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ABSTRACT 

This paper studies the kinematic geometry of general 3-RPR planar parallel robots with actuated 

base joints. These robots, while largely overlooked, have simple direct kinematics and large 

singularity-free workspace. Furthermore, their kinematic geometry is the same as that of a newly 

developed parallel robot with SCARA-type motions. Starting from the direct and inverse kinematic 

model, the expressions for the singularity loci of 3-RPR planar parallel robots are determined. Then, 

the global behaviour at all singularities is geometrically described by studying the degeneracy of the 
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direct kinematic model. Special cases of self-motions are then examined and the degree of freedom 

gained in such special configurations is kinematically interpreted. Finally, a practical example is 

discussed and experimental validations performed on an actual robot prototype are presented. 

 

Keywords: planar parallel robot, kinematic geometry, singularity, self-motion. 

 

1. Introduction 

From an industrial point of view, the complexity and the existence of numerous singular 

configurations seem to be the worse drawback of parallel robots because these configurations 

reduce the size of the workspace, which is already smaller than that of similarly-sized serial robots. 

Fortunately, the determination of singularities is a well studied problem and several computational 

methods have already been presented (Gosselin 1990; Zlatanov et al. 1994; Bonev et al. 2003). 

The worst singular configuration a parallel robot can meet is the Type 2 singularity (Gosselin 

1990). In such a singularity, the robot gains at least one degree of freedom and cannot resist some 

wrenches applied to its platform. Furthermore, the robot cannot exit such a singular configuration, 

without external help. Type 2 singular configurations can be divided into two classes, depending on 

the nature of the degree(s) of freedom gained, being either infinitesimal or finite, i.e., self-motion. 

However, merely studying the Jacobian (Gosselin 1990; Bonev et al. 2003), one cannot identify the 

nature of Type 2 singularities. 

Symmetry and, more precisely, design conditions that simplify the generally too complex direct 

kinematics of parallel robots are often privileged by robot designers. Unfortunately, such design 

conditions usually lead to self-motions, which are certainly the worst type of singularity. 

Furthermore, as we show in this paper, self-motions also occur in unsymmetrical seemingly general 
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designs without simplified direct kinematic models. Hence, it is essential that the design conditions 

for such self-motions be well known in order to be avoided. 

Several papers discuss self-motions in parallel robots. Not surprisingly, most of them deal with 

the Gough-Stewart platform, whose direct kinematic model leads to as much as forty real solutions, 

for a relatively general design. Design conditions simplifying the direct kinematics of Gough-

Stewart platforms, and subsequently leading to self-motions, are given in (Karger 2001; Karger 

2003; Karger and Husty 1998; Husty and Karger 2000; Husty and Zsombor-Murray 1994; Wohlhart 

2003). A classification of all self-motions of the Stewart-Gough platform is presented in (Karger 

and Husty 1998). It is shown that the self-motions can be translations, pure rotations, generalized 

screw motions, motions equivalent to the displacements of spherical four-bar mechanisms, or more 

complex spatial motions. 

The Stewart-Gough platform is not the only parallel robot with self-motions. A few other 

parallel robots having self-motions have also been studied. For example, in (Bonev et al. 2006), it is 

shown that all singularities of the special 3-RRR (R stands for a passive revolute joint, and R for an 

actuated revolute joint) spherical parallel robot, known as the Agile Eye, are self-motions. The 

analysis of self mobility of spatial 5R closed-loop mechanisms with one degree of freedom are 

presented in (Karger 1998). Reference (Bandyopadhyay and Ghosal 2004) discusses the 

determination of generalized analytical expressions for the analysis of self-motions and presents 

several examples for both planar and spatial mechanisms with legs composed of R joints. 

