle A is
isomorphic to the image under px of a triangle in D°(mod B) as follows:

t
?H@giiéﬂ IX Y] .
i=1
Proof: The proofs of [@, Lems. 4.2, 4.3] use the following key property of a Galois covering F': B — B
with group G. Given L, M € D?(mod B), we have linear bijections induced by Fj:

@D Hom(“L, M) = Hom(FAL, FxM) and @5 Hom(L, M) = Hom(F\L, FAM) .

geG geG
Of course, these bijections no longer exist for a covering functor which is not Galois. However, using our
hypothesis that @ holds true for T and for T", it is easy to check that the proofs of [@, Lems. 4.2, 4.3] still
work in the present case. Whence the lemma. ]

Proof of @: We proceed in several steps.
Step 1: If T = B, then @ holds true. The following facts follow from the definition of covering
functors (see also [@, 3.2]):



1. Y € D’(mod E) is a projective module if and only if p,Y is a projective module.
2. pa (E(—,x)) ~ F) (E(—w)) ~ B(—, F(z)) = B(—, p(z)) for every z € B,.

3. 9B(—,x) = B(—, gx) for every z € B, and every g € G.
Therefore @ holds true for T' = B.

Given an object X in a triangulated category, we write (X) for the smallest additive full subcategory
containing X which is stable under direct summands and shifts (in both directions).

Step 2: If .7’ € 7 are such that T’ € (T), then holds true for T if and only if it does
for T'. This follows directly from the compatibility of p, with the shift.

For the next step, consider the following situation. Assume that 7,7’ € T are such that:
1. T= M @T, where M is indecomposable.
2. T' = M' &T, where M’ is indecomoposable.

3. There exists a non-split triangle A : M % E % M’ — MJ1] where u is a left minimal add7-
approximation and v is a right minimal add T-approximation.

Step 3: If T,T' € T are as above, then @ holds true for T if and only if it does for T’. We
prove that the condition is necessary. Clearly, it suffices to prove that the assertions (a), (b), and (c) of @
are true for M’. For simplicity, we identify px(¢X) and X via the isomorphism used to deﬁne <px,_ and
1 x,— for every indecomposable summand X of T and g € G.

t
Let E = € E; with the E; indecomposable. Recall from [@, Lem. 4.4] that A is isomorphic to the
i=1
image under F) of a triangle A in D*(mod B):

t
M % @D B S M — ML &)

for some go, g1,...,9t € G. Moreover, u is a left minimal add X-approximation and v is a right minimal
add X’-approximation, where X and X’ are the following full subcategories of D”(mod B):

- X ={9X | g€ @, X an indecomposable summand of T and 9X % M}.
- X' ={9X | g € G, X an indecomposable summand of T and 9X % M'}.

~ — t o~ !
Fix g € G. Since @ holds true for T', we apply @ to construct a triangle A": IM “s @ %E; 5 Z, —

i=1
9 M[1] whose image under p, is isomorphic to A. In particular, pr(Z4) ~ M’. For simplicity, assume that
~ ~ o, —
A is equal to the image of A under py, and set E' = @ % F;. Let us prove that Z, ~ 99°M’. Tt suffices
i=1

to prove that A’ and 9A are isomorphic. For this purpose, we only need to prove that @’ is a left minimal
add I X- app/rg)ﬂmatlon Let f: IM — 7Y be non- zero, where Y is an indecomposable summand of T'
such that 9Y € 9X. Since ¢,, ;7 is bijective and since End(M) = k, we have Y € add7T. So we have a
factorisation of px(f) by u = pA(@):

M—2>FE
o\ )
Y
Since vy 5 is bijective for every 4, we have f' = 37 pa(fs), where (fy)n € D Hom(E, "Y). So pA(f —
heG_ hea

') — E pa(fra') = 0. Using @ we get f = f ;4. Hence @' is a left add 9 X-approximation. On the

other hand7 4’ is left minimal because u = py(u’) is left minimal and p) is exact. As explained above, these
facts imply that Z, ~ 99 M'. So pk(ng/[J’) ~ M’', for every g € G.
Let Y € D’(mod B). Using the triangles A (g € G) and using that @ holds true for T', the maps ¢p7 y
and 9y, y are bijective (recall that Hom-functors are cohomological).
Finally, if Y € D”(mod 5)7 and if f: pAY — M’ is an isomorphism, then f = > pa(fy) with (fy)g €
geqG

@ Hom(Y, QM’)A Since pAY and M’ are indecomposable, there exists g1 € G such that px(fy,) is an iso-
geG

morphism. Since py is exact, we deduce that fy,: Y — 9t M’ is an isomorphism. This finishes the proof of
the assertion: @ holds true for 7" if it holds true for 7. The converse implication is proved using similar
arguments.



Step 4: If T' € 7, then @ holds true. This follows directly from the three preceding steps, and from
[@ Prop. 3.7]. [ ]

Example 4.4. Let B = kQ be the path algebra of the Kronecker quiver 1:a>> 2 . There is a Galois
b

covering F': B — B with group Z/27 = {1,c0}, where B= k@ is the path algebra of the following quiver:

N
A

and where F' is the functor such that F(c‘a) = o for every arrow o and every i € {0,1}. On the other hand,
there is a covering functor p: B — B such that p(b) = p(cb) = b, p(a) = a and p(aa) = a+b. The B-module
T = e2B @ 75" (e1B) is tilting. One checks easily that Fx(e2B) = es B, F/\(T~ (e1B)) = 75" (e1B) and that

pr(eaB) ~ 2B, ;m(r}§ (e1B)) ~ 75 (e1B).

5 Coverings of left sections

Let A be a basic finite dimensional k-algebra, I" a component of I'(mod A), m: I — I a Galois covering
of translation quivers with group G such that there exists a well-behaved functor p: k(f) — ind". A left
section (see [7 2.1]) in I is a full subquiver ¥ such that: ¥ is acyclic; it is convex in I'; and, for any z € T',
predecessor in I' of some y € X, there exists a unique n > 0 such that 77"z € X. Assume that 3 is a left
section in I" and let B = A/Ann X. In this section, we construct a covering functor F': B — B associated to
p and a functor ¢: k(f) — mod B. Both F and ¢ are essential in the proofs of Theorems @ and l

By [I Thm. A], the algebra B is a full convex subcategory of A and a product of tilted algebras and
the components of ¥ form complete slices in the connecting components of the connected components of
B. Recall from [@] that a connected algebra B’ is tilted if and only if its Auslander-Reiten quiver contains
a so-called complete slice X', that is, a class of indecomposable B’-modules such that: (1) U = @ X

Xex!

is sincere (that is, Homp:/(P,U) # 0 for any projective B'-module P); (2) X is convex in ind B’; (3) If
0— L — M — N — 0is an almost split sequence, then at most one of L and N lies in ¥'. Moreover, if
an indecomposable summand of M lies in X', then either L or N lies in ¥’. Here we may assume that Q
is a finite quiver with no oriented cycle and that 7' € mod kQ is a tilting module such that B = End,o(T).
Any module X € mod B defines the ¥-module Hompg (3, X)) which, as a functor, assigns the vector space
Homp(E, X) to the object E of X. By the above properties of B, the map = — Homyq (T, D(kQes)) defines
an isomorphism of k-categories k@Q — Y. We denote by I'<x the full subquiver of T' generated by all the
predecessors of ¥ in T.

The covering of the left section 2
Let ¥ be the full subcategory of k(I') whose objects are the x € k(F) such that p(z) € ¥. Therefore

p: k(F) — indI" induces a covering functor p: > — X. Note that 3 and 1"<Z are stable under G, as

subquivers of I. Since ¥ is hereditary, so is s Therefore we have Y= kQ for some quiver Q _In particular,
the isomorphism kQ — ¥ and the covering functor p: ¥ — ¥ induce a covering functor q: kQ — kQ.

