
Component isolation in the Think architecture

Christophe Rippert

SARDES project, LSR-IMAG laboratory, CNRS-INPG-INRIA-UJF

INRIA Rhône-Alpes, 655 av. de l’Europe Montbonnot 38334 St Ismier Cedex France

Christophe.Rippert@inria.fr

Abstract

We present in this paper the security features
of Think, an object-oriented architecture dedi-
cated to build customized operating system kernels.
The Think architecture is composed of an object-
oriented software framework including a trader,
and a library of system abstractions programmed as
components. We show how to use this architecture
to build secure and efficient kernels. Policy-neutral
security is achieved by providing elementary tools
that can be used by the system programmer to
build a system resistant to security hazards, and a
security manager that uses these tools to enforce a
given security policy. An example of such a secure
system is given by detailing how to ensure com-
ponent isolation with a elementary software-based
memory isolation tool.

1 Introduction

All-purpose operating system are well suited for ev-
eryday work on workstations and servers, but spe-
cific platforms like embedded systems usually re-
quire a greater flexibility than these systems have
to offer. On the other hand, writing a system from
scratch is a tedious and difficult task that increases
production costs and requires expert programmers.
The Think architecture is a solution to this prob-
lem as it provides an object-oriented framework
and a complete library of operating system abstrac-
tions for the programmer to use when he builds his
system. One of the main advantages of the Think

architecture is the flexibility it provides to the sys-
tem programmer, since all components are optional
and can be loaded and unloaded dynamically. How-
ever, flexibility must not be ensured at the expense

of security and quality of service, especially in sys-
tems where resources are scare.

We present in this paper the work we have con-
ducted in the Think architecture to provide a se-
cure framework. We first present the Think archi-
tecture and its framework. Then we describe the
security manager, a component dedicated to the
management of security policies, and the software-
based memory isolation mechanism we have im-
plemented, and present how they can be used to
provide component isolation. Finally we list some
related works before concluding.

2 The Think architecture

The distributed systems architecture Think is a
platform for the development of distributed oper-
ating systems kernels. The goal of the Think archi-
tecture is to ease the development of efficient, flexi-
ble, and secure operating systems. Think provides
the system programmer with interfaces that reify
the underlying hardware, and optional system ab-
stractions proposed as libraries. The development
of a kernel with Think is made easier by its object-
oriented framework, since in Think, all resources
(both hardware and software) are considered as ob-
jects. These objects export interfaces which define
their behaviour and make them accessible to other
objects. Each interface has a name in a given nam-
ing context, and is linked to other interfaces by
bindings. A binding is essentially a communica-
tion channel between two objects. These bindings
can take many forms, as simple as the association
between a variable name and its value, or more
complex like a binding over a network between two
objects on different machines. Bindings are cre-
ated by dedicated objects called binding factories,



whose main function (i.e. creating bindings) can
be freely extended to enforce a chosen behaviour.
Finally, objects can be grouped in domains accord-
ing to a common property (e.g. security domains,
fault-domains, etc).

All those concepts are presented in the mini-
mal software framework detailed in Figure 1. Java
is used in Think as the interface description lan-
guage1. The Top interface is the greatest element
in the Think type lattice, the common type from
which all interfaces derive. The Name interface is
the common type for all names in Think. The
method getDefaultNC returns the current naming
context and the method toString provides a seri-
alized form of the name. The NamingContext in-
terface is the common type for all naming contexts
in Think. Its method toName deserializes a name
known as a String. The method export provides
a name for a given interface. As a side effect, it
also creates a binding between the returned name
and the given interface. The BindingFactory in-
terface is the common type for all binding factories
in Think. The method bind creates a binding be-
tween the calling object and the object which name
is given to the method.