In this paper, we will study the self-motions of general 3-RPR planar parallel robots (P stands 

for a passive prismatic joint). The 3-RPR planar parallel robot has a simple direct kinematic model 

and, when properly designed, a relatively large singularity-free workspace. However, despite these 

advantages, only a couple of works deal with this kind of robot (Hayes 1999; Hayes and Zsombor-

Murray 2004). Yet, a recently developed new decoupled parallel robot with SCARA-type motions 



 4

(Briot and Arakelian 2007) has its planar displacements governed by the same kinematic model as 

that of a 3-RPR planar parallel robot. Furthermore, the self-motions of a particular design of a 

3-RPR planar parallel robot with congruent equilateral base and platform were studied in (Chablat 

et al. 2006), mainly from a theoretical point of view. This paper basically generalizes this study and 

demonstrates the advantages of general 3-RPR planar parallel robots. 

The rest of this paper is organised as follows. Section 2 deals with the kinematics of the general 

3-RPR planar parallel robot. The direct and inverse kinematic models are derived from the closure 

equations, and the singularity analysis based on the observation of the rank of the Jacobian matrix is 

presented. Section 3 presents a self-motion analysis based on the degeneracy of the direct kinematic 

model. Singularity loci are given and the degree of freedom gained is kinematically interpreted. 

Section 4 deals with a particular case of 3-RPR planar parallel robot with equilateral base and 

platform triangles and the results obtained are validated on an actual robot prototype. Conclusions 

are given in Section 5. 

2. Kinematics and singularity analysis 

The following analysis is based on the schematics of the robot shown in Fig. 1. The revolute 

joints Ai (in the remainder of this paper, i = 1, 2, 3) are fixed on the base and are actuated. Each leg 

is composed of one passive prismatic joint, placed between points Ai and Bi, and one passive 

revolute joint Ci, connected to the mobile platform. 

We consider that we control the position (x, y) of point P from the mobile platform and the 

orientation φ of the mobile platform. The origin of the base frame is chosen at point O. Points O and 

P are located at the centres of the circumscribed circles of triangles A1A2A3 and C1C2C3, 

respectively (Fig. 2). Finally, let ρi = ii BA  and Li = iiCB , the latter, referred to as an offset. 
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Figure 1. Schematic representation of the 3-RPR planar parallel robot under study. 

 

 

(a) fixed base (b) mobile platform 

Figure 2. Parameterisation of the base and platform triangles. 

Thus, it is possible to express the position of points Ai and Ci as 
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where ),,( bbbbi βααπαγ +−−+=  and ),,( ppppi βααπαδ +−−+= . From these expressions and 

referring to (Bonev et al. 2003), one can determine the closure equations of the system: 
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Skipping the derivation and referring the reader to (Bonev et al. 2003), the velocity equation for the 

3-RPR robot is: 
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2.1. Inverse kinematic problem 

Solving the inverse kinematics for each leg of this robot is essentially finding the intersection 

points between two circles, one with diameter |AiCi| centred at the middle of segment AiCi, and one 

with radius Li and centred at Ci. Premultiplying both sides of equation (2) with the term T
if , one can 

obtain an equation expressing the angles θi as function of the other parameters: 

 ( )sin ( ) cos 0Ci Ai i Ci Ai i ix x y y Lθ θ− − − − = . (6) 

From equation (6), it is possible to find the expressions for the active-joint variables θi as functions 

of the position (x, y) and the orientation φ of the mobile platform: 
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The two solutions θip and θim define the two inverse kinematic solutions for leg i (Fig. 3). 

These define a total of eight solutions to the inverse kinematics of the parallel robot, also called 

working modes (Wenger and Chablat 1998). We will see that for this robot, and provided nonzero 

offsets, Li > 0, the singularity loci will depend on the working mode. 

  

(a) first solution, ρi (+) (b) second solution, ρi (−) 

Figure 3. The two inverse kinematic solutions of the ith leg of the robot. 

 

2.2. Type 1 singularities 

Type 1 singularities occur when the determinant of B vanishes, i.e., when ρi = 0 (for i = 1, 2, 

or 3) (Fig. 4) (Bonev et al. 2003). These configurations correspond to the internal boundaries of the 

workspace of a general 3-RPR planar parallel robot. When the offsets are zero, Li = 0, there is a 

generic Type 1 (RI) singularity where the input velocities are indeterminate (Zlatanov et al. 1994). 