The covering functor of B

Since m_and p coincide on vertices, 7 induces a Galois covering of quivers 7: Q Q@ with group G. We
write m: kQ — k@ for the induced Galois covering with group G. Note that Q is a disjoint union of copies
of the universal cover of @ because T is simply connected. Also, thanks to the Galois covering 7: Q — Q@
there is an action of G' on mod kQ Let T=T1 @+ @ T, be such that T1,...,T, are indecomposable and
B be the full subcategory of mod kQ with obJects the 97} (with i € {1,. n}, g € G, see @)

Lemma 5.1. The k-category B is locally bounded. The push-down functor gx: mod k(;j — mod kQ induces
a covering functor:
F:

Syl

—

9T, Ti=qa(Th)

L

Moreover, if p: k(') — indT is a Galois covering with group m (T'), then so is F.

Proof: We apply the results of the preceding section to the covering functor g: k(;j — k@ and the Galois
covering m: kQ — k@Q. The first assertion follows from @ and Q, and the second from @ The last

10



assertion was proved in @, Lem. 2.2]. |

We also have a Galois covering B — B induced by the push-down 7y : mod kQ — mod kQ (see [E Lem.
2.2]). In particular, the covering functor F: B — B and the Galois covering B — B coincide on objects.
Therefore we may apply the results of the preceding section to F.

In the sequel, we write T for the kQ-module @{ 9T; | i € {1,...,n},g € G}. Although T is not necessarily
finite dimensional, it follows from @ that it induces a well- deﬁned functor:

Homké(f7 —): mod kQ — mod B .

More precisely, if X € mod k@, then Hom, 5 (T X) is the B-module defined by 9T s Homk@(gﬁ,X). In
particular, an object x in Y = kQ defines the injective kQ-module D(kQ(x —)) which gives rise to the
B-module Hom, 5 (T, D(kQ(x,—))). Therefore every B-module X defines a ¥-module:

iop — modk
T HomE(Homk@(T7 D(kQ(z,—))),X)

For reasons that will become clear later, this module is denoted by Homg(iX). In this way, we get a
functor Homz(3, —): mod B — mod ¥. We need the following result for later reference.

Lemma 5.2. The following diagram commutes up to isomorphism of functors:

= Hom . ( =) _ Hom = ( ,—) _

mod kQ mod B mod %
Q)\l ‘/Fk ‘/Px
mod kQ T mod B Homp (Z.0) mod X

Moreover:
(a) The two top horizontal arrows are G-equivariant.

(b) If 8: mod kQ — mod X (or 6: mod kQ — mod f)) denotes the composition of the two bottom (or top)
horizontal arrows, then it induces an equivalence from the full subcategory of injective kQ-modules
(or injective kQ-modules) to the full subcategory of projective ¥-modules (or projective Y-modules,
respectively).

(c) Let a: I—Jbea surjective morphism between injective k@-modules. Let a: I — J be equal to gx(a).
Then Fx maps the connecting morphism Homké (T,J) — Extié (T',Ker @) to the connecting morphism
Homkq (T, J) — Extiq (T, Ker av).

Proof: The commutativity of the diagram is an easy exercise on covering functors, and left to the reader.

(a) This follows from a direct computation.
(b) By tilting theory, 6 induces an equivalence (see [@, Chap. VIII Thm. 3.5]):

d: inNjkQ — projx
I +— Homp(X,Homgo(T,I))

Let I € inj k@ Then p>\§( I) = 0gx(I). Moreover, gx maps indecomposable injective k@-modules to indecom-
posable injective kQ-modules, because so does 7 : mod kQ — mod kQ (see @ So pAH( ) is indecomposable
projective, and therefore so is 0(] see @ 3.2]). Consequently, 6 induces the following functor:

v injk@ — proji
I — HomE(Z,Homk@(T,I))

So we have a commutative diagram:

inj k@ — proj 5

inj kQ %) proj ¥

In this diagram, px, gn and ® are faithful. Hence, so is ¥. Let I,J € inj k@ and f: U(I) — U(J).

)
Let h: ¢xI — g»J be such that ®(h) = pr(f). Using @, we have h = Y qa(hg), where (hg)g €
geG

QBGHoka( L 90). So pa(f) = ZGpA\I/(hg). Using @ again, we deduce that f = W¥(hi). So ¥ is full.
g€ ge

Finally, we know from the preceding section that gy : inj k@ — inj kQ is dense. Also, so is py: proj Y - proj %

11



(see [B, 3.2], for instance). Since ® is an equivalence, we deduce that U is dense. Therefore ¥ is an
equivalence.

(c¢) The push-down functors g and F are exact. So we have a commutative diagram up to isomorphism
of functors:

- RHoka( ,—)

D’ (mod kQ) ——— D’(mod B)

Db(mod k)Q) W Db(mod B)

The statement follows from this diagram. ]

We wish to construct a functor ¢: k(f) — mod B. We proceed in several steps:

1. Define a functor ¢o: k(fgi) — mod B where k(fgi) denotes the full subcategory of k(I') with objects

the vertices in ng.

2. Define ¢ on objects, so that it coincides with ¢o on predecessors of .

3. Define ¢ on morphisms, so that it extends ¢g.

The functor g : k(F<E) — mod B

We first prove the fo\lowmg lemma. In the case of a Galois covering whose group acts freely on inde-
composables, a corresponding result was proved in , 3.6]. We know that p: ¥ — ¥ and F: B — B are
covering functors, and that the latter coincides on obJects with a Galois covering B — B with group G.
Finally, if X € ind B is a summand of a tilting B-module, then X €ind B is such that pA(X) =~ X (see @

Lemma 5.3. Let X € I'<x and go € G. Ifu: E — 90X is right minimal almost split, then so is pau: pAE —
X. Consequently, pm’g(g")?) ~ 75X if X is not projective.

Proof: Notice that X is an indecomposable summand of some tilting B-module. So we may apply the
results of @ If X is projective, the assertion follows from [@, 3.2]. So we assume that X, and therefore
90 X are not projective. Let u: E — X be right minimal almost split and £ = E1 @ --- ® E+ be such that
E,...,E; are indecomposable. Since I'<s is acyclic (see [, 2.2]), we have Extg(E,7X) = 0. Also, the
linear map P Homg(gEi, 9 X) — Homp(E;:, X) is bijective, for every i (see @) Therefore we apply @

geG
to the exact sequence 0 — 78X — F 2 X — 0: There exist gi,--., gt € G and morphisms u;: % E; — 99X
(1 € {1,...,t}) fitting into a commutative diagram whose vertical arrow on the left is an isomorphism:

AU, U]

We identify u and px[u,...,u:] via this diagram. Let ¢ € {1,...,n}. Then w;: 9iE; — 9X is not a
retraction because % F; and %X are non-isomorphic indecomposable modules. So w,; factors through u, for
every i. Applying px to each factorisation shows that u factors through px(@). On the other hand, p u is
not a retraction because X is not a direct summand of E. So px(u) factors through u. The right minimality
of u implies that the morphism u is a direct summand of py(%). Finally, the following equality follows from

dim Keru = dim 75 X = dim7ppy 9° X = dimpa7g 90 X = dim Kerpy (@) .

So pa(w) and w are isomorphic, and py (%) is right minimal almost split. [ ]

Using the preceding lemma, we construct a functor ¢o: k(fgi) — ind B.

Lemma 5.4. There exists a full and faithful functor, G-equivariant on wvertices, o : k(fgi) — ind B.
This functor maps arrows in fgg to irreducible maps, and meshes to almost split sequences. Moreover,

it commutes with the translations and extends the canonical functor Y — indB defined on the objects by
z — Hom, 5(T', D(kQ(x, —)). Finally, the following diagram is commutative up to isomorphism of functors:

$o . ~C —~
I'es ind B mod B
ind (T'< ind B¢ mod B.

