
HAL Id: hal-00310126
https://hal.science/hal-00310126v1

Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-Oriented Programming with Sharing:
Containment is not Ownership

Daniel Hirschkoff, Tom Hirschowitz, Damien Pous, Alan Schmitt,
Jean-Bernard Stefani

To cite this version:
Daniel Hirschkoff, Tom Hirschowitz, Damien Pous, Alan Schmitt, Jean-Bernard Stefani. Component-
Oriented Programming with Sharing: Containment is not Ownership. Generative Programming and
Component Engineering (GPCE), 2005, Tallinn, Estonia. pp.389-404, �10.1007/11561347_26�. �hal-
00310126�

https://hal.science/hal-00310126v1
https://hal.archives-ouvertes.fr

Component-Oriented Programming with Sharing:

Containment is not Ownership

Daniel Hirschkoff1, Tom Hirschowitz1, Damien Pous1, Alan Schmitt2, Jean-Bernard

Stefani2

(1) LIP ENS Lyon, 46, Allée d’Italie 69364 Lyon Cedex 07 - France

(2) INRIA Rhône-Alpes, 655 Avenue de l’Europe, 38334 St Ismier, France

Abstract. Component-oriented programming yields a tension between higher-

order features (deployment, reconfiguration, passivation), encapsulation, and

component sharing. We propose a discipline for component-oriented program-

ming to address this issue, and we define a process calculus whose operational

semantics embodies this programming discipline. We present several examples

that illustrate how the calculus supports component sharing, while allowing

strong encapsulation and higher-order primitives.

1 Introduction

Wide-area distributed systems and their applications are increasingly built as heteroge-

neous, dynamic assemblages of software components. This modular structure persists

during execution: such systems provide the means to control their run-time modular

configuration, which encompasses automatic deployment, unanticipated evolution, pas-

sivation, run-time reconfiguration, and introspection. This expressive power conflicts

with the strong encapsulation properties generally expected from modular programs.

A key tension point is component sharing, which allows two remote components

to encapsulate a common component, as depicted in Figure 1, where the component

L (e.g. a software library) is shared among C and D. How does one preserve encap-

sulation in this case? In particular, what happens to L and D if A removes C from

the configuration? How can C replace L by L′, without necessarily impacting D? Es-

sentially, the difficulty lies in combining (1) encapsulation with fine-grain, objective

control over communications, (2) locality passivation, migration, and replication, and

(3) access to shared components with simple communication rules.

Previous models of component-oriented programming do not completely address

these three requirements. Models that do not address requirement (3) comprise process

calculi with hierarchical localities that feature local communications only (i.e., no di-

rect communication between arbitrarily distant localities in the locality forest) [5, 4, 14,

3, 8, 18]. Indeed, sharing is representable in such models, but at the expense of com-

plex routing rules which are difficult to maintain. Models that do not have this routing

complexity problem, but are weak on requirement (1), include the Cell calculus [15]

and process calculi with localities that do not restrict communications betwen locali-

ties [10, 12, 20, 19, 11, 1, 16]. The tKlaim calculus [9] is a recent variant of Klaim

that allows the establishment of different communication topologies between localities.

A D

B C

L L

F

Fig. 1. A configuration with sharing

However, such calculus still falls short of full encapsulation of sub localities, since there

is no objective control over process migration and execution.

Our starting point to solve the issue of component sharing is that, from the stand-

point of the latter kind of models (weak on (1)), the problem is reminiscent of the

aliasing problem in object-oriented languages [13]: sharing is easy, but encapsulation

is problematic. To solve this problem, Clarke et al. introduce ownership types [6, 7],

which attribute to each object o an owner that controls the references to o. We adapt

this idea of ownership to the setting of process calculi. However, instead of designing a

type system to preserve encapsulation, we enforce it at the level of the operational se-

mantics, as follows. We split the usual hierarchical forest of localities into two graphs:

the ownership forest and the containment graph. Locality passivation must be local for

the ownership forest, and communication must be local for the containment graph. As

in type systems for ownership, we require, by scoping constraints in our semantics,

that owners be dominators: the owner of a component c dominates (in the ownership

forest) all the components holding references to c. Owing to this condition, the alias-

ing problem does not arise: when updating a component c, its owner has access to all

references to c. Moreover, the containment graph may be an arbitrary directed graph,

which allows component sharing. The resulting language, an extension of the Kell cal-

culus [18], turns out to be an interesting model of component-oriented programming,

as we show by encoding key aspects of the Fractal component model [2].

Our main contributions are as follows: (1) we propose a programming discipline

for component-oriented programming to address the issue of component sharing, while

preserving encapsulation and higher-order features; (2) we define a process calculus

whose operational semantics embodies this programming discipline; (3) we argue that

our calculus is suitable to represent most idioms of component-oriented programming,

by reviewing key concepts from a concrete component model; (4) additionally, we pro-

pose a new, more modular, presentation of the Kell calculus.

The paper is organized as follows. §2 briefly presents the Fractal model, discusses

the modeling of Fractal components in the Kell calculus, and introduces informally sev-

eral examples of component sharing. §3 extends the Kell calculus with primitive com-

ponent sharing. §4 shows how to program several component sharing examples within

the obtained calculus. §5 concludes the paper with a discussion of future research.