On this singularity, the inverse kinematic model of leg i admits only one solution because 

0)()( 2222 ==−−+− iiAiCiAiCi Lyyxx ρ . 
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Figure 4. Type 1 singularity. 

 

2.3.  Direct kinematic problem 

It is shown in (Merlet 1996) that the solution of the direct kinematics of a 3-RPR planar 

parallel robot is equivalent to finding the intersection points between an ellipse and a line, but no 

analytical expressions are given. Let us dismount the revolute joint at C3. For given active-joint 

variables θ1 and θ2, points C1 and C2 are constrained to move along two lines, L1 and L2, 

respectively, and the mobile platform undergoes a Cardanic motion (Sekulie 1998; Tischler et al. 

1998) (Fig. 5). As a result, any points Q from the mobile platform, including P and Ci, describe a 

curve E(Q), which can be an ellipse, two parallel lines or a doubly-traced line segment. Thus, the 

direct kinematics can be solved by finding the intersection points between the curve E(C3) and the 

line L3. 
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Figure 5. Geometric interpretation of the direct kinematics. 

Let us now derive the expression of the elliptic curve E(C3). It is possible to write the following 

closure equation: 

 31111113 CCCBBAOAOC +++= . (8) 

This yields the following expression: 
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In this expression, all parameters are known except ρ1 and φ. However, they are dependent on each 

other. Without loss of generality, we choose φ as independent variable and express ρ1 as a function 

of φ, using the following closure equation: 

 222221111121 ABBCCCCBBAAA ++++= . (10) 

Developing this relation, we obtain: 
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Expressing ρ1 and ρ2 as a function of φ from equation (11), we obtain: 

 φφρ sincos 321 jjjj aaa ++= ,   (j = 1, 2)  (12) 

where the expressions for aji are given in the appendix. Reintroducing equation (12) in equation (9), 

we find the following relation: 
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where bji (j = 1, 2) are given in the appendix. 

Thus for any fixed input parameters θi, we have found in equation (13) the parametric 

expression of the elliptic curve E(C3) depending on the orientation φ of the platform. Furthermore, 

we know that point C3 belongs to line L3, whose expression is: 

 3 3 3 3 3 3 3tan ( sin ) cosA Ay x L x y Lθ θ θ= + − + + .  (14) 

Thus, the intersections between E(C3) and L3 can be found by substituting x and y in equation 

(14) by the expressions of xC3 and yC3 of equation (13). After the substitution in equation (14) and 

multiplying the equation by 3cosθ , we obtain: 

 )cos(cos)sin(sin0 3333333333 CAAC yLyxLx −++−+= θθθθ .  (15) 

Developing equation (15), 

 0sincos 321 =++ φφ ccc ,  (16) 

where ci are given in the appendix. Thus, from (16), it is possible to find the solution for φ: 
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Note that this solution is not unique and corresponds to the two assembly modes of the robot. 

Finally, it is possible to find the expression for the position using the following closure equation: 

 PCCBBAOAOP 111111 +++= , (18) 

which yields: 
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2.4. Type 2 singularities analysis 

Type 2 singularities occur when the determinant of A vanishes. It can be shown that the 

numerator of the determinant of matrix A contains three radicals and is dependant of the working 

mode. If we manipulate properly this expression and raise it to square three times, we can obtain a 

polynomial of degree 16 in x and y (Bonev et al. 2003). This polynomial will cover all working 

modes. Note, however, that if Li = 0, the numerator becomes a quadratic polynomial in x and y and 

that the denominator of this expression is equal to 321 ρρρ . Unfortunately, the study of this 

determinant cannot characterize the motion gained by the mobile platform at Type 2 singularities.  

In a Type 2 singularity, the lines normal to the directions of the prismatic joints and passing 

through points Ci are concurrent or parallel (Fig. 6) (Bonev et al. 2003). These lines coincide with 

the direction of the forces Ri applied to the platform by the actuators.  

