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Abstract 

The aim of this work is to provide a possible philosophical motivation to the variational 

principles of physics in general and a possible way to unify the axiomatizations of mechanics 

theories. The leitmotif of this work is a dialectical view of the world: any smooth motion in 

nature is the consequence of the interplay and dynamical balance between pairs of opposite 

elements of the motion. We stress that the opposite property here differs from the common 

sense of opposing elements (of conflicting appearance but of same nature) such 

action/reaction forces between two bodies. The opposite elements here are incompatible and 

mutual exclusive in nature, with contrasting and complementary characteristics such as 

active/passive, disorder/order, curvature/flatness, etc. The dynamical balance is defined by an 

invariant variational relationship between all the pairs of opposite elements active in the 

considered motion. From this idea, an axiomatization of quantum mechanics is proposed in 

addition to the derivation of several existing variational principles of mechanics. 
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1) Introduction 
The variational approach in physics, such as the principles of least action [1][2] and of 

virtual work[3][4] for mechanics as well as the principle of maximum entropy [5][6] for 

thermodynamics, is widely used for the axiomatic formulation of physical theories. It is also, 

with a long historical development accompanied by philosophical and mathematical 

controversies, a philosophy laden subject whose last word is not yet spoken to date.  

Variational principles have a strong metaphysical origin[1][2] and were developed under 

the influence of teleological tendency of the pioneers (Fermat, Leibnitz, Maupertuis, Euler 

and others)[2][7][8] who used minimum calculus to express the longstanding belief of nature's 

(or God's) perfection. The essential of their approach was to create virtual world of possible 

events and then to select only a small number of these by a mathematical extremum believed 

to express a purpose[1][2][7][8]. For this view point, nature is a selective system similar to a 

biological system. This teleological view was rejected gradually in nineteen and twentieth 

centuries by the anti-metaphysical trends of empiricism and related philosophical 

circles[7][8], for which the variational principles are equivalent to differential equations and 

have only esthetic and economic interest in the adaptation of thoughts to "elementary 

facts"[7][8], i.e., in axiomatic formulation of physics theory. 

Since this moment, variational principles have gradually lost its metaphysical bedrock and 

become completely devoid of philosophical and physical motivation. The old questions, 

answered in the past with the belief of God's intelligence, have been left unanswered. Some of 

these fundamental inquiries are: why the maximum/minimum is a criterion of nature for 

selecting events; why the time integral of Lagrangian (the difference between kinetic and 

potential energy) has extremum for real motion; why entropy is maximal for stable probability 

distribution1, and why entropy production should be maximal or minimal for nonequilibrium 

process. To these questions and many others about the origin of the maximum/minimum 

calculus, we may add a final one: whether or not there is a common cause to so many 

seemingly different, sometimes mutually exclusive principles in nature? This mutual 

exclusivity has a very illustrative example: the conflict between the least action principle and 

the maximum entropy (and its production) principle: the former yields motions satisfying 

                                                 
1 This principle has been more or less justified with non mathematical arguments by Jaynes[5] and Tribus[9] 
who considered probability in the Bayesian sense as a subjective quantity depending on our incomplete 
knowledge about given situation. This interpretation of probability encountered enormous resistance from the 
physicists believing the objective frequency interpretation of probability, for which the principle remains a 
mysterious hypothesis.  
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Liouville's theorem and Poincaré's recurrence theorem, the second uses the notion of entropy, 

a quantity whose evolution law (second law of thermodynamics) is believed to be at odds with 

the above mentioned theorems[10].  

Since the rejection of teleological view, physicists and philosophers have tried to answer 

these above questions. For many, the superiority of variational principles with respect to 

differential equations is obvious[8], but they failed to grasp the matters that would be other 

than a formal superiority in mathematical description and capable of deepening our 

understanding of nature. As far as we know, no conclusive statement can be made to date 

about the very reality behind the variation principles in physics.   