2 Components and the Kell calculus

After giving an informal description of the Kell calculus [18], which is our starting

point, we present the main elements of a concrete component model, the Fractal

model [2]. We discuss to which extent Fractal component configurations without

sharing can be interpreted as processes of the Kell calculus. We then present various

examples of component configurations with sharing, and explain informally how we

extend the Kell calculus with sharing to deal with these examples.

2.1 The Kell calculus

The Kell calculus is a higher-order process calculus with hierarchical localities (called

kells), local communication, and locality passivation. Actions in the Kell calculus are

communication actions and passivation actions. Communication is said to be local as it

may occur only within a kell, between a kell and its sub kells, or between a kell and its

immediate parent, as illustrated below.

1. Receipt of local message a〈Q〉.T on port a bearing process Q and continuation T
by local trigger (input construct) a〈x〉 ⊲ P .

a〈Q〉.T | (a〈x〉 ⊲ P) → T | P{Q/x}

2. Receipt of message a〈Q〉.T residing in sub kell b by local trigger a↓〈x〉 ⊲ P .

b[a〈Q〉.T].S | (a↓〈x〉 ⊲ P) → b[T].S | P{Q/x}

In pattern a↓〈x〉, the arrow ↓ denotes a message that should come from a sub kell.

3. Receipt of message a〈Q〉.T residing out of the enclosing kell by local trigger

a↑〈x〉 ⊲ P .

a〈Q〉.T | b[a↑〈x〉 ⊲ P].S → T | b[P{Q/x}].S

In input pattern a↑〈x〉, the arrow ↑ denotes a message that should come from the

outside of the immediately enclosing kell.

These constructs may be combined using join patterns [10] that are triggered only

when the required messages are simultaneously present, as in the following example

(note that | has higher precedence than ⊲).

a〈Q〉.T | b[c〈R〉.U | (a↑〈x〉 | c〈y〉 ⊲ P)].S → T | b[U | P{Q/x, R/y}].S

Communication with other localities has to be explicitly programmed in the lan-

guage. For instance, in order to exchange messages, two sibling kells need the help of

their common parent, as depicted in the following example.

a[(c↓〈x〉 ⋄ c〈x〉) | b[c〈P 〉.Q] | e[(c↑〈x〉 ⊲ T)]]

→ a[(c↓〈x〉 ⋄ c〈x〉) | c〈P 〉 | b[Q] | e[(c↑〈x〉 ⊲ T)]]

→ a[(c↓〈x〉 ⋄ c〈x〉) | b[Q] | e[T{P/x}]]

In this example, the parent locality contains a permanent forwarder c↓〈x〉 ⋄ c〈x〉
that pulls messages of the shape c〈P 〉 out of its sub kells. This allows sub kells to

receive these messages using an up pattern c↑〈x〉. The construction (ξ ⋄ P) denotes a

replicated trigger, i.e., a trigger which persists after a reaction, and is in fact a shorthand

for νt.Yt,ξ,P | t〈Yt,ξ,P 〉, where Yt,ξ,P = (t〈y〉 | ξ ⊲ P | y | t〈y〉).
Passivation in the Kell calculus is depicted in the following example, where the kell

named a is destroyed, and the process Q it contains is used in the guarded process P .

a[Q].T | (a[x] ⊲ P) → T | P{Q/x}

Assume, for instance, that we want to model the dynamic update of component b, where

the new version P of the component program is received on channel a. We could do

so, in one atomic action, using the following join pattern where the new version b[P] is

spawned, replacing the previous b component.

a〈P 〉 | (a〈x〉 | b[y] ⊲ b[x]) | b[Q] → b[P]

2.2 The Fractal component model and its interpretation in the Kell calculus

Fractal is a general component model which is intended to implement, deploy, monitor,

and dynamically configure complex software systems, including in particular operating

systems and middleware. This motivates the main features of the model: composite

components (to have a uniform view of applications at various levels of abstraction),

introspection capabilities (to monitor and control the execution of a running system),

and re-configuration capabilities (to deploy and dynamically configure a system).

A Fractal component is a run-time entity which is encapsulated, which has a dis-

tinct identity, and which is either primitive or composite (built from other components).

Bindings between components are described explicitly, either by local, primitive bind-

ings, using explicit component interfaces, or by remote, composite bindings, using com-

ponents whose role is to embody communication paths. Features like encapsulation and

interfaces are rather standard. The originality of the Fractal model lies in its reflective

features and in its ability to define component configurations with sharing. In order to

allow for well scoped dynamic reconfiguration, components in Fractal can be endowed

with controllers, which provide a meta-level access to a component internals, allowing

for component introspection and the control of component behaviour. A Fractal com-

ponent consists of two parts: contents, that correspond to its internal components, and

a membrane, which provides so-called control interfaces to introspect and reconfigure

the internal features of the component. The membrane of a component is typically

composed of several controllers.

Representing a Fractal component (without sharing) in the Kell calculus is rela-

tively straightforward. A component named a, takes the form a[P | Q], where pro-

cess P corresponds to the membrane of the component, and process Q, of the form

c1[Q1] | . . . | cn[Qn], corresponds to the contents of the component, with n sub com-

ponents c1 to cn. Interfaces of a component can be interpreted as channels on which a

component can emit or receive messages. The membrane P is composed of controllers

implementing the control interfaces of the component.

The Fractal model specifies several useful forms of controllers, which can be com-

bined and extended to yield components with different reflective features. Let us briefly

describe some of them, and sketch their interpretation in the Kell calculus.

