
HAL Id: hal-00310150
https://hal.science/hal-00310150

Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THINK: A Secure Distributed Systems Architecture.
Christophe Rippert, Jean-Bernard Stefani

To cite this version:
Christophe Rippert, Jean-Bernard Stefani. THINK: A Secure Distributed Systems Architecture.. 10th
ACM SIGOPS European Workshop, Sep 2002, St Emilion, France. �hal-00310150�

https://hal.science/hal-00310150
https://hal.archives-ouvertes.fr


THINK: A Secure Distributed Systems Architecture

Christophe Rippert Jean-Bernard Stefani
LSR-IMAG laboratory, SARDES project, CNRS-INPG-INRIA-UJF�

Christophe.Rippert, Jean-Bernard.Stefani � @inria.fr

1 Introduction

In this paper, we present THINK, our distributed systems
architecture, and the research we have conducted to provide
the system programmer with an architecture he can use to
build efficient and secure operating systems. By specifying
and implementing elementary tools that can be used by the
system programmer to implement a chosen security policy,
we prove that flexibility can be guaranteed in an operating
system without compromising security. Our work focuses
on protection against denial of service attacks which com-
promise the system fairness in resource multiplexing and
can cause the system to stall due to resource starvation.

We first briefly describing the THINK architecture before
positioning our contribution against related work. We then
present the elementary tools we have specified to ensure
quality of service in THINK, before detailing the software
memory isolation tool we have implemented and tested. We
conclude by a concrete example of the utilisation of these
tools.

2 The THINK architecture

2.1 Presentation

The distributed systems architecture THINK is a platform
for the development of distributed operating systems ker-
nels. The goal of the THINK architecture is to ease the de-
velopment of efficient, flexible, and secure operating sys-
tems. THINK provides the system programmer with inter-
faces that reify the underlying hardware, and optional sys-
tem abstractions proposed as libraries. The development of
a kernel with THINK is made easier by its object-oriented
framework, since in THINK, all resources (both hardware
and software) are considered as objects. These objects ex-
port interfaces which define their behaviour and make them
accessible to other objects. Each interface has a name in a
given naming context, and is linked to other interfaces by
bindings. A binding is essentially a communication chan-
nel between two objects. These bindings can take many
forms, as simple as the association between a variable name

and its value, or more complex like a binding over a net-
work between two objects on different machines. Bindings
are created by dedicated objects called binding factories,
those main function (i.e. creating bindings) can be freely
extended to enforce a chosen behaviour. Finally, objects
can be grouped in domains according to a common prop-
erty (e.g. security domains, fault-domains, etc). A more
detailed presentation of THINK can be found in [1].

2.2 Related work

Compared to the OSKit [2] framework and set of li-
braries, THINK provides a better flexibility since all com-
ponents are independent. The KaffeOS [3] project proposes
some techniques to preserve quality of service in a Java en-
vironment, using the type safety properties of the language.
Similarly, the SPIN [4] extensible operating system uses the
properties of the Modula-3 language to permit the safe bind-
ing of modules in the operating system. In THINK, we aim
to remain independent of the component development lan-
guage. In the DTOS [5] project, policy-neutral security is
enforced by way of security servers, which check that inter-
component calls are allowed. This requires a modification
of the component code, whereas in THINK, binding facto-
ries can make the security checks, which ensures a complete
independence of the component code. The Scout/Escort [6]
project focuses on protection against denial of service at-
tacks by defining the I/O path abstraction. However, this
does not take into account the resources allocated in the
operating system kernel, whereas in THINK, we aim to-
ward a global view of the resources which enable the sys-
tem to associate each allocated resource with the benefit-
ing user. This point of view is close to the resource con-
tainers abstraction [7], although this work has been con-
ducted in monolithic kernels whereas in THINK we advo-
cate a more modular architecture. The exo-kernel [8] advo-
cates the same philosophy of a minimalist kernel, although
it does not propose an object framework for the components
as in THINK. Finally, the memory isolation tool presented
below is inspired from software fault isolation [9], but in
THINK we are able to isolate a single process whereas soft-



ware fault isolation works with binary object files represent-
ing a whole module.