Efforts have been made to derive variational principles of physics from other general 

philosophical hypothesis. For example, the variational principles was attributed to the 

principle of unique determinacy[7] with the slogan "nature happens only ones"[11]. If this is 

true in the case of regular motion determined uniquely by maximum/minimum calculus, it is 

not the case for irregular (random or chaotic) dynamics, since there may be infinite number of 

possible events taking place at a given moment, or infinite number of different paths 

(observable with non zero probability) for a system starting from a sole state (this randomness 

of the motion should be quantitatively tackled in the statistical calculus of variation, see 

section 5 below). We think it is worthy to mention here the effort of Feynman to derive least 

action principle from quantum mechanics within his path integral formalism with the factor 
h/iAe [12]. The argument is roughly that, in the propagator from one point to another 

calculated by path integral, the main contribution of the factor h/iAe  is only around the least 

action path when the action A is much larger than Planck constant h . This reasoning is 

plausible. The only difficulty is that the origin of the factor h/iAe  for quantum system, 

inspired by an observation of Dirac about quantum phase[13], is still a mystery to date. 

The present work is a tentative to fill the void of understanding variational principle by 

introducing a dialectical view of the duality of nature. This view is: any entity or events 

contains pairs of opposite, mutually exclusive in nature but nevertheless equally essential and 

complementary parts. This very ancient and long-standing philosophical point of view is not 

only a conceptual conviction, but also a belief, common to both occidental and oriental 

cultures, stemming directly from observation of natural and social movements.  

In its modern development accomplished mainly by Hegel and Marx, the dialectic often 

stresses conflict, negation and change of the opposite parts. However, one of the inevitable 
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and essential aspects of any motion is the smooth and continuous evolution state with 

dynamical balance between opposites. This is also an important aspect of dialectic. In fact, in 

this work, we will concentrate on the smooth and continuous motion of physical system using 

this notion of harmonic balance to develop a variational calculus. By invariance 

consideration, this balance is mathematically defined by a variational relationship between the 

opposite quantities. The main idea is: any physical phenomenon in smooth motion is the 

consequence of the interplay and invariant balance of pairs of opposite elements. To our 

opinion, this may be the very reality hidden behind the different variational principles in 

physics. Examples of derivation of several variational principles are given. It is hoped such 

approach can help us to understand more about why things happen that way in physics.  

2) Dialectical variational principle 
In this section, we will develop a dialectical variational principle (DVP) on the basis of 

pairs of opposite elements classified into two categories of quantities having completely 

different and opposing natures and behaviors. One category has the passive, ordered, hidden 

or straight (flat) characters; the other one has completely opposite characters such as active, 

disordered, open or curved character. In what follows, we will use this attribute as an essential 

criterion for the choice of opposites.  

The DVP is stated as follows:  

Any event of a system never happens without the occurrence of the invariant balance 

between all pairs of opposite, mutually exclusive in nature but complementary, 

mutually rooted and transformable parts of the system that undergo variations due to 

the event. 

Let us spell out the idea by giving the following definitions. 

a) Yi is defined as a physical quantity charactering the passive, ordered, inanimate, hidden 

or flat aspects of a motion.  

b) Ya is defined as a physical quantity charactering the active, disordered, animate, open 

or curve aspects of the same motion.  

It should be stressed here that Yi and Ya must be empirically measurable quantities or 

mathematical expressions which can be univocally related to measurable quantities. 

Conceptual notions or abstract words devoid of physical instance (such as black and white, up 

and down, large and small, etc) are not considered. As defined below, Yi and Ya of 
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mechanical system may be associated with, respectively, spatial accumulation of inertial force 

and driving force (work), time accumulation of potential energy and kinetic energy, or 

statistical expectation of random variables (representing order and observability) and entropy 

(measuring disorder and randomness), among many others. Examples using these pairs of 

opposite quantities will be given below. 

In general, for given situation, these opposing characters are absolute, meaning that Yi and 

Ya cannot be defined from physical quantities of same nature. However, in different situation, 

a given quantity can be either related to Yi or Ya depending on the events containing it. 