An attribute of a component is a configurable property that can be manipulated

by the means of an attribute controller. It can be interpreted as some value held in a

memory cell by a component membrane. A membrane providing an attribute controller

interface is easy to program, by emitting the current value of the attribute on a private

channel and by providing channels to read and update this value.

νs.(get↑〈r〉 | s〈v〉 ⋄ s〈v〉 | r〈v〉) | (set↑〈v′〉 | s〈v〉 ⋄ s〈v′〉) | s〈0〉

A contents controller supports an interface to list, add, and remove sub components

in the contents of a component. A membrane providing a simplistic contents controller

interface could be of the form Add | Rmv | . . ., with the following definitions (in which

the contents controller interface is manifested by the cc channel carrying the request

type (where \add means a name that is exactly add), the name c of the targetted com-

ponent, and either the program of the added component (including both membrane and

contents) or a channel r to return the removed component).

Add =(cc↑〈\add , c, x〉 ⋄ c[x]) Rmv =(cc↑〈\rmv , c, r〉 ⋄ (c[x] ⊲ r〈c, x〉))

A less simplistic encoding would take into account additional details, such as exception

conditions (e.g, the possible absence of a component to remove). However, the above

definitions convey the essence of the contents controller.

A life-cycle controller allows an explicit control over the execution of a component.

As an illustration, we can define a membrane P providing a simple interface to suspend

and resume execution of sub components (where the life-cycle interface is manifested

by the lfc channel, and a sub component c is supended by turning it into a message on

a channel of the same name as the component).

P =Suspend | Resume | . . . Suspend =(lfc↑〈\suspend , c〉 ⋄ (c[x] ⊲ c〈x〉))

Resume =(lfc↑〈\resume, c〉 ⋄ (c〈x〉 ⊲ c[x]))

Again, a more realistic implementation would be more complex, but this section only

aims to show that capturing the operational essence of a reflective component model

such as Fractal (without component sharing) is relatively direct using the Kell calculus.

For another example, Schmitt and Stefani [17] provide an interpretation of a binding

controller, allowing a component to bind and unbind its client interfaces to server inter-

faces.

2.3 Component sharing

Component sharing arises in situations where some resource must be accessed by sev-

eral client components. A first example of such a situation is that of a log service, which

merely provides client components the ability to register status information. Figure 1

depicts an example configuration, where L is the log service component, and C and D
are client components. In this case, communications are unidirectional, from the client

Y

i∈I;j∈Ji

mij

h

(msg 〈k, l, x〉 ⋄ ni〈k, l, x〉) | (n↑
i 〈\i, \j, x〉 ⋄ x) | Pij

i

| R

2

4

Y

i,j∈I;i6=j

(n↑
i 〈\j, l, x〉 ⋄ nj〈j, l, x〉)

3

5 |
Y

i∈I

(n↓
i 〈k, l, x〉 ⋄ ni〈k, l, x〉)

Fig. 2. A router configuration

components to the shared component, and the log service maintains its own mutable

state. Passivation of a client does not affect the execution of the log service or the pro-

cessing of logging requests previously sent by that client.

Figure 1 can illustrate as well a second example of component sharing, that of a

shared programming library or module. In this case, the communication between client

components C and D and the library L is bidirectional (typically, a request/response

style of communication). The expected behavior in presence of passivation is different

from the first example: if a client is passivated, requests to functions in the library should

be suspended along with the rest of the client activity.

As a third example, consider a database service used by several components of a

system (for instance, a directory service), which can again be depicted as in Figure 1.

Here, the communications between clients and the service are bidirectional, but they are

no longer independent as in the previous example, for the database service maintains a

mutable state that can be viewed and updated by each client component.

The previous examples correspond to pure software architectures and describe con-

figurations on a single machine. One can also consider mixed software/hardware con-

figurations. For instance, consider the case of a router R connecting several networks

Ni with i ∈ I . Each network Ni connects machines mij with j ∈ Ji. There are several

ways to model such a configuration in the Kell calculus without sharing. If one wants to

model the networks as components and have messages be directly exchanged between

machines and the networks, and between the networks and the router, then the locality

of communications and the tree structure of kells impose the following shape:

R

∏

i∈I

Ni

 ∏

j∈Ji

mij [. . .]

where
∏

i∈I Pi means the parallel composition of the processes Pi.

Such an approach is not satisfactory because the passivation of the router or of a

network, e.g., to model their failure, implies the passivation of several machines. A

solution consists of modelling a network Ni by a channel ni, as in Fig.2. Machines

send outbound messages on the channel msg with the destination machine address k, l,
where k is the destination network, and the message to deliver x. Each machine mij

contains a rule that forwards such messages to the local network ni. Each network

Ni is represented by the replicated pulling of messages on ni out of sub kells. The

A D

B C

L

F

*L *L

Fig. 3. A Kell calculus configuration with sharing

router pulls messages that are in a network different from their destination—ni〈k, l, P 〉
with i 6= k—and routes them to the correct network. Finally, every machine mij picks

from the local network the messages that target it using the pattern n↑
i 〈\i, \j, x〉. This

encoding, however, does not model the fact that the networks are disjoint resources

shared by the machines and connected by a router.