However, we need more information for characterizing the complete kinematic behaviour of the 

robot inside such a singular configuration. This can be found by studying the degeneracy of the 

direct kinematic model. Thus, there are Type 2 singularities if: 
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• E(C3) is an ellipse tangent to L3: in such a case, the directions of the three forces Ri intersect 

in one point, W, and the robot gains one infinitesimal rotation about this point (Fig. 6a);  

• L1, L2 and L3 are parallel and E(C3) degenerates to two lines parallel to L1 and L2 (and L3): 

in such a case, the directions of the three forces Ri are parallel and the robot gains one self-

motion of translation (Fig. 6b);  

• E(C3) degenerates to a doubly-traced line segment parallel to L3: this case will be discussed 

in detail in Section 3. 

 

 

(a) Infinitesimal rotation about W  (b) Finite translation (self-motion) along the direction 

of the prismatic joints 

Figure 6. Type 2 singularities of the parallel robot. 

 

3. Analysis of Self-motions 

Self-motions are certainly the worst type of singularity a parallel robot can encounter. If the 

robot enters such a singularity, since there are infinitely many possible poses for the same active-
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joint variables, the information on the pose of the platform is lost. For the robot under study, one 

could think that such singularities exist only when L1, L2 and L3 are parallel. In this case, we 

observe the apparition of a self-motion of translation, corresponding to the case shown in Fig. 6b. 

It turns out that a second more complicated case of self-motion appears when E(C3) 

degenerates into a doubly traced line segment parallel to L3. This case corresponds to a Cardanic 

self-motion (Fig. 7). 

 

Figure 7. Cardanic self-motion. 

Note that such a singularity is a particular case of singular configuration where the three forces 

Ri intersect at one point W (Fig. 6a).  

 

3.1. Design conditions leading to Cardanic self-motions 

We have to find the geometric conditions which lead to Cardanic self-motions, i.e., when the 

ellipse E(C3) degenerates into a doubly-traced line segment. This happens when yC3 is linearly 

dependant on xC3 for 0)sin( 21 ≠−θθ . Rewriting equation (13), one can obtain: 
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E(C3) will degenerate to a doubly-traced line if the determinant of matrix b vanishes. This would be 

the case if: 

 pεθθ += 21 , where 2/παε ±= pp .  (21a) 

As pointed out by one of the anonymous reviewers of this paper, this simple condition can also be 

directly obtained using the geometric properties of Cardanic motion: at each moment the 

intersection point between lines L1 and L2 lies on the circumcircle of the mobile platform. 

Thus, for such a condition, it is possible to find through algebraic manipulations that: 

 211133 )( bbxmy CC +−=  and pδθθ += 23  (21b) 

where 3tanθ=m  and πβδ npp += 2/  (n = 0, 1, 2, …). Once again, this condition can also be 

obtained using the fact that at each moment the intersection point between lines L2 and L3 lies on 

the circumcircle of the mobile platform. It can also be shown that lines L1, L2 and L3 are concurrent. 

  

Figure 8. Example of Cardanic motion for a 3-RPR planar parallel robot with Rp = 0.2 m, Rb = 0.35 m, 

L1 = L2 = 0.05 m (L3 can be arbitrary), αp = 36° and βp = 72°. 
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Therefore, when L1 and L2 make an angle of εp and L2 and L3 make an angle of δp, the robot 

gains a Cardanic self-motion (Fig. 8). However, at this stage, it is not clear whether any design 

allows self-motions or only particular (symmetric) ones. 

Let us now find the conditions for the existence of Cardanic self-motions. Introducing 

conditions (21a) and (21b) into equation (16), it turns out that terms c2 and c3 are equal to zero, 

therefore the equation can be simplified as: 

 01 =c . (22) 

Developing equation (22) and expressing c1 as function of the sine and cosine of θ2, one obtains: 

 0sincos 322211 =++= dddc θθ , (23) 

where 
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Thus, two cases for the cancellation of equation (23) must be examined: 

(a) when equation (23) is satisfied only for some sets of active-joint angles; 

(b) when equation (23) is satisfied for any θ2, , which is only possible if d1 = d2 = d3 = 0. 