Inertial force, for example, is rather Yi in accelerating motion but Ya in decelerating 

dissipative motion since it maintains the motion, an active aspect of the process.  

c) The variation Yδ  of an element Y is a virtual change without time passage and confined 

by constraints.  

One of the advantages of the use of variation Yδ of a quantity Y is that Yδ  can be chosen 

in independent way from the frame of reference, while this is not possible a priori for the 

magnitude Y itself which is in general dependent on its frame. The use of variation makes it 

possible to establish a universal balance or equilibrium independent of the frame of reference 

as follows. 

d) Variational Balance: for a virtual process yielding variation of the opposite elements Yil 

and Yal, the invariant balance between the pairs of opposites is described by  

0)( =∑−∑
l

ll
l

l YaYi λδδ       (1) 

where lλ  for a given pair l is a coefficient characterizing the interplay and the equilibration of 

the pair l. The value of lλ  should depend on the nature of the pair l as well as on the property 

expressed in this equation (balance, complementarity, transformability, etc.). The reader will 

see that this parameter can be determined in each application of the principle. 

If necessary, constraints Ck on the balance may be added à la Lagrange such that: 

0)()( =∑+∑−∑
k

kk
l

ll
l

l CYaYi αδλδδ       (2) 

where kα  is a multiplier related to the constraint Ck. However, Eq.(1) can be used even when 

there are constraints, meaning that the constraints can be taken into account in the subsequent 

treatments.  
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By using these above definitions, DVP can be stated as follows:  

Any continuous and smooth event of a system never happens without the occurrence 

of variational balance between all pairs of Yi and Ya that undergo variation due to 

the event.  

The application of DVP consists, first of all, in the identification of pairs of opposite 

elements whose interplay determines the event, as shown below. 

3) Principle of least action 
We consider a system with Hamiltonian ),(),(),,( tqVtqTtqqH += &&  where T is the kinetic 

energy depending on time and velocity, and V the potential energy depending on the 

configuration of the system as well as time. We suppose, without loss of generality, that in a 

given frame of reference, the system is in non uniform motion with acceleration iav  of the 

point i. mi is the mass of the point having the force Fi (i=1,2,…N). Now we have to identify 

the pairs of opposite elements to put into Eq.(1). Let Vi be the potential energy associated with 

Fi. Vi represents, at a given moment of time and in a given frame of reference, an immobile 

and hidden motion (or latent capacity of doing work, vis mortua). Let iT  be the kinetic energy 

which represents a mobile energy and apparent motion (evident capacity of doing work and of 

moving against resistance, Vis viva). Hence it is evident that ∑=
=

N

i
iVV

1
 (total potential energy) 

and ∑=
=

N

i
iTT

1
 (total kinetic energy) are two essential opposite elements of the motion at any 

given moment of time which satisfy the definition of Yi and Ya. However, V and T will not be 

considered as Yi and Ya. We choose instead the time accumulation of them ∫
b

a

t

t
Vdt  and ∫

b

a

t

t
Tdt  

for the case of a motion between a point a and point b in phase space during a given period of 

time ab tt −=τ . This choice has two reasons. The first is the motion during ab tt −=τ  should 

be taken into account as a whole. That is, if we want to see the effect of a virtual deformation 

on the motion, we should calculate the entire effect over the whole motion, not only the 

instantaneous effect over a temporary state characterized by the instantaneous energy. This 

first reason coincides with the second one, that is, according to Courant and Hilbert, the object 

of the calculus of variation “is to find extrema of functionals rather than extrema of functions 

of a finite number of independent variables. By a functional we mean a quantity or function 

which depends on entire course of one or more functions” [14].  
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Now let us define 

∫=
b

a

t

t
VdtYi  and ∫=

b

a

t

t
TdtYa . 

     (3) 

Eq.(1) then reads 

0=∫−∫
b

a

b

a

t

t

t

t
TdtVdt λδδ  

     (4) 

which is nothing but the usual least action principle (we must let 1=λ ): 

0)( ==∫ − AdtVT
b

a

t

t
δδ  

     (5) 

with the Lagrange action ∫=
b

a

t

t
LdtA  where VTL −=  is the Lagrangian. As well known, this 

principle yields the Lagrange equation for analytical mechanics : 

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

ii x
L

tx
L

&
. 