12



Proof: Step 1: Clearly there is a functor o: ¥ — mod B given by Z Homk@(T,D(k@(f, —))). Note

that & (or X) is naturally equivalent to the full subcategory of mod kQ (or mod kQ, respectively) consisting
of the indecomposable injective modules. Therefore shows that this functor is full and faithful, and that
the following diagram commutes up to isomorphism:

©0

) ind E( mod B
pl lFA
»¢ ind B mod B.

Note that @q(M) is indecomposable for every M because so is Fxpo(M) = p(M). The functor ¢ : Y —ind B
is G-equivariant on vertices: Indeed, for every g € G, and every T € Qo, we have:

¢0(gT) = Hom, 5(T, D(kQ(g7, —))) = Hom,5(T, “D(kQ(Z, -))) = “Hom, 5(T, D(kQ(Z, -))) = “¢0(7)
Step 2: If M € k(fgi)7 there exists a unique n € N such that 7~ "M € . Let wo(M) be the B-module:

po(M) = T5po(T™ " M)

It follows from @ that Faxpo(M) = p(M). Also po(9M) = 9po(M) for every g € G and for every vertex
M because T commutes with the action of G.
Step 3: In order to define g on morphisms, we construct inductively a sequence of G-invariant left

sections Z of T such that Zo = 3, such that EZH\Z consists of the G-orbit of a vertex, and such that, if

1 o ~
U ¢ denotes the full subcategory of the path category kT whose vertices are given by those of Eo, ey 24,
t=1

~ ~ i~ ~
then kI'_g = U Xi;. Each inductive step defines a functor ¢o: |J X+ — ind B which maps arrows to
= i>0 t=1
irreducible maps and extends the construction of the two preceding steps. This functor makes the following
diagram commute:

@ @ ~ ~
U1 t . ind BC mod B
t—

ind (T'<x) ind BC mod B,

where the vertical arrow on the left is induced by p. Assume that ¢o: U 3, — ind B has been defined for

some i > 0. Since 3; is acyclic, it has a sink. Assume that all sinks are projective. First assume that P is

a projective sink, and let ¥;4+1 be equal to Z \{9P | g € G}; then ZH»I is a left section of I', and there is
i+1

a unique po: | S — ind B satisfying the required conditions. Now assume that there is a non projective
t=0

sink M in il Then there exists a mesh in T

/\

7— )

\/

and M, Ny, ..., Ny € ; because M € %; is a sink. In particular, @o(u;) is defined, and Fy po(u;) = p(uj)|B
for every i. For simplicity, we write @o(u) = [po(u1) ... o(us)] and p(u) = [p(w1) ... p(us)].
Then o(u) is right minimal almost split in mod B: Indeed, there exists a right minimal almost split mor-
phism L <% po(M). Since wo(u): @ wo(N;) — wo(M) is not a retraction (because each @o(u;) is an

J
irreducible morphism, by the induction hypothesis), there exists a morphism w’: @ po(N;) — L such

J
that ¢o(u) = ww'; applying Fx, we have Fxgpo(u) = Fx(w)Fx(w'); but now Figo(u) = p(u)p is right
minimal almost split by construction, and so is F(w) (see p.3); hence, Fi(w’) is an isomorphism and there-

fore so is w’ because Fy is exact. We let [@o(v1) ... npo(vs)]t tpo(TM) — @ wo(N;) be the kernel

of go(u). For simplicity, we set @o(v) = [po(v1) ... gpo(vs)}t and p(v) = [p(vl) p(vs)}t. We let
Sip1 = (E \{M | g€ G}) U{9"M | g € G}. Clearly, £i11 is a left section. We now show that we may
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assume o (v) to be taken such that Fypo(v) = p(u)5. Indeed, the commutative diagram with exact rows:

Fxe0(v) s Fx¢o(u)
00— Fhpo(TM) $>Fxtpo <@ Nj> LFASOO(M) —0

0——p(TM)5

P{DN,| ———pM)p——0
j=1 \B p(u)|p

p(v)|B

gives an isomorphism Fx@o(7M) — p(7 M),z making the left square commute. Since Fxo(TM) = p(T M)
is a brick (because it belongs to I'<x), this isomorphism is the multiplication by a non-zero constant c. Hence,

i1 ~
p(v)|B = ¢ Fapo(v). Replacing @o(v) by cpo(v) does the trick. Thus, we have defined (o : U ¥; — ind B.

Clearly, the required conditions are satisfied. This induction gives a functor ¢o: kT < = md B mapping
arrows to irreducible maps and meshes to almost split sequences, and such that the following diagram

commutes:
=~ 0

kT s ind B¢ mod B
ind Mg € ind BC mod B,

where the vertical arrow on the left is induced by p. Since F} is faithful, ¢ induces a functor g : k‘(fgi) —

ind B. Tt is now clear that this functor satisfies the conditions of the lemma. |

It was shown in , 3.2] that the existence of a left section X in an Auslander-Reiten component I' implies
that I'<x is generalised standard. We now prove that it is standard.

Corollary 5.5. Let A be a finite dimensional k-algebra and T' be a component of I'(mod A) having a left
section ¥. Then I'<x s standard.

Proof: Let B = A/AnnX. Then B is a product of tilted algebras and the components of ¥ form complete
slices of the connecting components of the connected components of B. Let I'' be the union of the com-
ponents of I'(mod B) intersecting ¥. The arguments of the proof of @ show that there exists a full and
faithful functor k(I'cs) — ind I's extending the identity on vertices. So I'<s = I'cy is standard. ]

Ezxample 5.6. Let A be the algebra given by the quiver

/\/

1<—2<—3

st

5

and the potential W = 6Ba +vu (or, equivalently, by the relations Sa =0, §3 =0, ad =0, uA =0, vu =0
and Av = 0). Then A is a cluster-tilted algebra since it is the relation-extension (in the sense of [ﬂ] of the
tilted algebra of type A given by the quiver

’B [e3
1=—/—2<—-3
¥

/T

bound by Ba = 0 and uA = 0. The transjective component I' of I'(mod A) is of the form



where vertices with the same label are identified. Then I' admits a left section ¥ = {e,r, q,p,0,c} and
B = A/Ann X is the algebra given by the quiver:

1==—92<2 3
~
5

with the inherited relations. As we have seen, I'<s is standard (and generalised standard) while I" itself is
not.

The following corollary seems to be well-known. However we have been unable to find a reference.
Corollary 5.7. Let B be a tilted algebra and I' a connecting component of B. Then I' is standard.

Proof: If B is concealed, this follows from [@, 2.4 (11) p. 80]. Assume that B is not concealed. So I’
is the unique connecting component of B. Let ¥ be a complete slice in I'. As observed in @, we have a
full and faithful functor k(I'<s) — indI" extending the identity on vertices. A dual construction extends
this functor to a full and faithful functor k(I') — indI" extending the identity on vertices. So I is standard. W

From now on, we identify S to a full subcategory of mod B by means of ¢g.

Construction of ¢ on objects B B

We prove that for any M € T, there exists (M) € mod B whose image under F: mod B — mod B
coincides with p(M)p, in such a way that ¢(9M) = 9p(M), for every g € G. We define Lx to be the full
subcategory of ind B which consists of the predecessors of the complete slice ¥. Also a minimal add Lx-
presentation of a module R is a sequence of morphisms F1 — F2 — R where the morphism on the right is
a minimal add Lx-approximation and the one on the left is a minimal add Lx-approximation of its kernel.
Before constructing ¢(M), we prove some lemmata.