In this paper, we extend the Kell calculus with explicit sharing, following the ideas

sketched in §1. Technically, in our extension, the ownership forest is captured by the

locality hierarchy. For instance, in configuration C = a[b[P] | c[R | d[Q]]], compo-

nent a is the owner of components b and c, while c is the owner of component d. The

containment graph is captured via references to shared components: thus the process

∗a denotes a reference to the component named a. For instance, in the configuration

D = a[H | b[P | ∗e] | c[R | ∗e] | e[Q]], component a is the owner of component e,

which is shared by components b and c as each of them holds a reference ∗e. The scope

of a component e, where it is accessible by references ∗e, is the sub tree rooted at the

owner of e, unless there is a deeper component named e whose scope encompasses the

reference. Note that the scope does not include e itself. In our extension, a reference

∗e can be created and communicated, exactly as a name. In the latter case, note that

references may escape their original scope: for instance, in the configuration D above,

if H passivates component b, and sends it outside of a, then the reference to the shared

component e will escape its scope. Allowing a component reference to escape its scope

makes it possible to model in a simple way a primitive form of dynamic binding for

shared components. The example of Fig.1 may then be represented in the Kell calculus

with sharing as in Fig.3.

Passivation in the new calculus takes place just as in the Kell calculus without shar-

ing. However, communications across kell boundaries now require a reference to that

kell to receive a message from it or to send a message to it.

b[a〈Q〉.T].S | (a↓〈x〉 ⊲ P) | ∗b → b[T].S | P{Q/x} | ∗b

a〈Q〉.T | ∗b | b[a↑〈x〉 ⊲ P].S → T | ∗b | b[P{Q/x}].S

Process: P ::= 0 | x | P |Q | νa.P | a〈 eP 〉.Q | a[P].Q | ∗a | ξ̃ ⊲ P

Pattern: ξ ::= a[x] | aα〈eη〉 | ∗a

Argument pattern: η ::= x | a | \a | a != b

Place pattern: α ::= • | ↑ | ↓

Formula: F ::= ǫ | r | r⊥ | F |F

Resource: r ::= fM | a↓(fM) | a↑(fM) | a[P] | ∗a | a | s

Spot: s ::= ⊲ | a[⊲] | [⊲]

Message: M ::= a〈 eP 〉

Fig. 4. Processes and formulas

3 The calculus

The syntax of the calculus is depicted in Figure 4. It is based on a denumerable set of

variables x and a denumerable set of names a. Processes include the standard null pro-

cess 0, variables x, parallel composition P |Q, and name creation νa.P , plus some less

standard constructs. Messages have the shape a〈P̃ 〉.Q, where P̃ is a list of processes

(we use ·̃ in the following to denote a list of ·’s). In a〈P̃ 〉.Q, Q is called a continuation,

because it is triggered synchronously upon consumption of the message. Kells have the

shape a[P].Q, where a is the name of the kell, P is its contents, and, as for messages,

Q is its continuation. The calculus admits references ∗a as processes, for referencing

remote kells named a, as informally described in §2.3. References are also used to send

names in messages, as illustrated in matching rules M-NAME, M-CST, and M-NEG be-

low. Finally, the calculus features first-class reduction rules, called triggers, which are

written ξ̃ ⊲ P . Here, ξ̃ denotes a list of patterns, where each variable and name is bound

at most once (see the definition of scoping below). A pattern ξ may be a kell pattern

a[x] for passivation of active kells, a reference ∗a, for suppression of containment links,

or a message pattern aα〈η̃〉, for plain communication. In the message pattern, η̃ denotes

a list of argument patterns of the shape x, a, \a, or a != b. The first two kinds of ar-

gument patterns respectively represent input of processes and names. The third kind \a
tests the equality of the corresponding message argument with a. The last kind a != b
checks that the argument is different from b, and inputs it as a. The direction α indicates

where the received message should come from: ↑ messages come from a parent kell, •
messages come from the current kell, and ↓ messages come from a sub kell.

Processes are scoped as follows. Name restriction is a binder, as usual. Moreover,

given a trigger ξ̃ ⊲ P , the defined identifiers DI(ξ̃) of ξ̃ bind in P . We define DI(ξ̃) as

follows. Given an argument pattern η, define DI(x)
∆
= {x}, DI(a)

∆
= DI(a != b)

∆
=

{a}, and DI(\a)
∆
= ∅. Then, let DI(ξ̃) be the disjoint union of all DI(ξ), for ξ in ξ̃,

with DI(a[x]) = {x}, DI(∗a) = ∅, and DI(aα〈η̃〉) the disjoint union of all DI(η),
for η in η̃. Let structural congruence ≡ be the smallest congruence including, as usual,

associativity and commutativity of parallel composition, neutrality of 0 w.r.t. |, extrusion

of name restriction above |, ν, and a[·].P , and renaming of bound variables and names.

Resources The reduction relation is based on a labelled transition system (LTS), whose

labels represent a trade of resources r. As discussed below, such a trade is typically writ-

ten F1 _ F2, where F1 and F2 are formulas, to express that the process undergoing

the transition offers the resources described by F2, provided the environment provides

the resources in F1. In particular, the reacting trigger ξ̃ ⊲ P trades some basic resources

(messages, passivated kells) against a reaction token written ⊲: if the environment pro-

vides the expected resources, then the trigger reacts. When composing processes, the

corresponding transitions are composed, which may involve the annihilation of some

resource requests and corresponding offers, in case they meet.

As defined in Figure 4, there are two kinds of resources. Basic resources include

messages (M̃ | a↓(M̃) | a↑(M̃)), where M ::= a〈P̃ 〉, passivated kells (a[P]), con-

sumed references (∗a), and permissions (a). They are generated directly from processes.