     (6) 

(with only one degree of freedom xi of the point i). As well known, the principle in Eq.(5) has 

been used for the axiomatic formulation of almost all the physics theories including relativity 

theory, electromagnetism theory, geometrical and wave optics. However, the situation 

concerning quantum mechanics is somewhat ambiguous since in Feynman's formalism, the 

least action principle does exist but only in the limit 0→h [12]. The formulation based on the 

factor h/iAe  cannot be directly derived, as far as we know, from variational calculus using 

Lagrange action. 

4) Principle of virtual work 
That the above analysis is based on the cumulative energy of the motion during a period is 

natural since a motion should be in principle tackled according to its global effect. As a matter 

fact, this global treatment finally yields Eq.(6) which is an instantaneous description of the 

motion with differential equation. From this observation, basic principles regarding only 

instantaneous effect should be possible. One of these is the so called Lagrange-d'Alembert 

principle of virtual work. To see this, we write Eq.(5) as 
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0
1

=∫ ⋅∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

=∫
=

b

a

b

a

t

t
i

N

i ii

t

t
dtr

x
L

tx
LLdt v

&
δδ . 

     (7) 

where ir
vδ  is the virtual displacement of a point i. Let us introduce a virtual velocity 

i

i
i

r
v

δτ
δvv = , 

the above equation reads 

0
1

=∫ ⋅∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

=

b

a

t

t
ii

N

i ii
dtv

x
L

tx
L δτv

&
. 

     (8) 

where 0== biai δτδτ . According to the calculus of variation[8], it follows that  

0)(
11

=⋅−∑=⋅∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

==
ii

N

i
ii

N

i ii
vmaFv

x
L

tx
L vvv

&
. 

     (9) 

This is the principle of virtual velocity equivalent to the Lagrange-d'Alembert principle of 

virtual work[4]  

0)(
1

=⋅−∑=
=

iii
N

i
i ramFW vvv

δδ .      (10) 

As a matter of fact, this equation can be derived directly from Eq.(7) if we consider only the 

motion in the infinitesimal time internal dttt +→ .  

When the motion is uniform without acceleration: 0=iav , Eq.(10) reads  

0
1

=⋅∑=
=

i
N

i
i rFW vv δδ       (11) 

which characterizes static equilibrium. We can extend the term equilibrium characteristic of 

Eq.(11) to the dynamical state characterized by Eq.(10) and refer to it as dynamical 

equilibrium, a term which will be useful for the thermodynamic equilibrium discussed below.  

On the other hand, Eq.(10) can be obtained directly from DVP if we consider Yi as the 

work (spatial accumulation) of the initial forces, i.e., 
i

N

i

b

a
ii sdamYi ∑ ⋅∫=

=1

vv  and Ya that of the 

driving forces 
i

N

i

b

a
i sdFYa ∑ ⋅∫=

=1

vv
 from point a to point b, where ids  is the elementary 
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displacement of the point i. Then the variation of Yi due to the virtual displacements )(tri
vδ  at 

a given moment t must be 

∑ ⋅=
=

N

i
iii trtamYi

1
)()( vv δδ       (12) 

and similarly  

∑ ⋅=
=

N

i
ii trtFYa

1
)()( vδδ .      (13) 

Hence DVP directly yields Eq.(10) with 1=λ . 

5) Maximum path entropy principle for nonequilibrium thermodynamics 
We still consider non dissipative system. The system is now perturbed by noises and has a 

random (irregular) dynamics. An essential difference between this irregular dynamics and the 

regular one is that the path from a point a to a point b for a given period of time is no more 

unique, as discussed in our previous work[15]. At any moment of time, a system in irregular 

dynamics does not have only one state, contrary to the case of regular dynamics. In the case of 

thermodynamic system containing a large N particles, the different states at any given 

moment are called microstates (j=1,2, …) each having a likelihood to be visited by the 

system. In this case, in addition to the pairs of opposite parts related to regular forces and 

kinetic energy, the aspects such as disorder and order, represented by some measurable 

quantities, of the motion are expected to play a role in the variational balance.  