Lemma 5.8. Let R € mod B be a module with no direct summand in Lx. There exists an exact sequence
in mod B, which is a minimal add Ls; -presentation:

0—E—E;—R—0 (%)

with E1,Ey € addX. Moreover, the functor Hompo (T, —) induces a bijection between the class of all such
exact sequences, and the class of minimal injective copresentations:

0— TorP (R, T) — I, — I, — 0
Finally, there is an isomorphism in mod B:
R =~ Extyo(T, Tory (R, T))

Proof: Let X(T') be the torsion class induced by T in mod B. So R lies in X(T") and has no direct summand
in 3. Therefore R is the epimorphic image of a module in add 3. The first assertion then follows from [E,
2.2, (d)].

Let f: I1 — I be the morphism between injective kQ-modules such that Homq (T, f) is equal to the
morphism E; — Es in (x). Because of the Brenner-Butler Theorem (see [EI, Chap. VI, Thm. 3.8, p.207]),
the functor — ® T applied to (x) yields an injective copresentation in mod kQ:

B

0— TorP(R,T) =11 — I —0 .

The minimality of this copresentation follows from the minimality of F» — R. With these arguments, it is
straightforward to check that there is a well-defined bijection which carries the equivalence class of the exact
sequence 0 — FE1 — E2 — R — 0 to the equivalence class of the exact sequence 0 — Tor? (R, T) - I —
I, — 0.

The last assertion follows from the Brenner-Butler Theorem and the fact that R € X(T). ]

Lemma 5.9. add Ly is contravariantly finite in mod A. Therefore if X € I'\Ls, then X|p lies in the torsion
class induced by T in mod B.

Proof: By [, Thm. BJ, the algebra B is the endomorphism algebra of the indecomposable projective
A-modules in Ls;. In particular, a projective B-module is projective as an A-module so the projective di-
mensions in mod A and in mod B coincide on Lx. Also, by [[ll, Thm. B], all modules in £y have projective
dimension at most one as B-modules. Therefore Ls; C L£4. Moreover, € X is sincere as a B-module. Hence,
[ﬂ, 8.2] implies that add Ly is contravariantly finite in mod A. Let X € I'\Lx. Let P — X, be a projective
cover in mod B. As noticed above, we have P € add Lx. Therefore P — X|p factors through add ¥. Thus,
X|p lies in the torsion class. |
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Lemma 5.10. There exists a map ¢: Lo — mod B extending po, and such that F(o(M)) = p(M)g, for
every M € T'. Moreover, (M) = Yp(M) for every g € G and M € L.

Proof: Note that ¢ is already defined on F<2 because of @ Let M € F\F Then p(M) € I'\I'<x, =
NLs. By @ the module p(M), g lies in the torsion class induced by 7" in mod B. So there is a decomposition
in mod B:

where F € add Y and R has no indecomposable summand in Lx. Also, fix a decomposition in mod v
ET)(E,M)=R& P |

where P is projective and maximal for this property. Let E € add ¥ be such that P = k(~)(§] E)

We claim that py: mod & — mod ¥ maps R and P to Homg (3, R) and HomB(E E) respectively. Indeed,
since p: k(I') — ind T is a covering functor inducing p: & — X, the image of k(I')(3, M) under py: mod & —
mod ¥ is Homa (2, p(M)) = Homp (3, p(M)g) (functorially in M). Moreover, the decomposition p(M) 5 =
R ® E in mod B gives a decomposition Homg(X,p(M)) = Homp(X, R) @ Homp (X, E) in mod ¥ where
Hompg (3, E) is_projective and Hompg (X, R) has no non-zero projective direct summand. The claim then
follows from [[L4, 3.2].

In order to prove that R is the image of a B-module under F' \, we consider a minimal projective presen-
tation in mod X:

0—-P—P,—-R—0.

Then there exists a morphism f I1 — I» between injective kQ -modules such that the morphism P - P
equals H(f) (here 0 is as in @ Let f: I1 — I2 be the image of f under ¢y : mod kQ — mod kQ. Hence, the
image of Kerf under ¢y : mod kQ — mod kQ is Kerf. Let P — P> be the image of H(f) under py : mod N
mod . Therefore the commutativity of the diagram in @ and the fact that Hom1 (X, R) is the image of R
under py: mod Y —modY gives a minimal projective presentation in mod X:

0— Pr— P, - Homg(X,R) — 0 .

On the other hand, @ shows that Py — P, is equal to the following morphism in mod X:

Hom g (£,Homyq (T, f))

HomB(E, Hoka(T, 11)) HomB(E,Hoka(T, Ig)) .

Therefore we have a minimal add Lx-presentation:

Hompq (T, f)
—_—

Homuq (T, I1) Homyo(T,I2) — R .

Because of @, the sequence 0 — Homyo (T, I1) — Homyg (T, I2) — R — 0 is exact and Kerf = Torf (R, T).
In other words, gx: mod kQQ — mod kQ maps Kerf to TorlB(R7 T). Using @ and the last diagram in the
proof of@ we get FA(Ext ~(T Kerf)) =

We give an explicit construction of . Let M € k( ). We fix a minimal projective presentation in mod s

0—>ﬁ1iﬁ2—>§—>0 5

and injective k@-modules I and ,[;7 together with a morphism ]?: I — I such that @ = 5(1?) Then we let
»(M) be the following B-module:

¢(M) = ¢o(E) & Ext; (T Ker f)

where gao(E') = gao(El) - ® npo(ES) if B = E‘l @B E with E‘l, .. E € 3. This finishes the con-
struction of the map ¢: I', — mod B. We now prove the G-equivariance property. Let M € k(F) be a
vertex and let ¢ € G. We keep the above notation R E etc. introduced for M, and we adopt the dashed
notation R', E', ete. for the corresponding objects associated to Y M. We have k(I D)%, IM) = 9k(D)(Z, M).
Indeed, the E modules k(T )(~ 9M) and 9k(I)(X, M) are given by the functors X +— k(I')(X, 9M) and
X — k(f)(" X, M) from X°P to mod k, respectively. These two functors coincide because G acts on k(T).
Hence, E' = 9E and R’ = 9R. Therefore any minimal projective presentation of R’ in mod Y. is obtained
from a minimal prOJectlve presentation of R by applying g. Since, moreover, 0 is G- equ1var1ant (see Q),

we deduce that f = gf Finally, the G-action on mod kQ implies, as above, that Ext (T Kerdf) =
Ext! ~(T IKerf) = IExt! ~(T Kerf). From the construction of o, we get (9 M) = gcp(M)A |
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Construction of ¢ on morphisms
We complete the construction of ¢ by proving the following lemma.

Lemma 5.11. Let u: M — N be a morphism in k(T'). Then there exists a unique morphism o(u): @(M) —
@(N) in mod B, such that Fx(¢(u)) = p(u)|5.

Proof: Since F) is exact, it is faithful so the morphism ¢(u) is unique. We prove its existence. By @,
we have constructed ¢(u) = @o(u) in case N € I'<s. So we may assume that N € I'\I'cg. Since any path
in T' from a vertex in 1:<§ to N has a vertex in %, we may also assume that M € (f\fgi) Ui The
functor @o: k(I <) — mod B naturally extends to a unique functor ¢ : add (k(T <s)) — mod B, such that

the following dlagram commutes:

add (k(T_5)) — > mod B

addpl Fy

add (indI'¢x)————> mod B

We fix decompositions in mod Y as in the proof of :
ET)(E,M)=P®R, and k(I)(S,N)=P &R

where ﬁ, P’ are projective and ﬁ, R’ have no non-zero projective direct summand. We let E, E' € add X be

such that P = k(I')(Z, E) and P’ = k(I')(%, E'), respectively. Therefore the morphism k(I')(Z,u) can be
written as:

k(f)(i,u):rzl O k@S By e R— kTS, B e R .