3 Preserving quality of service

The THINK architecture offers an unparalleled flexibil-
ity for the construction of operating system kernels, since
it allows access to the hardware through policy-neutral in-
terfaces and provides all system abstractions as optional li-
braries. However, this flexibility must not imply a lack of
security in the system. Denial of service attacks are a seri-
ous threat to operating systems since they can compromise
the fairness of resource multiplexing, thus favouring some
users at the detriment of others, or even preventing the sys-
tem from functioning at all. Therefore our goal in THINK

is to provide the system programmer the elementary tools
he needs to build a system in which quality of service can
be ensured. However, these tools must remain completely
independent of the multiplexing policy chosen by the sys-
tem programmer. More precisely, the tools must not re-
strict the programmer’s freedom to implement the quality
of service policy he deems best for his system. To achieve
that, we base our analysis on four hardware resources which
should be present in most devices: a processor, some kind of
volatile memory (e.g. random access memory), some kind
of persistent memory (e.g. a hard drive), and a network.
We propose some elementary tools for each resource before
detailing the software memory-isolation technique imple-
mented in THINK and presenting a concrete example of the
use of these tools.

3.1 Analysis of the four key hardware resources

The processor: Fair sharing of the processor time re-
quires a way to preempt processes, usually by way of inter-
rupts. Since most processors provide some kind of interrupt
management, all there is to do is to reify this manager with
fitting interfaces. It is also necessary to protect the meth-
ods used to register interrupt handlers, to prevent a misbe-
having application from illegally installing its own interrupt
handler. This can easily be achieved in the THINK frame-
work by securing the bindings and the binding factories. For
instance, bindings can be made unforgeable by using cryp-
tography and cyclic redundancy checking, and binding fac-
tories can use a standard capability system to check which
process can create a binding with a given resource.

Volatile memory: To implement the notion of security
domains, we need a way to isolate components or groups
of components from each others. Since hardware isola-
tion is usually deemed inflexible and very costly for context
switches, we have implemented in THINK a software mem-
ory isolation tool, based on segment matching and code

splicing techniques. This tool is implemented as an op-
tional library so as to enable the system programmer to use
the hardware isolation provided by the memory manage-
ment unit of the processor if he prefers so. To permit cross-
domains calls, the binding factories can be used to ensure
that a component will call (i.e. create a binding with) only
authorized methods from other components.

Persistent memory: A fair sharing of the storage space
can be easily implemented using classical disk quotas.
However, this does not protect against a malicious program
which would make repetitive reads and writes of big files
to slow down the disk accesses of other applications. Lots
of work has been conducted in the field of disk scheduling,
basing reordering of disk accesses on criteria like the order
of arrival of the request, the localisation of the requested
sector on the disk, or the real-time constraints of the re-
quest. To protect the system against disk access flooding at-
tacks, these algorithms can be modified to take into account
security constraints. For example, a scheduling algorithm
can collect statistics on the processes accessing the disk and
reorganize the requests so as to treat those coming from
identified monopolizing processes after those from normal
processes. In THINK, this statistic gathering disk scheduler
can easily be programmed as a library component which
the programmer can link with his own component in which
the disk scheduling policy is defined. Thus, we ensure a
complete independence of the policy (implemented by the
programmer in his component) and the tool (provided by
THINK as an optional library).

The network: Fair sharing of the network bandwidth be-
tween the processes is a basic quality of service tool which
can be easily parameterized to enforce any chosen band-
width multiplexing policy and can evolve dynamically as
process priorities change. However, the major threat re-
mains the SYN flooding attacks, which have become a
common danger for Internet services and especially Web
servers. No complete solution has yet been found to pro-
tect systems against these attacks but some steps can be
taken to lessen the risk of flooding the backlog queue. First,
the server can filter packets with source IP addresses obvi-
ously forged. A sentry can also count the number of con-
nections in SYN RECEIVED state and empty the backlog
queue before it is saturated. This does not prevent legiti-
mate connections from failing since they will be cancelled
when the queue is emptied, but it protects against a back-
log queue overflow which might results in a system crash.
It is also possible for the server to learn from attacks: if
more than a fixed number of SYN packets coming from
the same IP address have been discarded because the cor-
responding ACK packet did not came in time, the server
can consider that address to be spoofed and drop all subse-



quent SYN packets coming from it. Finally, SYN cookies
[10] can be implemented too, as an optional tool consider-
ing the TCP protocol incompatibilities that they induce. In
THINK, these tools should be implemented in the binding
factories, since flooding a server with connection requests
is equivalent with flooding a binding factory with requests
for bindings with a remote component.