This role of order and disorder in the variational calculus can be shown as follows. Let pj 

be the probability of occurrence of j microstate at a given moment of time. The expectation of 

a quantity Y at this moment is given by ∑=
j

jjYpY  where Yj is the value of Y at the state j. 

Suppose now a variation jYδ  of Yj in the state j. The regular or observable quantity of Y is the 

expectation Y . It is obvious that the variation Yδ  is not only determined by jYδ  since 

j
j

j
j

jj pYYpY δδδ ∑∑ += . So between the regular variation Yδ  and the expectation of 

microstate variation ∑=
j

jj YpY δδ , there is the variation of a quantity Ω  given by 

YYpY j
j

j δδδδ −=∑=Ω       (14) 
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 It has been proven[16] that this quantity Ω  is a measure of uncertainty associated with a 

random variable Y and referred to as ‘varentropy’ in order to distinguish it from the usual 

information or entropy defined with given formula. It is straightforward to show that[17], in 

the case of equilibrium thermodynamic system having internal energy as random variable, 

Ωδ  is the heat transfer directly related to the thermodynamic entropy of the second law. This 

example shows well the role of disorder (irregularity represented by Ω ) and order (regularity 

and observability represented by the statistical expectation Y ).  

Now let us extend DVP to the irregular dynamics in the case of a motion between two 

given points (microstates) a and b in phase space. Suppose a large number of possible paths h 

(h=1,2, …) for a given period of motion, each having a probability ph(a,b) of occurrence. Due 

to the perturbation of noise, the variational balance over each path is in general lost. So we do 

not have Eq.(4) for every path. As stated in the principle, the essential element for the balance 

is the variation but not the magnitude of the opposite quantities, hence we calculate the 

expectation of the variations hYiδ  and hYaδ  over all the paths such that  

∫∑=
b

a

t

t
h

h
h dtVbapYi δδ ),(  and ∫∑=

b

a

t

t
h

h
h dtTbapYa δδ ),( . 

     (15) 

Then the application of DVP to these expectation 0=− YaYi δλδ  yields ( 1=λ ) 

0),(),( =∫∑−∫∑
b

a

b

a

t

t
h

h
h

t

t
h

h
h dtTbapdtVbap δδ . 

     (16) 

This can be straightforwardly written as 0),( =∑ h
h

h Abap δ  or 

0=abAδ .      (17) 

Here ∫=
b

a

t

t
hh dtLbaA ),(  and hhh VTL −=  is respectively the action and the Lagrangian of the 

system on the path h. Eq.(17) is the stochastic least action principle proposed in [15].  

As shown in our previous work, Eq.(17) is equivalent to another expression: 

0=− abab AS ηδδ       (18) 
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where h
h

hab AbapA ),(∑=  is the expectation of action over all possible paths and abS  is the 

uncertainty in the choice of paths by the system and referred to as path entropy between a and 

b. It is defined by  

∑=−=
h

hhababab bapAAAS ),()( δδδηδ .      (19) 

Hence, obviously Eq.(18) is an expression equivalent to Eq.(17) for random motion. η  is a 

characteristic constant of the process. For example, in the case of a Brownian motion, η  is 

inversely proportional to the diffusion constant[15]. 

As a matter of fact, abS  and abA  can be considered as another pair of opposite elements 

of the motion and represent, respectively, the disorder (uncertainty, randomness) and order 

(certainty, observability). From this consideration, Eq.(18) is natural if we apply DVP to 

abAYi =  and Ya=Sa and ηλ = . 

Since the variation of path entropy is due to the variation of action, the functional property 

of the entropy can be discussed with respect to the action. The concavity of Sab was proved in 

[15]. So Eq.(18) is a maximum path entropy algorithm. This maximum calculus was an 

assumption in our previous work. But here it is a consequence of DVP or of the stochastic 

least action principle Eq.(17).  