The Think framework also includes a simple
trader component. This trader exports two meth-
ods, register and lookup, whose prototypes are
given in Figure 2. The register method per-
mits to publish the reference (i.e. an instance of
Name in Think) to a given service under a sym-
bolic name which eases its localisation and ab-
stracts its implementation. For example, a mem-
ory manager can be registered under the symbolic
name “mem_manager” which other components will
use to locate it. Moreover, the Think architec-
ture supports the registration of multiple services
under the same symbolic name. For example, the
symbolic name “mem_manager” can represent two
different memory manager, one for flat memory
and one for paged memory. The lookup method
is used to find the reference to a service known by
its symbolic name. The second parameter, hints,

1The choice of the Java language as an IDL was guided
both by the will to use a language known by a large number
of programmers, and also considering the fact that we are
currently working on a new version of the Think architecture
in which application level components will be fully written
in Java and compiled to binary code by way of a dedicated
Java to C compiler.

interface Top {

}

interface Name {

NamingContext getDefaultNC();

String toString();

}

interface NamingContext {

Name toName(String name);

Name export(Top itf);

}

interface BindingFactory {

Top bind(Name name);

}

Figure 1: The core software framework in Think.

is used to specify which service is wanted in case
of multiple registration under the same symbolic
name. For example, in the previous example of
two memory managers, the programmer could call
lookup(‘‘mem_manager’’, ‘‘flat’’) to obtain
the Name of the flat memory manager.

interface Trader {

void register(Name name,

String symbName);

Name lookup(String symbName,

String hints);

}

Figure 2: The Trader component interface.

A more detailed presentation of the Think

framework can be found in [1].

3 Protection in the Think ar-

chitecture

The Think architecture permits to build flexible
and adaptable systems. However, security is a crit-
ical issue in a modern operating system and should
not be compromised by flexibility. We are work-
ing to provide in the Think architecture the tools
necessary for the system programmer to build a
secure system which offers protections of data and



resistance to denial of service (DoS) attacks. These
tools must be policy-neutral so as not to compro-
mise the flexibility of the system. On the other
hand, the system programmer must be able to de-
fine the security policy that suits his system best
and have it enforced. We present here the security
manager, a component dedicated to manage and
enforce security policies, and an elementary secu-
rity tool, a software-based memory isolation mech-
anism, and show how these two entities can be com-
bined to provide component isolation in the Think

framework.

3.1 The security manager

The security manager is the key component in
Think security framework. It is responsible for
managing the security policy defined by the sys-
tem programmer. This policy specifies how the
system should react when confronted to security
hazards. The security manager uses the elemen-
tary tools implemented in the kernel to enforce the
given policy. Thus, the tools remain completely
policy-neutral and only the security management
is concerned with the details of the security policy.

The security manager is represented here as a
centralised entity as a simplification, but it can
also be distributed. A distributed security manager
can be seen as a federation of elementary security
managers, each one managing a security domain in
the system. For example, if the policy specified by
the programmer includes a global resource alloca-
tion scheme, it is possible to associate a security
manager with each resource in the system. Each
elementary security manager then manages its re-
source, and global decisions are made by a cen-
tral security manager responsible for managing the
global policy, but not concerned with the details of
each resource management.

The language used to express the security policy
is obviously a key element in this architecture. To
manage the QoS in a system for example, the secu-
rity manager must find a compromize between the
requests of the various applications which need to
use resources, and the current resource allocation
state in the system, all the while taking into ac-
count the general guidelines specified in the security
policy. This requires a constraint solving algorithm
based on a constraint declaration language which
enables the system programmer to easily specify

the security policy he wants to enforce. One again,
a distributed security manager is probably more
appropriate than a centralised one, since each el-
ementary security manager needs then to resolve
only the constraints linked to the resource it man-
ages and so can be specialised and more efficient.
Some work remains to be done on that topic, but
we believe that Domain Specific Languages [2] are
the right tool for that purpose.