U2 173
Similarly, we fix decompositions in mod B:

p(M)p=E@®R, p(N)p=E @R,

where E, E’ € add X, and R, R’ have no direct summand in ¥. As above, the morphism p(u)|p decomposes

as:
0 /
p(u) s = [Z; UJ .E@R—E @R

Recall from the proof ofthat px: mod ¥ — mod ¥ maps k(I')(3, E), R, k(T')(Z, E') and R’ to Hom (3, E),
Homp(X, R), Homp (2, E') and Homg (X, R'), respectively. As a consequence, it maps u; to Homp (X, ui),
for every i. As in the proof of p.1(, we have morphisms_ f I — I and f Il — 12 between injective
kQ modules and minimal prOJectlve presentatlons in mod X

o) 2 57 — B—0 and 8(7) 2N (1) LR —0 .
With these notations, we have:

@(M) = ¢o(E) @ Ext; 5(T,Kerf) and p(N) = @o(E') @ Ext, 5(T, Kerf') .

Also, if M € 3, then f = 0, so o(M) = @o(E).
It suffices to prove that each of U1, u2, U3 is the image under Fy of some morphism ¢o(F) — npo(E'),
o(E) — Ext! ~(T Kerf’) and Ext! ~(T Kerf) — Ext! ~(T Kerf"), respectively. Clearly, u1: k(I)(%, E) —

k(T)(3, E') is induced by a morphism E — E' in addX. This and @ imply that u; is the image under
Fy of a morphism o (E) — ¢o(E"). We now prove that us is the image under F of a morphism ©o(E) —
Ext (T Kerf ). Let f': I{ — I5 be the image of f Il — 12 under gy : mod kQ — mod kQ). Therefore we
have a minimal projective presentation in mod ¥ (see @ and the proof of ):

0 — 0(17) 2 0(15) — Homp (S, R') — 0
together with a minimal injective copresentation in mod kQ:
B/ p/ N
0—>TOI’1(R7T)—>II—>12—>0 .

Recall that Tor? (R, T) is equal to the image of Ker]?' under ¢y : mod k‘@ — mod kQ. Therefore we have an
exact sequence in mod B, which is also a minimal add Lx-presentation:

0 — Homyo (T, I1) — Homug (T, I5) » R — 0
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where v is such that Homg (2, v) is the image of 7: 6(I5) — R’ under pa: mod > — mod X . (see the diagram
in @ The projective cover v of R in mod % yields a morphism 5: 1 — I3 in mod kQ7 where I is the
injective k‘Q—module such that P = 9([)7 and such that the following diagram of mod ¥ commutes:

P
6(5) ‘;
w2

W0 —

Therefore if §: I — I, denotes the image of 5: 1 — I~§ under ¢y : mod k‘@ — mod k@, then Hompg (X, u2)
2@, 0(I3) Homs (%0, Homp (X, R’). This is an equality of morphisms in mod %,
hence, of morphisms between contravariant functors from addX¥ to mod k. Applying this equality to E

Hom T, v .
yields that us equals the composition E L()> Homy (T, I5) — R'. On the other hand, the morphism
Homyo(T,I5) & R = Ext,lcQ(T, Kerf') is the connecting morphism of the sequence resulting from the ap-

equals the composition (1) —=

plication of Homgg (T, —) to the exact sequence 0 — Kerf' — I L, 14 — 0. Therefore @ implies that
v equals the image under F of the connecting morphism of the sequence resulting from the application of

Hom, 5 (T —) to the exact sequence 0 — Kerf’ — I} — I3 — 0. Consequently, uz equals the image under

~_  Hom T ,0)

(
F) of the composition ¢o(FE) k9

©o(Homyo (T, Ib)) — Ext,lc@(f, Kerf').

It remains to prove that us: R — R’ equals the image under F)\ of a morphism Extié(i KerfN) —
Ext! ~(T Kerf ) in mod B. Using the projective presentations of R and R', we find morphisms a: I — I~§

and ,6. I — [1 such that the following diagram commutes:

~e 0~ ~ _

0 0(T) 0(I) R 0
5(5>l §(a)l fst

0 0(I7) === 0(I5 R 0
(I1) 57 (I2) R

Therefore there exists a morphism 7: Kerfﬂ Kerf’ making the following diagram in mod k‘@ commute:

~ ~ f ~
0 Kerf Il Ig 0

R

0 Kerf’ f{ = fé 0

7

We claim that the image of ExtiQ(T 7): Ext} ~(T Kerf) — Ext! ~(T Kerf’) under Fy equals us. Indeed,

let «, 3,7 be the respective images of &, ,677 under ¢y : mod kQ — mod kQ. Then the image of Ext,lc@ (T, )
under F) is equal to (see @:

Extig(T,7): Extig (T, Kerf) — Extrq (T, Kerf')

On the other hand, we have two commutative diagrams in mod k() and mod B respectively:

0 — Kerf = Tor? (R, T) I I 0
0 — Kerf' = Tor? (R, T) I I 0 , and

0 ——— Homq (T, I1) ——— Homyq (T, 1) — R 0

Hoka(Tﬁ)l Hoka(T&)l usi

0 —— Homyq (T, I}) —— Homyo (T, I5) —= R’ —= 0 J

from which it is straightforward to check that us: R — R’ coincides with Ext,ng (T, ) Thus, us is equal to

the image under Fy of the morphism Extié (T,7): Ext! ~(T Kerf) — Ext! ~(T Kerf’). This completes the
proof. |

We summarise our results in the following theorem.
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Theorem 5.12. Let A be a finite dimensional k-algebra and I be a component of I'(mod A) containing a
left section . Let B = A/AnnX and 7: I' =T be a Galois covering with group G of translation quivers such
that there ezists a well-behaved functor p: k(F) — indI". Then there exists a covering F': B — B with B
locally bounded and a functor ¢: k(f) — mod B which is G-equivariant on vertices and makes the following
diagram commute:

k() e mod B

ind' ——————=mod B

Hom 4 (B,—)

Proof: The functor ¢ is constructed as above. The G-equivariance on vertices follows from .1 and p.11] -

Corollary 5.13. Ifp: k(I') — indT is a Galois covering (with respect to the action of G on k(T')), then the
functor ¢: k(I') — mod B of is G-equivariant.

Proof: We already know that ¢ is G-equivariant on objects. Also F': B — B is a Galois covering with
group G (see EI) Let f: M — N be a morphism in k(T"), and g € G. Then ¢(?f): p(‘M) — ¢(9N)
and 9o(f): 9p(M) — 99(N) are two morphisms in mod B such that Fy(¢(?f)) = p(“Nis =p(f)p =
Fx(Y¢(f)) (recall that F\ = F o g for every g € G because it is the push-down functor of a Galois covering
with group G). We deduce that ¢(9f) = Jo(f). [ |

6 The main theorem

In this section we prove Theorem @ Assume that A is laura with connecting components. We use the
following notation:

- T is the connecting component of I'(mod A) (if A is concealed we choose I" to be the unique postpro-
jective component), and 7: I — T is a Galois covering with group G of translation quivers such that
there exists a well-behaved covering functor p: k(f) — indI'. If I is standard, we assume that p equals
the composition of k(r): k(I') — k(') with some isomorphism k(I') = ind T, so that p is a Galois
covering with group G.

- X is the full subcategory of ind I" whose objects are the Ext-injective objects in La4.

- B is the left support of A, that is, B is the endomorphism algebra of the direct sum of the indecom-
posable projective modules lying on £ (see Section ﬁ)

Because of [H, 4.4, 5.1], the algebra B is a product of tilted algebras. Without loss of generality, we assume
that:

- B=Endgq(T), where T =T1 & - -- ® T, is a multiplicity-free tilting kQ-module (T; € ind kQ).
- X is the full subcategory of mod B with objects the modules of the form Homyq (T, D(kQes)), € Qo.