Note that the functional form of path entropy is not necessary in this principle for the 

maximum to be valid. This generic maximum varentropy algorithm (maxvent) makes it 

possible to maximize any appropriate varentropy functional (not only the Shannon one) that 

have physical meaning. The reader can find several examples of these we found directly from 

observed probability distributions[16]. If the entropy functional is given, maxvent calculus 

will yield corresponding probability distribution. Appendix I shows an example with Shannon 

varentropy yielding exponential path distributions. 

6) Maximum entropy principle for equilibrium thermodynamics 
In this section, we are interested in the variational calculus relative to the instantaneous 

dynamical uncertainty associated with equilibrium probability distribution. The measure of 

this uncertainty is still defined by Eq.(14) with one or more random variables [17] of 

equilibrium states. According to the above application of DVP to disorder and order, we can 

already write a variational algorithm such as  
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0=∑−Ω
m

mm Xδλδ       (20) 

where m is the index of the involved random variables and ( )∑ −=Ω
m

mm XX δδδ . Xm can be 

determined or inferred through the nature of the system.  For example, for a canonical 

ensemble in equilibrium state with w microstates j (1,2, … w) each having the probability pj, 

the sole X1 (m=1) should be the system energy Ej according to the state principle[19].  

Eq.(20) can be of course derived from the energy definition of Yi and Ya. In what follows, 

we consider the Yiδ  and Yaδ  given by Eqs.(12) and (13). Using the same mathematics as in 

Eq.(15) with the probability pj of microstates, we obtain the expectation of ( ) jYiδ  and ( ) jYaδ  

depending on the microstates j of the system :  

∑ ⎟
⎠
⎞

⎜
⎝
⎛∑ ⋅=
=j j

N

i
iiij rampiY

1

vv δδ and ∑ ⎟
⎠
⎞

⎜
⎝
⎛∑ ⋅=
=j j

N

i
iij rFpaY

1

vv
δδ . 

     (21) 

Then the application of DVP to these expectation 0=− YaYi δλδ  yields: 

0)(
1

=∑ ⎟
⎠
⎞

⎜
⎝
⎛ ∑ ⋅−
=j j

N

i
iiiij ramFp vvv

δ    with  ( 1=λ ) 
     (22) 

By using this equation, a rather tedious calculation has been carried out in reference [17] 

for equilibrium thermodynamic of Grand-canonical, canonical and microcanonical ensembles. 

In what follows, we only briefly review the result for canonical ensemble as illustration.  

It is straightforward to calculate that iiiii eramF δδ −=⋅− vvv
)(  where ei is the energy of 

the particle i. Eq.(22) reads 0
1

∑ =−=−=∑ ⎟
⎠
⎞

⎜
⎝
⎛ ∑−
= j

jj
j j

N

i
ij EEpep δδδ  for canonical ensemble. 

By the consideration of the first and second laws of thermodynamics of equilibrium system, it 

was proved that the virtual work principle, i.e., 0=Eδ  led to 

0)( =− ES βδ       (23) 

where S is the thermodynamic entropy defined by EES δδβδ −=/  and β  is the inverse 

temperature[17]. This is the principle of maximum entropy (maxent) for thermostatistics. 

When derived in this way, the definition of the entropy functional is not necessary for the 

maxent. It may take if necessary other forms[16] different from the Gibbs-Shannon formula 

used in the formulation of statistical mechanics by Jaynes[5] and Tribus[9]. In their 
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formalism, statistical mechanics is an inference theory instead of a theory of physics, and the 

most fundamental gradient of the formalism, maxent, is only an inductive method but not a 

deductive law of physics. In our formulation, maxent, and more generally speaking, maxvent, 

are no doubt laws of physics due to their tight kinship with the most fundamental law of 

mechanics such as virtual work principle and least action principle. 