3.2 Software memory isolation

The software memory isolation mecanism imple-
mented in Think consists of parsing the process
code at creation time, and replace each memory
access (i.e. load, store and branch instructions) by
a call instruction to a well-known label in the se-
curity manager. This label is the entry point of a
method whose task is to check that the destination
address of the checked instruction is in a memory
area which the process can access. The calling pro-
cess can easily be identified by the return address
which is stored on the stack or in a dedicated regis-
ter by the call instruction, since this address must
point to a memory area which belongs to the call-
ing process. The checking method of the security
manager then access a table where the replaced in-
struction has been stored, and according to its type
(i.e. a store, a load or a branch), check that it has
the right to do what it is supposed to do (i.e. a
process can access a read-only area with a load but
not with a store or a branch). If the access is al-
lowed, it is executed and then execution goes back
to the calling process. Otherwise, an exception is
thrown.

This permission checking is fully customizable by
the system programmer which defines the chosen
security policy managed by the security manager.
Thus, he can define memory areas with different
permissions on a per-process basis. For example,
an area which a component can branch but not
read or write to can be seen as an execution-only
area, just as some hardware isolation mecanisms
permit to define execute-only segments for applica-
tion code. However, in the case of hardware iso-
lation, permissions are usually globally fixed (i.e.
if a segment is tagged as read-only, then no pro-
cess in the system can write to that segment, be



it a system or an application process2). Our soft-
ware isolation mecanism on the other hand permits
to define permissions on a per-process basis: since
permission checking is done by changing code in the
process itself, the same memory area can be tagged
as read-only for one process and execution-only for
another one for example, thus achieving a complete
flexibility in the isolation of components.

We present how to use the Think framework to
isolate components by detailing a simple example.
Considering two components, a client component
and a server component, we want to ensure that
the client component which wants to call the alloc
method exported by the server component is al-
lowed to do it by the security policy defined by the
system programmer. The figure 3 illustrates this
example. The sequence of actions necessary to call
the alloc method is detailled below:

Component
Client Server

Component

registerlookup

bind

call

Trader

forwarded_call

Binding

Factory

check

Manager

check
Security

Figure 3: Software framework for component isola-
tion

1. The server component registers itself in the
trader, thus exporting the alloc method
through its interface.

2. The client component uses the lookup method
of the trader to find the service provided by the
server component.

3. The client component requests the creation of
a binding between itself and the server compo-
nent to the local binding factory.

2Some architectures (e.g. the Intel ia32 architecture) per-
mit to define privilege levels for processes of different classes
(e.g. kernel, system services, applications, ...), but this usu-
ally remains very restricted (the Intel ia32 architecture de-
fines only 4 different privilege levels for example)

4. The binding factory checks that the client com-
ponent has the right to create a binding with
the server component.

5. The client component calls the security man-
ager which checks that the client has the right
to call the alloc method. If the securiy policy
allows it, then it forwards the call to the alloc
method of the server component.

Compared to inter-process communication over
hardware isolation, software-based memory isola-
tion has proven its efficiency (see [3] section 5). In
our architecture, we monitored the cost of an abso-
lute branch instruction with software-based mem-
ory isolation and found that the increase of the ex-
ecution time was only of +16.67%. We compared
this inter-process call with an optimised LRPC [4]
implemented over hardware isolation in Think and
found that the LRPC is more than 25 times slower
than our mechanism.

4 Related work

Compared to the OSKit [5] framework and set of
libraries, Think provides a better flexibility since
all components are independent. The KaffeOS [6]
project proposes some techniques to preserve qual-
ity of service in a Java environment, using the
type safety properties of the language. Similarly,
the SPIN [7] extensible operating system uses the
properties of the Modula-3 language to permit the
safe binding of modules in the operating system.
In Think, we aim to remain independent of the
component development language. In the DTOS
[8] project, policy-neutral security is enforced by
way of security servers, which check that inter-
component calls are allowed. This requires a mod-
ification of the component source code, whereas in
Think, binding factories can make security checks,
and the binary code of the component is modified
by the software-based memory isolation mechanism
without needing any modification of the component
source code. The Scout/Escort [9] project focuses
on protection against denial of service attacks by
defining the I/O path abstraction. However, this
does not take into account the resources allocated
in the operating system kernel, whereas in Think,
we aim toward a global view of the resources which