Let us begin with the first case. The sets of active-joint variables satisfying equation (23) can be 

found as: 
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As angles δp and εp are defined with nπ (n = 0, 1, 2,…), the maximal number of sets of active-

joint variables is equal to eight, depending of the working modes. As pointed out by one of the 

anonymous reviewers, these solutions correspond to the intersection of six limaçons defined as the 

loci of the intersection point between lines L1, L2 and L3 (which are concurrent for a Cardanic self-

motion) when varying angle θ2. Thus, the robot can have Cardanic self-motions for a maximum of 

eight sets of (or infinitely many) active-joint angles. 

Now, the more useful result is that there obviously exist designs without Cardanic self-motions. 

The condition for non-existence of Cardanic self-motions is simply the condition that prevents 

equation (23) to have real solutions, i.e.: 

 2
1

2
2

2
3 ddd +> . (28) 

Considering the simple case where the base and platform are similar (or even equilateral) 

triangles and the offsets are equal L = L1 = L2 = L3, and introducing these new parameters in 

equation (28), it can be found that the condition of non-existence of Cardanic self-motions is: 

 0≠L . (29) 

Thus, there exist simple symmetric designs without Cardanic self-motions. 

Now, we saw that Cardanic self-motions appear (or not) for only several active-joint sets, 

whereas it is possible to see in (Chablat et al. 2006), for a particular design of 3-RPR planar parallel 

robot with congruent equilateral base and platform triangles, that if condition (21) is satisfied, there 

exists an infinity of active-joint sets for which the robot gains a Cardanic self-motion. Thus, there 

must be design conditions for the robot to have Cardanic self-motion for any value of angle θ2. 
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The second possibility for cancelling equation (23) consists of the cancellation of terms di of 

equations (24) to (26). Resolving these three equations leads to: 

 0sin)sin(sin 321 =−−− pppp LLL εεδδ  (30) 

and 

 pb αα =  and pb ββ = . (31) 

Thus, the base and the mobile platform should be similar triangles and condition (30) on the offsets 

must hold. Such conditions for Cardanic self-motions do not depend of the value of angle θ2, as 

previously demonstrated in (Chablat et al. 2006). 

In summary, Cardanic self-motions can be avoided by well constraining the design parameters 

of the 3-RPR planar parallel robot (equation 28). In the worst case, if the base and the mobile 

platform are similar and if 0sin)sin(sin 321 =−−− pppp LLL εεδδ , there are Cardanic self-

motions for infinitely many active-joint sets. Finally, if one wants to have similar or even 

equilateral base and platform triangles, one way of completely avoiding self-motions is to use equal 

non-zero offsets. 

3.2. Kinematic analysis of the Cardanic self-motion 

Let us now analyse the allowable displacement of the centre P of the platform when the base 

and the mobile platform are similar triangles, pεθθ += 21 , pδθθ += 23 , 

0sin)sin(sin 321 =−−− pppp LLL εεδδ . The expressions of the coordinates of point P, function of 

θ2, are found using the following closure equation: 

 PCCBBAOAOP 222222 +++= . (32) 

Developing this expression, one can obtain: 
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where the expression of ρ2 is given by equation (12). Developing and introducing equations (21), 

(30) and (31) in (33), it can be found that: 

 ⎥
⎦
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From the previous expression, it is possible to conclude that, in such a particular configuration, 

varying the orientation φ of the mobile platform, point P moves on a circle S centred in O’ whose 

radius is Rp (Fig. 9). The coordinates of point O’ are defined by: 
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Computing the expressions of the coordinates of point W, the intersection point of the three 

wrenches Ri, one obtains: 

 ⎥
⎦

⎤
⎢
⎣

⎡
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ppbpp
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Thus, W is located on a circle K centred in O’ whose radius is 2Rp. It is also possible to observe 

that the platform and vector O’P rotate in opposite senses. 