It follows from [ﬂ, 2.1 Ex. b] that X is a left section of I". So we may apply . The proof of Theorem @ is
done in the following steps: We first construct a locally bounded k-category A endowed with a free G-action
in case A is standard; then we construct a covering functor F': A — A extending the functor F: B — B
of and satisfying the conditions of the theorem; we also construct a functor ®: k(I') — mod A which
extends the functor ¢: k(f) — mod B of ; and finally we prove Theorem @

The category A

We need some notation. Let C' be the full subcategory of ind A with objects the indecomposable projective
A-modules not in £4. So C' is a full subcategory of indI'. Let C be the full subcategory P ~1(C), so that p
induces a covering functor C—C.If A is standard and p is Galois with group G, then p: C—Ci is a Galois
covering with group G. For every x € Bo7 let P, be the corresponding indecomposable projective B-module.
Also, Py € mod B denotes the indecomposable projective B-module associated to an object x € B,. We
define the C' — B-bimodule M to be the functor C' x B’ — mod k such that for every P € C, and = € B,

with obvious actions of C (using ¢) and B. The following lemma defines A and its G-action in case A is
standard.
B

Lemma 6.1. Let A = . Then A is locally bounded and G acts freely on A if A is standard.
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Proof: We know that B and C are locally bounded. Let P € C,. We have the bijection of @:

@ Hom 5( Ps, (P @ Homp(Pz,p P)\B) . ()

FeB, z€B,

Since the right-hand side is finite dimensional, then so is € }sﬁg, for every P € C,.
7eB,
Now let P € C,, let Z € B,, and let us prove that @  Hompg(Ps, ¢(P")) is finite dimensional. By
p(P")=p(P)
definition of p, we have p~!(p(P)) = {9P | g € G}. Also, we know from that ¢ is G-equivariant on
objects. Therefore:

P Homgz(P: = @ Hom(Ps, “0(P)) = @ Homz (¢ Pr, o(P)) (ii)

p(P")=p(P) Se geq

where the last equality follows from the G-action on mod B. Applying @ to Ps yields a bijection of vector
spaces:

1~
P Homs(? Pz, o(P)) ~ Homp(Pr), Fap(P)) - (iif)
geG

From (ii) and (iii) we infer that &b Homé(ﬁg,cp(P’)) is finite dimensional for every Z € B, and

p(P")=p(P)
P € C,. This shows that A is locally bounded.
Assume now that A is standard and that p: k( ) — ind T is a Galois covering with group G. We define
a free G-action on A. We already have a free G-action on B and on C. Also, for every 7 € BO, PeC,and
g € G, we have an isomorphism of vector spaces:

Mz = Homz(Pz, o(P)) = Mgz = Homg(? Pz, o(*P)) (*)

given by the G-action on mod B (recall that 5 is G-equivariant on objects, and that ng = 9P P;). We define

the action of g on morphisms of A lying in M using this isomorphism. Since G acts on mod B this defines
a G-action on A, that is, g(vu) = g(v)g(u) whenever u and v are composable in A. Moreover, G acts freely
on objects in B and in C. So we have a free G-action on A. ]

The functor F: A — A
Lemma 6.2. There exists a covering functor F: A— A extending F': B — B. If moreover A is standard,

then F' can be taken to be Galois with group G.

]\BJ g} where M is the C' — B-bimodule such that p M, = Homp(P:, P /) for every

PeC,and x € B,. Let us define F': A — A as follows:
- FU§ coincides with the functor F: B — B.

Proof: Note that A = {

- F@ coincides with p: C —C.

- Let z € B, and P € 507 then F': ﬁMx = peyMr(@) is the following map induced by Fi:
Hom 5(Px, ¢(P)) — Homs (Pr(z), p(P)|5)

Since Fy: mod B — mod B is a functor and Fyp = p(=)B (see 5.19), we have defined a functor F: A — A.
We prove that F': A Aisa covering functor. Since F': B — B and d p: c—cC are covering functors, the
bijections (i), (ii) and (iii) in the proof of E show that for any @ € B, and any P € C,, the two following
maps induced by F) are isomorphisms:

Homé(ﬁ57¢(ﬁ)) - HomB(PF(a%p(ﬁ)\B) )
F(z)=F(a)

@ Homé(ﬁaﬂﬁ(@)) - HomB(PF(a):p(JS)\B)
P(Q)=p(P)

So I is a covering functor. Assume now that A is standard. We may suppose that p is a Galois covering with
group G. By @ there is a free G-action on A. Moreover, F': B — B, and therefore F’x: mod B — mod B,
are G-equivariant, and so is p: C — C, because it restricts the Galois covering p: k(F ) — indT". Therefore
F: A — A is G-equivariant. Finally, the fibres of F': A— Aon objects are the G-orbits in A, because
F: B — B and p: C — C are Galois coverings. Since F': A— Aisa covering functor, this implies that it
is also a Galois covering with group G (see for instance the proof of [@ Prop. 6.1.37)). ]
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The functor ®: k(I') — mod A
We can write an A-module as a triple (K, L, f) where K € mod E, L € modC and fiLOM — K
c

is a morphism of B-modules. Let ¢: k(I') — modC be the functor ¢: X — k(I')(C,X). Clearly, it is
G-equivariant. Let L € k(I"). Then ¢(L) ® M is the B-module whose value at x € B, equals:
c

(409 37) @) = | @ KINP.L) @ Homg (PeoslP)) | /N

PeC,

where N is the following subspace:
N = <ff' Ru — fRe(f)u ‘ fek@)(P, L), f € k@) (P, P),u e Homg (ﬁw,w(ﬁ'))  for every P, P’ € C, > A
For every x € EO and P S 50, we have a k-linear map:

Meapi kOB, L)@ Homg (Prp(P)) = Homg (Pr,(L)) = o(L)(x)
feu — o(f)u

It is not difficult to check that the family of maps (nL - 13) _ defines a functorial morphism:
o L,x,P

n:P(=) @M — ¢ .

C

Moreover, if ¢ is G-equivariant, then so is n. We let ®: k‘(f) — mod A be the following functor:

The main theorem

Theorem 6.3. Let A be laura with connecting component I'. Let : I — T be a Galois covering with group
G such that there exists a well-behaved covering functor p: k(I') — ind". Then there exist a covering functor
F: A— A where A is connected and locally bounded, and a commutative diagram:

k(T) —2 mod A

l ln

ind T“——= mod A )

where ® is faithful. If, moreover, A is standard, then F and p may be assumed to be Galois coverings with
group G, and ® is then G-equivariant and full.

Proof: The commutativity of the above diagram follows from the one of and from that of the diagram:

~ ¥ ~
E(T) mod C'
indT mod C' )

X+—Hom 4 (C,X)
Since F\® = p and p is faithful, then ® is faithful. Therefore ®(k(I')) is contained in a connected component
Q of mod A.

We now prove that A is connected. Let z € A, and Q. be the corresponding indecomposable projective
A-module. If ﬁAQz € C,, then, by construction, @, lies in the image of ®, so that Q, € Q. If F\Qs & C,,
then F(z) € B, and z € EO. In this case, there is a non-zero morphism wu: Pr@y = ﬁAQx — FE in mod B,
where E € . Fix E € p~'(E) so that Fx®(E) = E. Since u is non-zero, @ implies that there is a non-zero
morphism Q, — Y¢(E) = ®(9E) in mod B (recall that ¢ is G-equivariant on vertices). So Q, € €, and
contains all the indecomposable projective A-modules. This proves that A is connected.