For example, a message a〈P 〉.Q trades a reaction token against a〈P 〉, yielding the tran-

sition a〈P 〉.Q
⊲_a〈P 〉
−−−−−→ Q. As explained in §2.1, we want to control the locality of

communications, so this transition should happen in the same kell as the transition in-

volving the reacting trigger, and trades involving ⊲ should only take place at the same

level as the reaction.

On the other hand, we cannot completely restrict trades to the level of the reaction,

e.g., because the consumed resources may come from shared kells, which syntactically

may reside far above the reaction site. This leads us to consider several kinds of reaction

tokens, each of them determining the position of the considered transition relatively to

the reacting trigger. These reaction tokens are called spots s ∈ Spots.

More precisely, consider a process S|b[a[(ξ ⊲ P)|Q]|R], where the reacting trigger

is ξ ⊲ P . We have just seen that resources matching the reaction token ⊲ provided by

ξ ⊲ P may only come from Q. Immediately above a, i.e., in R, trades may use the

information that the reaction lies in some sub kell named a. Thus, in R, ⊲ is viewed as

the sub reaction token a[⊲]. Further above a, e.g., from S, it becomes the less precise

internal reaction token [⊲], which only indicates that the reaction lies in some sub kell.

Formulas Formulas are the labels of our LTS. Intuitively, they match the resources

offered and requested by the considered process. Formally, formulas are defined as in

Figure 4, and considered equivalent modulo the following equation schemes:

F1|F2 = F2|F1 (1) F |ǫ = ǫ|F = F (2)
r /∈ Spots

r|r⊥ = ǫ
(3) s|s⊥ = s (4) .

Equation (3) specifies that basic resources (non-spots) are used linearly: they may be

consumed only once; (4) specifies that one spot may satisfy several requests, as a join

pattern consumes several messages.

Transitions The LTS is defined in Figure 5. Rule MATCH describes reaction, using

the notion of matching defined below, which is a three arguments judgement written

ξ : F → Θ, where Θ is a substitution. A substitution is an element of (Vars →fin

MATCH

ξ : F → Θ

ξ ⊲ P
F_⊲
−−−→ Θ(P)

REF

∗a
⊲_a
−−−→ ∗a

DOWN

a[fM. eP |P].Q
a_a↓(fM)
−−−−−−→ a[eP |P].Q

UP

∗a|fM. eP
a[⊲]_a↑(fM)
−−−−−−−−→ ∗a| eP

HERE

M.P
⊲_M
−−−−→ P

PASSIVATE

canon(P)

a[P].Q
⊲_a[P]
−−−−−→ Q

SUP

∗a
⊲_∗a
−−−−→ 0

NEW

P
F
−→ Q a /∈ FN(F)

νa.P
F
−→ νa.Q

PAR

P1
F1−−→ P ′

1 P2
F2−−→ P ′

2

P1|P2
F1|F2

−−−−→ P ′
1|P

′
2

BOT

P
ǫ
−→ P

HOT

P
F_s
−−−→ Q

hot(F)
SN(F) # {a} ∪ DN(P)

a[P].R
F_a(s)
−−−−−→ a[Q].R

COLD

P
F
−→ Q

cold(F)
SN(F) # {a} ∪ DN(P)

a[P].R
F
−→ a[Q].R

Fig. 5. The LTS

Processes) × (Names →fin Names), i.e., a pair of a finite map from variables to pro-

cesses and a finite map from names to names. Capture-avoiding substitution is defined

as usual on processes, and written Θ(P). Define the negation F⊥ of a formula F by

distributing it over resources, given that r⊥
⊥

= r. Let F1 _ F2 denote F⊥
1 |F2. The

rule states that if ξ : F → Θ, then the trigger ξ ⊲ P has a transition to Θ(P), under the

label F _ ⊲. Thus, the reaction happens only if the environment provides the resources

F (recall that spot ⊲ stands here for the firing of the trigger).

By rule REF, at the level of a reaction, a reference may generate a permission to

receive messages from the kell it points to. This permission is then used in rule DOWN

to actually consume the corresponding messages. By rule UP, a reference to the reacting

kell allows the reaction to consume messages from the kell holding the reference. By

rules HERE, PASSIVATE, and SUP, a reaction may consume messages, active kells, and

references at its top-level. In rule PASSIVATE, we use the notation canon(P) to mean

that P has no active ν. This means that such ν’s must have been extruded before by

structural congruence. Formally, a context C is a process with exactly one occurrence

of the special variable ✷. Textual replacement of ✷ with some process P (possibly with

capture) is written C{P}. A process P is in canonical form, written canon(P), iff for

all context C 6= ✷, if P = C{νa.Q}, then C{νa.Q} 6≡ νa.C{Q}.

The other rules specify how the transition relation is closed under active contexts.

Rule NEW handles the case of ν. Rule PAR combines the resources of several parts

of the process. If one argument provides the resources requested by the other, then the

trade occurs. Formally, two derivations having an occurrence of the MATCH rule can

be put together using this rule: the restriction to only one active trigger per reaction is

enforced by the rule for reduction, presented below. Rule BOT closes transitions under

parallel composition with spectator processes.

Rule HOT allows to wrap an already existing reaction inside some parent kell: a

transition P
F_s
−−−→ Q is seen from the enclosing kell as a[P].R

F_a(s)
−−−−−→ a[Q].R, where

the operation a(s) over spots is defined by a(⊲)
∆
= a[⊲], and a(b[⊲])

∆
= a([⊲])

∆
= [⊲].