enable the system to associate each allocated re-
source with the benefiting user. This point of view
is close to the resource containers abstraction [10],
although this work has been conducted in mono-
lithic kernels whereas in Think we advocate a more
modular architecture. The exo-kernel [11] advo-
cates the same philosophy of a minimalist kernel,
although it does not propose an object framework
for the components as in Think. Reflective oper-
ating systems such as Apertos [12] also propose a
philosophy close to ours since they give to appli-
cations a “grey-box” view of the system and some
means to customize it as needed, but they seldom
go as far as the Think architecture which provides
full access to the low levels of the system (if the
security policy allows it of course) and advocates
a “white-box” view of the kernel closer to the exo-
kernel architecture.

5 Conclusion and future work

As we have seen in this paper, the Think architec-
ture can be used to build flexible and secure oper-
ating systems. The software-based memory isola-
tion mechanism presented here is one of the policy-
neutral elementary tools provided in the Think

architecture. Coupled with Think component-
based framework and high-level abstractions like
a policy-aware security manager, these tools make
the Think architecture a valuable base for the sys-
tem programmer to build a secure and DoS attack
resistant system. With that secure and flexible
framework, we believe that the Think architecture
is a fitting tool for the building of customised and
efficient operating system kernels.

References

[1] Jean-Philippe Fassino, Jean-Bernard Stefani, Ju-
lia Lawall and Gilles Muller. THINK: A Software
Framework for Component-based Operating Sys-
tem Kernels. In Proceedings of the USENIX An-
nual Technical Conference, 2002.

[2] A. van Deursen, P. Klint, and J. Visser. Domain-
Specific Languages – An Annotated Bibliography.
ACM SIGPLAN Notices, 2000.

[3] Robert Wahbe, Steven Lucco, Thomas E. An-
derson, Susan L. Graham. Efficient Software-

Based Fault Isolation. In Proceedings of the ACM
SIGOPS’1993.

[4] Brian N. Bershad, Thomas E. Anderson, Edward
D. Lazowska, Henry M. Levy. Lightweight Remote
Procedure Call. In ACM Transactions on Com-
puter Systems, Vol. 8, No. 1, February 1990, pages
37-55.

[5] Bryan Ford, Godmar Back, Greg Benson, Jay Lep-
reau, Albert Lin, Olin Shivers. The Flux OSKit:
A Substrate for Kernel and Language Research.
In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[6] Godmar Back, Wilson C. Hsieh, Jay Lepreau. Pro-
cesses in KaffeOS: Isolation, Resource Manage-
ment, and Sharing in Java. In Proceedings of the
4th USENIX Symposium on Operating Systems
Design and Implementation, 2000.

[7] Przemyslaw Pardyak, Brian N. Bershad. Dynamic
Bindings for an Extensible System. In Proceedings
of the 2nd USENIX Symposium on Operating Sys-
tems Design and Implementation, 1996.

[8] Duane Olawsky, Todd Fine, Edward Schneider,
Ray Spencer. Developing and Using a “Policy Neu-
tral” Access Control Policy. In Proceedings of the
New Security Paradigms Workshop, 1996.

[9] Olivier Spatscheck, Larry L. Peterson. Defending
Against Denial of Service Attacks in Scout. In Pro-
ceedings of the 3rd USENIX Symposium on Oper-
ating Systems Design and Implementation, 1999.

[10] Gaurav Banga, Peter Druschel, Jeffrey C. Mogul.
Resource Containers: A New Facility for Resource
Management in Server Systems. In Proceedings of
the 3rd USENIX Symposium on Operating Sys-
tems Design and Implementation, 1999.

[11] Dawson R. Engler, M. Frans Kasshoek, James
O’Toole Jr. Exokernel: An Operating System Ar-
chitecture for Application-Level Resource Manage-
ment. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, 1995.

[12] Yasuhiko Yokote. The Apertos Reflective Operat-
ing System: The Concept and Its Implementa-
tion. In Proceedings of the 7th ACM conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 1992.