It remains to prove that if A is standard, then ® is full, G-equivariant, and F' is Galois with group G. In
case A is standard, we suppose that p: k(f) — indI" is Galois with group G. Therefore ¢ is G-equivariant
(see ) and so is 7. Hence, ® is G-equivariant. Also, F' is Galois because of @ We prove that & is full.
Given a morphism f: ®(L) — ®(N), there exists (fg)g € @ Homyry(L, YN) such that Fx(f) = > p(fg)

9€G g

(because p is Galois). So Fx(f — ®(f1)) — 32,4, FA(@(fg))A = 0. Since F is Galois with group G and since
® is G-equivariant, we get f = ®(f1). So ® is full and the theorem is proved. ]

The following example of a non-standard representation-finite algebra due to Riedtmann shows that F
needs not be a Galois covering.
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Ezample 6.4. Assume that char(k) = 2 and A is given by the bound quiver (see , §7, Ex. 14 bis] and
B):

:yQp7 p4:07 p2:6a, 00 = opd .

Then A is representation-finite and not standard, with the following Auslander-Reiten quiver:

where the two copies of a, b, ¢, d, e and f, respectively, are identified. In this case, there exists a well-behaved

covering functor associated to the universal cover I' of I'(mod A) (which is equal to the generic covering).
Here, G = m1(I") ~ Z and A is the locally bounded k-category, given by the following bound quiver:

Yi—1 Yi Yi+1 Yit+2
Ti—1 T Ti+1 Ti42

5i+10'i = Pi+1pP1i, Uz’+1(5i =0 7fOI‘ all i7

where o, 5Z~~and pi denote the arrows y; — i1, i — Yi+1, and y; — yi+1, respectively. Now the covering
functor F': A — A is as follows:

1. F(p:) = p for every 1,

2. F(o;) = o for every i = 0,1 mod4,

3. F(o;) = o+ op for every i = 2,3 mod4,
4. F(6;) =6 for every i = 1,3 mod /4,

5. F(8;) =6+ pd, for every i = 0,2 mod 4.

Obviously, F' is a covering functor which is not Galois. Actually, one can easily check that A is simply
connected, that is, the fundamental group (in the sense of [@]) of any presentation of A is trivial. Hence, A
has no proper Galois covering by a locally bounded and connected k-category.

The following corollary is a particular case of our main theorem. We state it for later purposes.
Corollary 6.5. Let A be a standard laura algebra and let T' be a connecting component. There ezists a
Galois covering F': A — A with group m1(I') and where A is connected and locally bounded, together with a
commutative diagram:

k(T) — 2 mod A

k(ﬂ)l lFA

k(I)“— mod A )

where w: I' — T is the universal cover and where ® is full, faithful and 71(T)-equivariant. ]

Proof: Since I' is a standard component, there exists an isomorphism of categories k(I') — indI" and the
universal cover m: I' — I' induces a well-behaved functor k(w): k(I') — k(I") and therefore a well-behaved
covering functor k(I') — ind[". We then apply @ ]

We pose the following problems.

Problem 3. Does there exist a combinatorial characterisation of standardness for laura algebras (as happens
for representation-finite algebras, see )?

Problem 4. Let A be a left supported algebra. Is it possible to construct coverings A — A associated to
the coverings of a component of I'(mod A) containing the Ext-injective modules of £4?
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7 Galois coverings of the connecting component

Theorem 7.1. Let A be a standard laura algebra, and p: T' — T be a Galois covering with group G of a
connecting component. Then there exist a Galois covering F': A" — A with group G, where A’ is connected
and locally bounded, and a commutative diagram:

’

k(") —2> mod A’

’

k(F)—"> mod A ;

k(p)

-

where ® is full, faithful and G-equivariant.

Proof: Since A is standard, there exists a full and faithful functor j: k£(I') < ind A with image indI", which

maps meshes to almost split sequences. Let 7: I — T be the universal cover. Then there exists a normal
subgroup H < 71(T') such that T/H ~ T’ and G ~ 7 (T")/H, and such that under these identifications, the

following diagram commutes:
r
\
n I/H=T'
/
T

where q is the projection. These identifications imply that p: I — T is induced by 7: I -T by factoring
out by H. By @7 there exist a Galois covering F': A — A with group m1(I") and a commutative diagram:

I

E(T) — 2 mod A

k(ﬂ)l lFA

k(F)(—J> mod A )

where @ is full, faithful and 7 (T')-equivariant. Setting A’ = A/H, we deduce a Galois covering F': A’ — A
with group G and where A’ is connected and locally bounded, making the following diagram commute:

A
jald

F A/H = A

A )

where F” is the natural projection (and F” is deduced from F by factoring out by H). Therefore we have a
commutative diagram of solid arrows:

~ @ ~
k(T") mod A
Y X)/\/‘\
Fx
k(m) k(l’") ............. <I>/ ................................... > mod A’
k()¢ ’ mod A

We prove the existence of the dotted arrow ®' such that &' k(q) = F ®. For this purpose, recall that
k(q) is a Galois covering with group H. Hence, it suffices to prove that Fy ® is H-invariant. Indeed, we
have F{®'h = Fyh®' = F{®', for every h € H, because ® is 7 (I')-equivariant and F"’ is a Galois covering
with group H. Now, we prove that the whole diagram commutes. We have:

(F @) k(g) = FAF{ @ = Fy @ = j k(r) = j k(p) k(q)
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hence, F} ® = j k(p). We prove next that ®' is full and faithful. Let f: X — Y be a morphism in k(I")

such that ®'(f) = 0. Fix X,Y € k(I") such that ¢(X) = X and ¢(Y) =Y. Since k(q) is Galois with group

H, there exists (fa)nerr € @ k(T)(X, "Y) such that 3 k(q)(f») = f. The commutativity of the diagram
heH hEH

0= "3 F(@(f) ,

heH

where (®(fn))hen € P Homg(q)()?), "®(Y)) (recall that ® is m (I')-equivariant). Since F": A — A’ is
heH

gives:

Galois with group H, we deduce that ®(f) = 0 for every h € H, so that f, = 0 for every h € H, because
® is faithful. Thus, f = Y k(¢)(fr) = 0 and @' is faithful. Let X,Y € k(I") and u: ®'(X) — &'(Y)
heH

be a morphism in mod A’, and fix X,Y € k(T') as above. In particular, ®'(X) = F{(®(X)) and &' (Y) =

F{/(®(Y)). Therefore there exists (Un)nemr € @ Hom ;(®(X), "®(Y)) such that u = 3 F{(a). Since
heH heH

D is m (T)- -equivariant, we have HomA(<I>()?)7 hp(Y)) = Hom 3 (®(X X), ®("Y)), for every h € H. Since ® is
full, there exists (fa)nen € @ k() (X, "Y) such that @, = ®(f,) for every h € H. Since k(q) is Galois

with group H, we deduce that Z k(q)(fn) € k(I')(X,Y). Moreover, we have:

heH
o (z k(q)(ﬁ)> S R = Y H—u
he H he H he H

whence the fullness of ®’. To finish, it remains to prove that ® is G-equivariant. Let g € G be the residual
class of o € 71(I') modulo H. We need to prove that ®'og = go®’. We have ®' ogok(q) = ®'ok(q)oo, because
q: T =T =T/H is the canonical projection. Hence, ®’ o go k( ) = FY oo o®, because Fy o ® = &' o k(q),
and ® is 1 (T')-equivariant. Since Fy oo = go Fy (because F" is deduced from F by factoring out by H),
we have ® o gok(q) = go Fy o® =go® ok(q), and so ' o g = go ®'. The proof is complete. [ ]

Corollary 7.2. In the situation of Theorem , the full subquiver Q of T'(mod A’) with vertex set equal to
{X €indA’ | F5X € T} is a faithful and generalised standard component of T'(mod A"), isomorphic, as a
translation quiver, to I''. Moreover, there exists a Galois covering of translation quivers I — T with group
G extending the map X — F5X.

Proof: Since F5®' = jk(p), the module ®’(X) is indecomposable and lies in ©, for every X € I''. On the
other hand if X € Q, there exists X’ € T’ such that F5\X = k(p)(X’). Therefore F5x X = F;®'(X’). Since X
and ®'(X') are indecomposable, there exists g € G such that X = 9®'(X’') = ®'(9X’) € ®'(I''). Thus, we
have shown that:

(i) ©Q coincides with the full subquiver of I'(mod A’) with set of vertices {®'(X) | X € T"}.