One can rewrite expression (34) as follows: 

 ⎥
⎦

⎤
⎢
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⎡
−+++
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with 
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 φcos222
pbpb RRRRR −+=  and ⎟

⎟
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⎞
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η
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sin)sin(

tan 1 . (38) 

 

 

Figure 9. Schematics of a Cardanic self-motion of a robot with Rp = 0.1 m, Rb = 0.35 m, 

L1 = L2 = 0.07 m, L3 = 0 m, αb = 30° and βb = 120°. 

For a given angle φ and active-joint angle θ2, equation (37) represents the singularity loci (for 

the Cardanic self-motions only) of the robot with specified parameters. The obtained result 

corresponds to the parametric expression of an epicycloid P. The epicycloids P1 and P2 represented 

in Fig. 9 are the curves corresponding to angles φ = 0 and φ = π respectively. 
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4. Example and experimental validations 

A prototype of a new decoupled 4-DOF parallel robot called PAMINSA (Parallel Robot of the 

INSA, Fig. 10) was developed in INSA de Rennes (Briot and Arakelian 2007). Such a robot with 

Schoenflies motions allows the decoupling of the displacements in a horizontal plane (two 

translations along the x and y axes and one rotation about axes parallel to z) from the translation 

along a vertical axis (for details, see (Briot and Arakelian 2007)). Thus, this decoupling allows the 

separation of the control laws between two different models: 

• a model for the horizontal displacements equivalent to the control model of the 3-RPR planar 

parallel robot (Fig. 11a); 

• a linear model for the vertical translation due to the use of the pantograph linkage (Fig. 11b). 

Thus, PAMINSA presents the same Type 2 singularities as a symmetric 3-RPR planar parallel 

robot, which will be studied in this section. Indeed, the planar projection of the prototype of the 

PAMINSA robot corresponds to a 3-RPR planar parallel robot whose base and platform are non-

identical equilateral triangles and whose offsets are zero, Li = 0. These conditions correspond to a 

robot with infinitely many Cardanic self-motions within its workspace. 
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(a) Prototype of the PAMINSA robot (b) kinematic chain 

Figure 10. The PAMINSA parallel robot. 

  

(a) model for the planar displacements (b) model for the vertical translations 

Figure 11. The control models for the PAMINSA parallel robot. 

Introducing these constraints in matrix A of equation (3), we can find the determinant of this 

matrix as 

 2 2 2 2

1 2 3

2 cos (sin( ) sin )
( cos )( ( 2 cos ))p p p p p

b p b p p b

R
D R R x y R R R R

α α β α
φ φ

ρ ρ ρ
− −

= − + − + − . (39) 

Type 2 singularity loci for the PAMINSA occur when the above expression vanishes (Briot and 

Arakelian 2007). Thus, the robot is in a Type 2 singularity when: 
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 ±∞=iρ , for i = 1, 2 or 3  (40) 

or 

 )/(cos 1
bps RR−±== φφ   (41) 

or 

 φcos22222
pbpb RRRRyx −+=+   (42) 

Condition (40) implies that the platform is located at an infinite distance from the centre of the 

base frame. This is equivalent to the fact that the three legs of the robot are parallel (Fig. 6b). 

Condition (41) implies that the robot gains one degree of freedom for any position (x, y) of the 

workspace, for a fixed platform angle φs. Finally, condition (42) implies that the robot gains one 

degree of freedom when point P is located on a circle centred at O whose radius is 

φcos222
pbpb RRRRR −+= . Thus, we have to find which of the last two conditions correspond to 

Cardanic self-motions. 

Introducing the constraints Li = 0, αb = αp and βb = βp into equation (34), one can find: 
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θαφθα

pbpp

pbpp

RR
RR

y
x

OP .  (43) 

Raising the norm of vector OP to square, we obtain equation (43). Thus, this particular design of 

3-RPR planar parallel robot gains one Cardanic self-motion when the end effector is positioned on a 

circle P centred at O and with radius equal to φcos222
pbpb RRRRR −+=  (Fig. 9). The circles P1 

and P2 represented in Fig. 12 are the circles P corresponding to angles φ = 0 and φ = 

π, respectively . 