The rule is subject to two side conditions. First, F must be hot, written hot(F), which

means that F matches the syntax F ::= ǫ | b⊥ | b↓(M̃) | b↑(M̃) | F |F . Second one

must have SN(F) # DN(P) (see below). Intuitively, the presence of s in the label

of the conclusion imposes that the reaction occurs in P , so the side condition means

that a reacting kell only has three kinds of interactions with its context: 1) it (partially)

specifies the place of reaction; 2) it exhibits authorizations to access shared kells; 3) it

consumes messages through references to shared kells (in both directions). The second

side condition enforces the fact that references point to the closest kell in the hierarchy,

as informally stated in §2.3. We call the defined names DN(P) of a process P the

set of all a’s such that P ≡ νb̃.Q|a[R]. for some Q,R, b̃, with a /∈ b̃. Moreover, a

formula is in canonical form iff, for each resource r, it does not contain both r and

r⊥. We define the scoped names SN(F) of a formula F in canonical form as follows:

for resources r of the shape a↓(M̃), a↑(M̃), a, and a[⊲], let SN(r)
∆
= {a}; for other

resources r, let SN(r)
∆
= ∅. Additionally, let SN(F1|F2)

∆
= SN(F1) ∪ SN(F2) and

SN(F⊥)
∆
= SN(F). The rule prevents resources consumed through a reference ∗a to

escape the scope of any kell named a. For instance, a request for a message of the shape

a↓(b〈P 〉) through a reference ∗a is supposed to be consumed in (one of) the closest

kell(s) named a. Such a request leads to the formula a⊥|a↓(b〈P 〉) _ s: if a down

message is found in a, using formula a _ a↓(b〈P 〉), then the reaction occurs. However,

if P1
a⊥|a↓(b〈P 〉)_s
−−−−−−−−−−→ P2, then we do not want c[P1|a[Q1]]

a⊥|a↓(b〈P 〉)_s
−−−−−−−−−−→ c[P2|a[Q1]]

to hold, because the message ought to be found in Q1. Here, DN(a[Q1]) = {a} which

is not disjoint from SN(a⊥|a↓(b〈P 〉)) = {a}. Note that this check is done only when

crossing kell boundaries. Indeed, we allow the presence of more than one kell named a
in parallel to the reacting trigger.

Symmetrically to rule HOT, rule COLD allows to transfer resources from kells con-

taining references ∗a to the reacting kell a, which may be syntactically distant. Let F

be cold, written cold(F), iff F matches the syntax F ::= b[⊲]⊥ | b↑(M̃) | F |F . Rule

COLD says that any transition with a cold label is viewed identically from outside the

ambient kell, provided the scoping conditions are met. In practice, rule COLD is only

used to transfer the consumption of up messages (created by rule UP) through kells.

Matching Figure 6 defines the matching relation. Rule M-PAR states that matching a

pattern ξ1|ξ2 is like matching ξ1 and ξ2 separately, and then combining the result. In

the rule, + denotes the union of finite maps with disjoint domains. By rule M-HERE,

matching a pattern a•〈η̃〉 against a resource a〈P̃ 〉 boils down to match η̃ against P̃
(as defined below). Rule M-ELSEWHERE handles the cases of down and up messages.

Given a pair ζ consisting of a name a and argument patterns η̃, we let ζα stand for aα〈η̃〉.

Similarly, given a list ζ̃ = ζ1| . . . |ζn, let ζ̃α = ζα
1 | . . . |ζ

α
n . The rule tunes the directions

(up or down) in order to allow rule M-HERE to apply coherently. Rules M-PASSIVATE

M-PAR

ξ1 : F1 → Θ1 ξ2 : F2 → Θ2

ξ1|ξ2 : F1|F2 → Θ1 + Θ2

M-HERE

eη : eP → Θ

a•〈eη〉 : a〈 eP 〉 → Θ

M-ELSEWHERE

eζ• : fM → Θ

eζα : aα(fM) → Θ

M-PASSIVATE

a[x] : a[P] → {x 7→ P}
M-SUP

∗a : ∗a → ∅
M-PROC

x : P → {x 7→ P}
M-NAME

a : ∗b → {a 7→ b}

M-CST

\a : ∗a → ∅

M-NEG

b 6= c

a != b : ∗c → {a 7→ c}

M-NIL

ǫ : ǫ → ∅

M-CONS

η : P → Θ1 eη : eP → Θ2

η, eη : P, eP → Θ1 + Θ2

Fig. 6. Matching

and M-SUP are straightforward. For message contents, Rule M-CST states that an es-

caped pattern \a matches itself, yielding no substitution. Rules M-NAME, M-NEG, and

M-PROC handle the input of names and variables. Rules M-NIL and M-CONS dispatch

the results.

Reduction Finally, reduction, written →, is the smallest relation satisfying the rule

P ≡ P ′ P ′ s
−→ Q′ Q′ ≡ Q

P → Q
·

As exactly one spot is allowed, this rule guarantees that exactly one trigger fires.

4 Examples

Let us first present a simple example.

Example 1 Consider the following configuration.

A = a[(e↑1〈x〉 | e↑2〈y〉⊲P) | c〈Q〉] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | (c↓〈z〉⊲R)]

The component a can emit the message c〈Q〉, which implies that a reference ∗a to a
can be used to access this message. Hence we have the following reduction where the

rule in kell l2 is triggered.