Let X % Y be an arrow in IV, Since F3® = jk(p), then F§ ®'(u) is an irreducible morphism between
indecomposable A-modules. Using [@, Lem. 2.1], we deduce that ®'(u) is irreducible. This proves that:

(ii) The full subquiver of T'(mod A’) with set of vertices {®'(X) | X € I''} is contained in a connected
component of I'(mod A”).

Combining (i), (ii) and [E, Lem. 2.3], we deduce that Q is a component of I'(mod A’). The same lemma
shows that 2 is faithful and generalised standard because so is I'. B

Let us prove that ® induces an isomorphism between I'' and €. Since ¢q: I' — I' is surjective on vertices
and Fy ® = & k(q), then X € Q lies in the image of Fy. Also, k(g) and ® commute with the translation,
and so does Fy (see [Bd, Lem. 2.1]). Hence ® commutes with the translation. Finally k(q) maps meshes
to meshes, and ® maps meshes to almost split sequences. So ®’ maps meshes to almost split sequences
(see [@, Lem. 2.2]). Therefore there exists a morphism of translation quivers I'' — Q extending the map
X + ®'(X) on vertices. Since it is a bijection on vertices, it is an isomorphism I = Q.

Finally, the stabiliser Gx = {g € G | X ~ X} of X is trivial for every X € €, because G acts freely
on IV and @’ is G-equivariant. Therefore there exists a Galois covering of translation quivers Q — I' with
group G and extending the map X — F5(X) (see [E, 3.6]). [ ]

Corollary 7.3. In the situation of Theorem |7. , if G is finite, then A’ is a finite dimensional standard
laura algebra.

Proof: Since G is finite, A’ is finite dimensional. By the preceding corollary, IV is generalised standard
and faithful. Since I" has only finitely many isomorphism classes of indecomposable modules lying on ori-
ented cycles, the same is true for I'V. Therefore I is quasi-directed and faithful. Applying [@, 3.1] (or [@,
Thm. 2]) shows that A’ is a laura algebra with I as a connecting component. Finally, the full and faith-
ful functor ®': k(T”) — mod A’ with image equal to ind " shows that I is standard, that is, A’ is standard.l
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Remark 7.4. The above corollary may be compared with [H, Thm. 1.2] and @, Thm. 3]. Indeed, if A’ is a
finite dimensional algebra endowed with the free action of a (necessarily finite) group G, then the category
A/G and the skew-group algebra A[G] are Morita equivalent.

We end this section with the following corollary:
Corollary 7.5. In the situation of Theorem , if G is finite, then:
(a) A is tame if and only if A’ is tame.
(b) A is wild if and only if A" is wild.
Proof: This follows from Theorem @ and from [E, 5.3, (b)]. |

Ezxample 7.6. Consider the algebra A of @7 (a). The connecting component I" admits a Galois covering
with group Z/2Z by the following translation quiver:

where the two copies of x are identified. With our construction, we get a Galois covering F': A’ — A with
group Z/27, where A’ is the radical square zero algebra with the following quiver:

PN P
1. ~2<—3<—14__ "5

Both A and A’ are tame.

8 Proof of Theorem

We recall the definition of the orbit graph O(T) (see [@7 4.2]). Given a vertex z € I, its 7-orbit z7 is
theset {y €T |y = rlx, for some [ € Z}. Also, we fix a polarisation o in I'. The periodic components of '
are defined as follows. Consider the full translation subquiver of I" with vertices the periodic vertices in I'.
To this subquiver, add a new arrow z — 7x for every vertex x. A periodic component of I' is a connected
component of the resulting quiver. Then:

1. The vertices of O(T") are the periodic components of I and the 7-orbits of the non-periodic vertices.
2. For each periodic component, there is a loop attached to the associated vertex in O(T").

3. Let u° be the o-orbit of an arrow u: x — y. If both x and y are non-periodic, then there is an edge

between 7 and y”. If z (or y) is non-periodic and y (or z) is periodic, then there is an edge between
2" (or y7) and the vertex associated to the periodic component containing y (or z, respectively).
Otherwise, no arrow is associated to u?.

By [@, 4.2], the fundamental group of the orbit graph O(T') is isomorphic to 1 (T").
Throughout this section, we assume that A is standard laura, having I" as a connecting component. We
use the following lemmata:

Lemma 8.1. If O(T') is a tree, then A is weakly shod.

Proof: If O(T') is a tree, then I is simply connected (see [@, 4.1 and 4.2]). In particular, I" has no oriented
cycle. Hence, A is laura and its non semiregular component (there is at most one) has no oriented cycles.
So A is weakly shod ([ﬂ, 2.5]). [

Lemma 8.2. Let A be a product of laura algebras with connecting components. If the orbit graph of any
connecting component is a tree, then A is a product of simply connected algebras and HH'(A) = 0.

Proof: This follows from the preceding lemma and from [E, Cor. 2]. n

‘We now prove Theorem E whose statement we recall for convenience.

Theorem B. Let A be a standard laura algebra, and I' its connecting component(s). The following are
equivalent:

(a) A has no proper Galois covering, that is, A is simply connected.
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(b) HH'(A) = 0.
(c) T is simply connected.
(d) The orbit graph O(T) is a tree.
Moreover, if these conditions are verified, then A is weakly shod.
Proof: By [Q, 4.1, 4.2] and the above lemma, (c) and (d) are equivalent and imply (a) and (b). If A is
simply connected, then @ implies 71 (I") = 1. So (a) implies (c). Finally, assume that HH'(A) = 0. By
, the algebra A admits a Galois covering with group m1(I"). This group is free because of [[l4, 4.2]. On

the other hand, the rank of 71 (T) is less than or equal to dim HH'(A) because of [@, Cor. 3]. Therefore
m1(I') = 1. So (b) implies (c). Thus the conditions are equivalent, and imply that A is weakly shod by @.I

We illustrate Theorem E on the following examples. In particular, note that this theorem does not
necessarily hold true if one drops standardness.

Ezample 8.3. (a) Let A be as in @, (a). Then A clearly admits a Galois covering with group a free group
of rank 3 by a locally bounded k-category. It is given by the universal cover of the underlying graph of
the ordinary quiver. So A is not simply connected. The orbit graph O(T") of the connecting component
I is as follows:

Nl

7

Then 71 (T) is free of rank 3. A straightforward computation gives dim HH'(A) = 7 (see also [E, Thm.
1]).

(b) Let A be as in @ As already noticed, A is a simply connected representation-finite algebra. Also, it
is not standard. The orbit graph of its Auslander-Reiten quiver is as follows:

O

Finally, A admits the following outer derivation, yielding a non-zero element in HH'(A) (see [@, 4.2])

d: A — A
0,0 — 0

p — p

This example shows that Theorem E may fail if one drops standardness. Note that the definition

of simple connectedness we use differs slightly from that used in[@7 4.3]: In [@]7 as in [@, 86], a

representation-finite algebra is called simply connected if its Auslander-Reiten quiver is simply con-

nected.

(c) Let A be given by the quiver:

XN L

bound by e =0, ay =0, 86 = ad, 6¢ =0, én =0, (i = nA, (uv = 0 Then A is laura. Actually, it is
right glued [H, 4.2]. The orbit graph O(T') of its connecting component I is as follows:

N_L7
-/ \.\.

It is a tree. Also, A is simply connected, and it is not hard to see that HH'(A) = 0 using, for instance,
Happel’s long exact sequence (see [@, 5.3]).

We end with the following problem.

Problem 5. Let A be a non-standard laura algebra. How can the vanishing of HH!(A) be expressed in
terms of topological properties of A?
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