3.2 A software isolation mechanism

We present here the software isolation mechanism we
have developed in THINK to implement the notion of secu-
rity domains. This mechanism was implemented on a Pow-
erPC processor, but it should be easy to port to any RISC
machine.

The algorithm we use to enforce process isolation is
based on code-splicing and segment-matching. The goal is
to generate code for every memory-access to verify that the
access is in an allowed area. This code generation takes
place when a process is created at runtime and its code
loaded in memory, so as to hide the delay induced by the
code parsing and code generation within the process cre-
ation delay. When the process code is loaded into memory
by the system, the algorithm parses it and generates code
to check the address points to an allowed area (this area is
identified by its lower and upper limits, which are here held
in two dedicated registers). The checking code cannot be
directly inserted in the initial code since we are working on
raw binary code which would make address translation very
difficult and costly. Therefore the generated code is stored
in a dedicated memory area and the initial code is modi-
fied to replace the memory access by a branch to this gener-
ated code. This algorithm can be optimized for instructions
with the address encoded in them, like some branches on
the PowerPC for example. In that case, the check is made
when the initial code is parsed and a process containing an
illegal access will not be executed at all.

All the benchmarks we have conducted were executed on
a PowerPC G4 866 MHz with 384 MB of SDRAM PC100
memory. All test programs were compiled with gcc us-
ing the -O option for optimizing the memory accesses by
putting local variables in registers.

Memory consumption: On the PowerPC, the average
size of the generated code for a memory access is 5 instruc-
tions. Obviously, not all instructions in a programme make
memory access, so we monitored the algorithm for a sim-
ple test program to find the average increase. The chosen
test algorithm is a bubble sort program, which can be coded
in 29 assembly instructions, including 9 memory accesses.
Amongst those 9 accesses, 4 are branches those destinations
can be statically checked. This results in a generated code
size of 25 instructions, which is almost has much as the

original code, therefore doubling the program size in mem-
ory. This result can appear to be rather prohibitive, but one
must consider that this increase of memory space required
only applies to the code of the application, not to its data.
Since most applications include much more data than code,
doubling the code size is not so costly as it seems.

Code generation delay: We monitored the delay induced
by the generation of the spliced code when the process is
created in memory. We copied/pasted 1000 times the code
of the bubble sort algorithm, therefore obtaining a code of
29000 instructions and found that the algorithm takes 3.90
ms to complete. Since each PowerPC instruction is 4 byte
long, we obtain a processing time of 28 MB/s (i.e. the algo-
rithm would take 1 second to modify the original code and
generate the spliced code for a 28 MB long original code).
Considering that the most consuming part of the process
creation task is when the code loader in charge of creat-
ing the process accesses the hard drive to read the ELF file,
and that the average read time on a standard hard drive is
15 MB/s, we believe that the processing time of the seg-
ment matching algorithm is acceptable and will not affect
the system performances.

Runtime penalty: We first performed benchmarks for ba-
sic operations. First, we monitored the runtime of a sin-
gle memory access (i.e loading a 32-bit integer from mem-
ory in a register) and found that the runtime is multiplied
by 3.5 with segment matching. This prohibitive cost is
easily understandable, since we add to the runtime of the
memory access the runtime of an addition, two compar-
isons, and two branches. For a local branch, there is no in-
crease since the destination address can be staticaly checked
when the process is created and therefore no code is gener-
ated. Finally, for an absolute branch (such are used in inter-
process calls), the segment matching induce an increase of
+16.67%, which is very competitive compared to the cost
of IPC through hardware isolation. We compared this inter-
process call with an optimised LRPC [11] and found that the
LRPC is more than 25 times slower than our mechanism.

We then monitored the runtime for two significant algo-
rithms. We first sorted 100000 integers with the bubble sort
algorithm and found 56970 ms without segment matching
and 116280 ms with it, resulting in multiplying the runtime
by 2. We then implemented Heron of Alexandria’s square
root computing algorithm (a classical iterative algorithm),
and monitored its performances for ����� computations of the
square root of ����� . The runtime was 6655 ms without seg-
ment matching, and 6758 ms with it, thus an increase of
1.55%. We chose these two standard algorithms because the
bubble sort is representative of algorithms making lots of
memory accesses whereas the square root computing repre-
sents algorithms making very few memory accesses. Thus,



we can conclude that the runtime penalty for the software
memory isolation algorithm will be below +100%, depend-
ing on the frequency of memory access of the application.
As an exemple of a real application, we ported the gzip
data compression algorithm and found an increase of the
runtime of approximately +100%, which is logical since the
LZW algorithm makes heavy use of memory access to man-
age its string table.