A → a[(e↑1〈x〉 | e↑2〈y〉 ⊲ P)] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | R{Q/z}]

The component a can also receive messages from both components l1 and l2 since

it is a shared sub component of both. Hence we have the following reduction where the

rule in kell a is triggered.

A → a[P{U, V/x, y} | c〈Q〉] | l1[∗a] | l2[∗a | (c↓〈z〉 ⊲ R)]

Let us now give an example of dynamic binding and reconfiguration in the calculus.

Example 2 Consider the following configuration, which models a running component

receiving instructions to update its sub component c with a new code P (d), which uses

a service named d.

A = update〈c, P (d)〉 | ∗a | a[(update↑〈b, x〉 ⋄ (b[y] ⊲ b[x])) | c[Pc] | d[Pd]]

It reduces in two steps to ∗a | a[(update↑〈b, x〉 ⋄ (b[y] ⊲ b[x])) | c[P (d)] | d[Pd]], where

the references to d in P (d) have been dynamically bound to d[Pd].

We now review the examples of §2.3 within our calculus. First, assume given two

components Queue[. . .] and Pair [. . .], working as follows. They expect messages from

their parent components, on channels Queue.push,Queue.pop,Pair .fst , and so on.

The channels of these messages identify the action to execute. The messages contain a

return channel name and the corresponding arguments. On the return channel, Queue

and Pair send messages which have to be picked up as down messages by the client

parent component. For convenience, we use the syntactic sugar let x = a(P̃) in Q

for νb.a〈b, P̃ 〉|(b↓〈x〉 ⊲ Q), with some fresh b used as return channel. For instance,

let x = Queue.push(P,Q) in R uses the result x of pushing P on top of Q in R.

Example 3 The log service example can be represented as follows (reproducing the

configuration of Figure 1 with L = Log).

Log [∗Queue | . . . code to actually log . . .

| (Log .log↑〈x〉 | state 〈y〉 ⋄ let z = Queue.push(x, y) in state〈z〉)]
| A[B[. . .] | C[∗Log | . . .]] | D[∗Log | F [. . .]]

In the rest of the program, the encapsulation links to Log are represented by occur-

rences of the reference ∗Log. The ownership of Log by, say, o is encoded by the fact

that the sub component Log appears at the top-level in o. The implicit scope of Log ,

restricted to processes encapsulated in o, ensures that o is a dominator of Log .

Example 4 The shared printer example can be represented as follows, where c stands

for “client”, and j stands for “job”.

Printer [∗Queue | ∗Pair | . . . code to actually print . . .

| (Printer .lpr↑(c, j) | state 〈q〉 ⋄ let x = Pair .pair(c, j) in

let q′ = Queue.push(x, q) in

state〈q′〉)

| (Printer .lpq↑(r) | state 〈q〉 ⋄ r〈q〉 | state〈q〉)]
| A[B[. . .] | C[∗Printer | . . .]] | D[∗Printer | F [. . .]]

The shared library example can be represented similarly. We can however empha-

size the code server aspect of the example with a representation that only requires a

unidirectional communication between the clients and the shared library. The shared

library is thus modelled as a code server that allows an instance of the library code to

be made available on request in the client component that requires it.

Y

i∈I;j∈Ji

mij

h

∗Ni | (n↓
i 〈\i, \j, x〉 ⋄ x) | Pij

i

| R

2

4

Y

i,j∈I;i6=j

(n↑
i 〈\j, l, x〉 ⋄ nj〈j, l, x〉)

3

5

|
Y

i∈I

Ni

h

∗R | (n↓
i 〈k, l, x〉 ⋄ ni〈k, l, x〉) | (msg

↑〈k, l, x〉 ⋄ ni〈k, l, x〉)
i

Fig. 7. A better router configuration

Example 5 The shared library example can be represented as follows, where !a〈P 〉
stands for νb.(a〈P 〉.b〈〉|(b〈〉 ⋄ a〈P 〉.b〈〉)).

Lib[!Lib.get〈P 〉] | A[B[. . .] | C[∗Lib | . . .]] | D[∗Lib | F [. . .]]

Finally, we review the router example from Figure 2, which is more direct than

Examples 3 and 4 because it does not require any data structure: we just assume that

names include integers.

Example 6 The router example is depicted in Fig.7. It is very similar to Fig.2: the

router is identical and shared between the networks, the networks are now kells shared

between machines and may directly pull messages out of machines and the router. This

encoding allows the failure of the router or a network to only impact inter-machine

communication, it also segregates messages in different networks.

5 Conclusion

Component sharing, as experienced with component models providing it, is a feature

that proves extremely useful when describing or programming software architectures

or systems with shared resources. We have presented in this paper an extension of the

Kell calculus that provides a direct, formal interpretation of component models with

sharing. To our knowledge, this is the first calculus offering (1) encapsulation with fine-

grain, objective control over communications, (2) locality passivation, migration and

replication, and (3) access to shared components with simple communication rules. Our

approach draws on a distinction between ownership and containment inspired by recent

works on ownership types and the control of aliasing in object-oriented programming

languages. In contrast to these works, however, our approach avoids the burden of a

type system, by primitively distinguishing ownership from containment, thus enforcing

the programming discipline directly in the operational semantics.