 23

Note that, for the angle φs, the robot gains one infinitesimal degree of freedom at any position, 

except if point P is located on a circle centred in O whose radius is equal to 

spbpbs RRRRR φcos222 −+= . Such position still corresponds to a Cardanic self-motion. Moreover, 

for Rp=Rb, the angle φs corresponds to a self-motion of translation (Chablat et al. 2006). This means 

that, when the platform centre is located on the circle P1, the platform gains two self-motions at the 

same time. 

Observing equation (43), it is possible to conclude that the degree of freedom gained is motion 

along a circle S centred in O’ whose radius is Rp. The coordinates of point O’ are: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+
+

−=
)2sin(
)2cos(

2

2

θα
θα

p

p
bROO' . (44) 

Note that the circle S is tangent to circles P1 and P2. This means that the maximal singularity-

free workspace is delimited by the circle P1. The radius of the circle P1 is equal to: 

 pb RRR −=1 .  (45) 

Dividing equation (45) by Rb yields 

 bpb RRRR /1/1 −==ν . (46) 

Thus, the smaller the ratio Rp/Rb, the greater the value of ν. So it is possible conclude that, for 

having a larger singularity-free workspace, the rate Rp/Rb has to be smaller. However, the smaller 

the mobile platform with respect to the base, the less accurate is its orientation. 
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Figure 12. Schematics of a Cardanic self-motion for a robot with Rp = 0.1 m, Rb = 0.35 m, αb = 30° and βb = 120°. 

In order to demonstrate the previous results, we have positioned the PAMINSA prototype in a 

singular configuration with Cardanic self-motion (x = 0 m, y = −0.25 m, φ = 0°). This position is 

shown on Fig. 13(g). For such a configuration, the three actuators are blocked. However, it is 

possible to see on Figs. 13(a) to 13(e) that the platform is not constrained and undergoes a Cardanic 

self-motion when external force is applied to the platform. 
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Figure 13. Cardanic self-motion of the mobile platform of the PAMINSA prototype starting from the 

configuration x = 0 m, y = -0.25 m, φ = 0°. 

 

5. Conclusions 

In this paper, the singular configurations of general 3-RPR planar parallel robots were studied. It 

was shown that a general 3-RPR robot can have Cardanic self-motions for none, up to eight, or 

infinitely many active-joint sets. The conditions for having no self-motions or having self-motions 

for infinitely many active-joint sets were explicitly derived. It was shown, for example, that designs 

with similar (or even equilateral) base and platform triangles and equal offsets have no self-motions 

as long as the offsets non-zero.  
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Appendix 

Expressions of aji (j = 1, 2, i=1, 2, 3): 
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Expressions of ci (i=1, 2, 3): 
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Figure Captions 

Figure 1. Schematic representation of the 3-RPR planar parallel robot under study. 

Figure 2. Parameterisation of the base and platform triangles. 

Figure 3. The two inverse kinematic solutions of the ith leg of the robot. 

Figure 4. Type 1 singularity. 

Figure 5. Geometric interpretation of the direct kinematics. 

Figure 6. Type 2 singularities of the parallel robot. 

Figure 7. Cardanic self-motion. 

Figure 8. Example of Cardanic motion for a 3-RPR planar parallel robot with Rp = 0.2 m, Rb = 0.35 

m, L1 = L2 = 0.05 m (L3 can be arbitrary), αp = 36° and βp = 72°.. 

Figure 9. . Schematics of a Cardanic self-motion of a robot with Rp = 0.1 m, Rb = 0.35 m, 

L1 = L2 = 0.07 m, L3 = 0 m, αb = 30° and βb = 120°. 

Figure 10. The PAMINSA parallel robot. 

Figure 11. The control models for the PAMINSA parallel robot. 

Figure 12. Schematics of a Cardanic self-motion for a robot with Rp = 0.1 m, Rb = 0.35 m, αb = 30° 

and βb = 120°. 

Figure 13. Cardanic self-motion of the mobile platform of the PAMINSA prototype starting from 

the configuration x = 0 m, y = -0.25 m, φ = 0°. 

 