Analysis: The prohibitive cost of segment matching
memory accesses clearly reduces the interest of our mecan-
ism for inforcing data confidentiality. On the other hand,
this mecanism is very interesting for IPC, especially com-
pared to hardware isolation. Thus, combined with a secure
framework based on secure binding factories, this mecan-
ism can be used to implement the notion of security do-
mains proposed in the component model on which Think
framework is based. By isolating component with software
memory isolation, we prevent the programmer from directly
calling a remore method with a forged pointer for exemple,
thus forcing him to pass through the binding factories where
security checks can be made.

3.3 Example

We present here the example of a fair scheduler imple-
mented using the elementary security tools presented above.
Considering an application composed of several processes,
the programmer wants to ensure that each process will be al-
located the same amount of time as the others. The first tool
needed is the software memory isolation mechanism, which
is used to define a different protection domain for each pro-
cess, and another one for the scheduler. To be able to in-
terrupt a process execution, the scheduler needs to use the
system clock. So it registers a new interrupt handler for that
hardware resource using the TrapRegistermethod pro-
vided by the interface reifying the interrupts. By doing that,
a binding is created between the scheduler and the clock
object by the binding factory managing the interrupt han-
dlers. But before creating the binding, the binding factory
authenticates the object calling the bind method to ensure
that it is an allowed object (i.e. the scheduler object and
not an application process). Thus, using the tools proposed
by the THINK architecture, the programmer can ensure that
his policy of fair scheduling between the processes will be
enforced.

4 Conclusion

As we have shown in this paper, security can be enforced
in an operating system without sacrificing flexibility. By
providing elementary security tools, the THINK architecture

does not restrict the system programmer’s liberty to imple-
ment whichever security policy suits him best. Combined
with a secure framework based on protected binding facto-
ries, these tools provide the kernel prorammer with all he
needs to build a secure customised system.

Bibliography

1. Jean-Philippe Fassino, Jean-Bernard Stefani, Julia Lawall
and Gilles Muller. THINK: A Software Framework for
Component-based Operating System Kernels. In Proceed-
ings of the USENIX Annual Technical Conference, 2002.

2. Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Al-
bert Lin, Olin Shivers. The Flux OSKit: A Substrate for
Kernel and Language Research. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, 1997.

3. Godmar Back, Wilson C. Hsieh, Jay Lepreau. Processes in
KaffeOS: Isolation, Resource Management, and Sharing in
Java. In Proceedings of the 4th USENIX Symposium on Op-
erating Systems Design and Implementation, 2000.

4. Przemyslaw Pardyak, Brian N. Bershad. Dynamic Bind-
ings for an Extensible System. In Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and Im-
plementation, 1996.

5. Duane Olawsky, Todd Fine, Edward Schneider, Ray Spencer.
Developing and Using a ”Policy Neutral” Access Control
Policy. In Proceedings of the New Security Paradigms Work-
shop, 1996.

6. Olivier Spatscheck, Larry L. Peterson. Defending Against
Denial of Service Attacks in Scout. In Proceedings of the
3rd USENIX Symposium on Operating Systems Design and
Implementation, 1999.

7. Gaurav Banga, Peter Druschel, Jeffrey C. Mogul. Resource
Containers: A New Facility for Resource Management in
Server Systems. In Proceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Implementation,
1999.

8. Dawson R. Engler, M. Frans Kasshoek, James O’Toole
Jr. Exokernel: An Operating System Architecture for
Application-Level Resource Management. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles,
1995.

9. Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan
L. Graham. Efficient Software-Based Fault Isolation. In Pro-
ceedings of the ACM SIGOPS’1993.

10. Jonathan Lemon. Resisting SYN flood DoS attacks with a
SYN cache. In Proceedings of the BSDCon 2002 Confer-
ence.

11. Brian N. Bershad, Thomas E. Anderson, Edward D. La-
zowska, Henry M. Levy. Lightweight Remote Procedure
Call. In ACM Transactions on Computer Systems, Vol. 8,
No. 1, February 1990, pages 37-55.