7) An axiomatization of quantum mechanics with variational principle 
The axiomatic formulation of quantum mechanics has always been a dream of many 

physicists. No definitive result is obtained to date. Additional hypothesis are always used in 

the derivation of the Schrödinger equation. Here we would like to review the point of view 

considering Schrödinger equation as diffusion equation with complex diffusion constant and 

then to suggest a variational formulation of quantum mechanics. Complex diffusion is a well 

known effort which can be traced back to the initiative of Fürth in 1933[20]. The complex 

diffusion constant, just as the imaginary time and imaginary energy in certain 

formulation[21], is not a trivial hypothesis. We cannot explain why a diffusion may be 

complex. But if it is taken for granted, it would be possible to formulate quantum mechanics 

on the basis of the least action principle of Eq.(17), with 
h

i
−=η  and 1−=i . This, by 

Eq.(24) of appendix I, yields 
),(1),(~ baAi

ab
h

he
Z

bap h= , the Feynman factor of path integral. 

However, this formulation has several nontrivial consequences about probability and entropy. 

The first one is that the transition path probability ),(~ bap h  from a to b in phase space is 

complex. We can nevertheless normalize it formally by path integral 1),(~ =∑
h

h bap  over all 

possible paths from a to b. The second consequence of complex diffusion is that the path 

entropy measuring the uncertainty in ),(~ baph  is a complex information, hence Eq.(25) 

becomes ababab AiZS
h

−= ln~  where ∑=
h

baAi

ab
heZ

),(
h  and the expectation of action 

∑=
h

baAi

h
ab

ab
hebaA

Z
A

),(
),(1 h  are in general complex numbers.  

 The physical attributes of probability having complex values is still an open question. 

But all the same ),(~ baph  gives an estimation of the likelihood of the path h from a to b, taken 

into account in path integral. In this sense, the generic varentropy abS~  defined by 
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∑−=−−=
h

hhababab bapAiAAiS ),(~)(~ δδδδ
hh

 do give an estimation of the uncertainty 

(randomness) in the distribution ),(~ baph  of the path contribution. This interpretation hints a 

map of probability and information theory from phase space of mechanics to Hilbert space of 

functions. A point in phase space will be mapped on a function in Hilbert space. The paths of 

real motion in phase space are then mapped one to one on the trajectories of corresponding 

functions in Hilbert space. The formal probability ),(~ baph  and varentropy abS~  in Hilbert 

space are in this way the complex images of the transition probability ),( baph  between 

points and its uncertainty measure, the path entropy abS , in phase space. The physical sense 

of this complex image of phase space statistics roots in the usual action ),( baAh  of the 

mechanics calculated in phase space and used in the least action principle 0=abAδ  of Eq.(17) 

which implies 0)1~( =− abab A
i

S
h

δ . As shown in the appendix, if the varentropy takes 

Shannon form, the Feynman factor follows.  

This is the essential concepts of a variational formulation of quantum mechanics which 

can be included in the DVP framework. However, one should remember that the map "Phase 

space physics ⇔  Hilbert space mathematics", or the hypothesis of imaginary diffusion (time 

or energy) cannot supply the secret of quantum mechanics. It remains a formal tool for 

axiomatization of quantum theory with least action principle. The true physical reason of this 

seemingly useful maneuver is still hidden from our knowledge. 

8) Concluding remarks 
From the above examples of derivation of several principles of physics, DVP seems to be 

the reality behind the apparently different variational principles. The ontological basis of this 

approach and the dialectical view of the world are not only a long-standing philosophical 

belief but also a very elementary observed fact of the nature. The only new gradient we 

introduce is the variational balance. This balance is not the conventional equilibrium usually 

defined by vanishing difference between the magnitudes of apparently opposing quantities, 

since the opposite parts considered are not really opposing (conflicting) elements like 

action/reaction forces which can be forces of same nature. The opposite elements co,sidered 

in DVP are of incompatible and mutual exclusive nature with contrasting and complementary 

character such as active/passive, disorder/order, curvature/flatness, apparent/hidden, etc. The 

use of variational relationship in DVP makes it possible for the balance to be independent of 
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chosen frame of reference. It is expected this axiomatic approach can improve our 

understanding of physical world and constitutes an alternative way for answering the 

questions around the origin of variational principles in physics.  