The work we have presented here is only preliminary, however. First, the standard

issues appearing when one introduces a new process calculus remain to be dealt with,

e.g., the development of a bisimulation-based behavioral theory, or of static analyses to

ensure semantic properties of processes. Furthermore, it would be interesting to study

the exact relation between approaches to object containment and ownership in object-

oriented languages and in the Kell calculus with sharing. At a minimum, we need to

investigate the different benchmarks used in the object-oriented programming commu-

nity and study how they are handled in our calculus.

Second, two important, inter-related questions remain, that pertain (1) to the control

of communications with shared components, and (2) to the control over dynamic bind-

ing. The first issue concerns a potential security hole in our design. It can be succinctly

stated as follows: in the extended Kell calculus presented here, the construct νa.a[a[P]]
is not a perfect firewall, while it is in the plain Kell calculus. This is due to the fact that

P may have references to shared kells, which may in turn allow P to emit and receive

messages from its environment. We see two posssible solutions to this problem.

First, one could annotate each kell construct a[·] with explicit sieves on communi-

cations with shared components. For instance, let us write a[P]A, where A ::= ∅ | ∗ |
ã | ¬ã represents the names of shared components the present component is allowed

to communicate with. Then, define the interpretation of annotations by J∅K = Names,

J∗K = ∅, JãK = Names \ ã, and J¬ãK = ã. The semantics of these consructs is given

by a simple modification of the rules HOT and COLD, given by adding textually the

side condition SN(F) # JAK to both of them. With these new constructs and rules, we

recover the perfect firewall equation for νa.a[a[P]∅]∅: P cannot communicate with the

environment outside of a.

The second, more radical solution is to introduce a second ν operator, say ∇, that

would not cross component boundaries. Channel names bound by ∇ would then repre-

sent communication channels, while free names and names bound by ν would represent

global names. Distant communication would be restricted to channels, thus preventing

an incoming piece of code to arbitrarily communicate with distant components. Global

names would serve for matching against local messages. We conjecture that the pres-

ence of ν and ∇ avoids the need for directional patterns (↑, ↓, •). The calculus thus

collapses to a simpler version. The second solution might also turn out to solve the sec-

ond problem (which is not the case of the first solution): the distinction between local

channels and global names might give rise to a fine-grain account of dynamic binding,

provided the pattern language is enriched adequately.

References

[1] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D.Gorla, M.Loreti, E.Moggi, R.Pugliese,

E.Tuosto, B.Venneri. The KLAIM project: Theory and practice. In GC, vol. 2874 of

LNCS. Springer, 2003.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani. An open component model

and its support in Java. In CBSE, vol. 3054 of LNCS. Springer, 2004.

[3] M. Bugliesi, G. Castagna, S. Crafa. Boxed ambients. In TACS, vol. 2215 of LNCS. Springer,

2001.

[4] L. Cardelli, A. D. Gordon. Mobile ambients. In FOSSACS, vol. 1378 of LNCS. Springer,

1998.

[5] G. Castagna, F. Zappa Nardelli. The Seal calculus revisited: Contextual equivalence and

bisimilarity. In FSTTCS, vol. 2556 of LNCS. Springer, 2002.

[6] D. Clarke. Object Ownership and Containment. PhD thesis, University of New South

Wales, Australia, 2001.

[7] D. Clarke, T. Wrigstad. External uniqueness is unique enough. In ECOOP, vol. 2743 of

LNCS. Springer, 2003.

[8] M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, I. Salvo. M3: Mobility types for mobile

processes in mobile ambients. In Computing: the Australasian Theory Symposium, vol. 78

of ENTCS. Elsevier, 2003.

[9] R. De Nicola, D. Gorla, R. Pugliese. Global computing in a dynamic network of tuple

spaces. In COORD, vol. 3454 of LNCS. Springer, 2005.

[10] C. Fournet, G. Gonthier. The reflexive chemical abstract machine and the Join-calculus. In

POPL. ACM Press, 1996.

[11] M. Hennessy, J. Rathke, N. Yoshida. SafeDpi: a language for controlling mobile code. In

FOSSACS, vol. 2987 of LNCS. Springer, 2004.

[12] M. Hennessy, J. Riely. Resource access control in systems of mobile agents. In Inter-

national Workshop on High-Level Concurrent Languages, vol. 16(3) of ENTCS. Elsevier,

1998.

[13] J. Hogg, D. Lea, A. Wills, D. deChampeaux, R. Holt. The Geneva convention on the

treatment of object aliasing, 1991.

[14] F. Levi, D. Sangiorgi. Controlling interference in ambients. In POPL. ACM Press, 2000.

[15] Y. D. Liu, S. F. Smith. Modules with interfaces for dynamic linking and communication.

In ECOOP, vol. 3086 of LNCS. Springer, 2004.

[16] A. Ravara, A. Matos, V. Vasconcelos, L. Lopes. Lexically scoped distribution: what you

see is what you get. In FGC, vol. 85(1) of ENTCS. Elsevier, 2003.

[17] A. Schmitt, J.-B. Stefani. The Kell calculus: A family of higher-order distributed process

calculi. In GC, vol. 3267 of LNCS. Springer, 2005.

[18] J.-B. Stefani. A calculus of Kells. In FGC, vol. 85(1) of ENTCS. Elsevier, 2003.

[19] P. T. Wojciechowski, P. Sewell. Nomadic Pict: Language and infrastructure design for

mobile agents. Concurrency, 8(2), 2000.

[20] N. Yoshida, M. Hennessy. Assigning types to processes. In LICS. IEEE, 2000.