One of the attainments of this work is the unification of the axiomatic formulations of 

classical, statistical and quantum mechanics which have since long time their own 

fundamental variational principles. Application to electromagnetism theory, mechanical wave 

theory and geometrical optics should be straightforward since the actions of these cases have 

been calculated on the basis of the Lagrangian action. However, further effort is needed for its 

use in relativity theory to calculate Einstein-Hilbert action.  

It should also be mentioned that the systems considered in this work are all Hamiltonian 

systems having well defined Hamiltonian (potential and kinetic energies) at each moment. 

Consideration of dissipative system and more complex systems would be necessary and 

useful for further understanding of the approach.  

Our final remark is that there are in general many pairs of opposite elements of different 

nature in a dynamics as mentioned in section 2. One may have impression that, for the DVP 

description, the choice of the involved pairs of opposite quantities in a motion is crucial. 

However, from this work, we have seen that the time cumulative energetic definition of Yi and 

Ya, i.e., the time integral of energy, is the most fundamental choice since it yields directly 

least action principle which gives in turn the virtual work principle and then the maximum 

entropy principle, although these two principles can be seen independently from other pairs of 

opposite elements (spatial integral of driving-inertial forces and entropy/expectation). This 

primordial role of energy integrals in DVP would simplify the application if it was universally 

confirmed by further investigation.  
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Appenix I 

 

A path probability distribution 
The maximum entropy approach in Eq.(14)  does not require any given functional form of 

Sab. Hence different functionals of it are possible[16]. The first possible form which comes to 

one's mind is the Shannon entropy ∑−=
h

hhab bapbapS ),(ln),( . If it is the case, the entropy 

maximum will yield an exponential path probability distribution ),(),( baA
h

hebap η−∝ [15].  

Hence the probability ),( bap h  for the system to go from a fixed point a to a fixed point 

b through a certain path h is given by  

),(1),( baA

ab
h

he
Z

bap η−= .      (24) 

where ∑= −

h

baA
ab

heZ ),(η . This probability distribution has been verified by numerical 

simulation of diffusion with certain noises[15]. It is also shown that this probability 

distribution satisfies a Fokker-Planck equation for normal diffusion and is just the transition 

probability of free Brown motion[15]. Finally the path entropy between two fixed points a et 

b can be calculated by [15] 

ababab AZS η+= ln .      (25) 

This result can be extended to the case where b is an unfixed point in the final phase 

volume B of the system at time tb. In this case, the probability ),( Bap h  for the system to go 

from a fixed point a to a certain point b (unfixed in the final phase volume B of the system at 

time tb) through a certain path h (depending on a and b) is given by  

),(1),( baA

a
h

he
Z

Bap η−= .      (26) 

where ∑=∑= −

b
ab

hb

baA
a ZeZ h

,

),(η . Hence the path entropy is given by  

aaaB AZS η+= ln .      (27) 
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Here ∑∑=
b

h
h

ha baABapA ),(),( . If we extend still this to the case where neither a nor b is 

fixed, we can study the path entropy (the total path uncertainty) between the initial phase 

volume A of the system at time ta and the final phase volume B at time tb. Obviously this is 

),(1),( baA
h

he
Z

BAp η−= .      (28) 

where ∑=∑= −

a
a

hba

baA ZeZ h

,,

),(η . The total path entropy between A and B will be 

AZS AB η+= ln .      (29) 

Here ∑∑∑=
a b

h
h

h baABApA ),(),( .  

If we are interested in the total transition probability abp  between two fixed points a and 

b, abp  can be calculated from Eq.(28) by 
Z

Z
e

Z
p ab

h

baA
ab

h =∑= − ),(1 η . By using Eq.(25), it can 

be straightforwardly written 

)exp(1
ababab AS

Z
p η−= . 

     (30) 

Using a Legendre transformation abababab ZSAF ln1/
η

η =−=  which can be called free 

action mimicking the free energy of thermodynamics, we can write )exp(1
abab F

Z
p η−= . 
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