Tom Hirschowitz

Rigid Mixin Modules

 rely on the dependencies between components to compute a valid order of evaluation. In such systems, mixin module types must carry some information on the dependencies between their components, which makes them verbose. In this paper, we propose a new, simpler design for mixin modules in a call-by-value setting, which avoids this problem.

1 Introduction

The problem

For programming "in the large", it is desirable that the programming language offers linguistic support for the decomposition and structuring of programs into modules. A good example of such linguistic support is the ML module system and its powerful notion of parameterized modules. Nevertheless, this system is weak on two important points.

(Mutual recursion) Mutually recursive definitions cannot be split across separate modules. There are several cases where this hinders modularization [START_REF] Crary | What is a recursive module?[END_REF]. (Modifiability) The language does not propose any mechanism for incremental modification of an already-defined module, similar to inheritance and overriding in object-oriented languages.

Class-based object-oriented languages provide excellent support for these two features. Classes are naturally mutually recursive, and inheritance and method overriding answer the need for modifiability. However, viewed as a module system, classes have two weaknesses: they do not offer a general parameterization mechanism (no higher-order functions on classes), and the mechanisms they offer to describe pre-computations (initialization of static and instance variables) lack generality, since a module system should allow to naturally alternate function definitions with computational definitions using these functions.

Mixin modules [START_REF] Bracha | The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance[END_REF] (hereafter simply called "mixins") provide an alternative approach to modularity that combines some of the best aspects of classes and ML-style modules. Mixins are modules with "holes" (not-yet-defined components), where the holes can be plugged later by composition with other mixins, following a late-binding semantics. However, the handling of pre-computations and initializations in mixins is still problematic. Most of the previous work on mixins, notably by Ancona and Zucca [START_REF] Ancona | A calculus of module systems[END_REF] and Wells and Vestergaard [START_REF] Wells | Equational reasoning for linking with first-class primitive modules[END_REF], is better suited to a call-by-name evaluation strategy. This strategy makes it impossible to trigger computations at initialization time (see Sect. [START_REF] Crary | What is a recursive module?[END_REF] for more details).

The choice of a call-by-value setting raises the following two issues.

(Recursive definitions) Since mixin components are not necessarily functions, arbitrary recursive definitions can appear dynamically by composition. For instance, consider the following two mixins, (in an informal concrete syntax)

¢¡ ¤£ ¥¡ §¦ A = ¢¡ ¨£ In most call-by-value languages, recursive definitions are statically restricted, in order to be more efficiently implementable [START_REF] Appel | Compiling with continuations[END_REF][START_REF] Hirschowitz | Compilation of extended recursion in call-by-value functional languages[END_REF], and to avoid some ill-founded definitions. Obviously, our system should not force language designers to abandon these properties, and thus needs guards on recursive definitions, at the level of both static and dynamic semantics. (Order of evaluation) In our system, mixins will contain arbitrary, unevaluated definitions, whose evaluation will be triggered by instantiation. Because these definitions are arbitrary, the order in which they will be evaluated matters.

For instance, in a mixin A defining x = 0 and y = x + 1, x must be evaluated before y. Thus, the semantics of instantiation must define an order of evaluation. Moreover, mixins can be built by composition, so the semantics of composition must also take the order of definitions into account.

From the standpoint of dynamic semantics, the second issue involves a design decision. From the standpoint of typing, it reduces to the first issue, since the existence of a valid order of evaluation is governed by the absence of invalid recursive definitions.

Instantiation-time ordering: flexible mixin modules

The MM language of call-by-value mixins [START_REF] Hirschowitz | Mixin modules in a call-by-value setting[END_REF][START_REF] Hirschowitz | A reduction semantics for call-by-value mixin modules[END_REF][START_REF] Hirschowitz | Modules mixins, modules et récursion étendue en appel par valeur[END_REF] is designed as follows. Mixins contain unordered definitions. Only at instantiation does the system compute an order for them, according to their inter-dependencies [START_REF] Hirschowitz | Mixin modules in a call-by-value setting[END_REF][START_REF] Hirschowitz | A reduction semantics for call-by-value mixin modules[END_REF][START_REF] Hirschowitz | Modules mixins, modules et récursion étendue en appel par valeur[END_REF], and to programmer-supplied annotations that fix some bits of the final order [START_REF] Hirschowitz | A reduction semantics for call-by-value mixin modules[END_REF][START_REF] Hirschowitz | Modules mixins, modules et récursion étendue en appel par valeur[END_REF]. This solution, which we call flexible mixins is very expressive w.r.t. code reuse, since components can be re-ordered according to the context. However, it appears too complex in some respects.

(Instantiation) In particular, instantiation is too costly, since it involves computing the strongly-connected components of a graph whose size is quadratic in the input term, plus a topological sort of the result. (Type safety) As explained above, when recursive definitions are restricted, the type system must prevent invalid ones. In MM , mixin types contain some information about the dependencies between definitions. Nevertheless, this makes mixin types verbose, and also over-specified, in the sense that any change in the dependencies between components can force the type of the mixin to change, which is undesirable.

The first problem is not so annoying in the context of a module system: it only has to do with linking operations, and thus should not affect the overall efficiency of programs. The second problem makes the proposed language impractical without dedicated graph support.

Early ordering: rigid mixin modules

In this paper, we propose a completely different approach, from scratch. We introduce Mix , a new language of call-by-value mixins, where mixin components are ordered, in a rigid way. They can be defined either as single components (briefly called "singles") or as blocks of components. Blocks contain mutually recursive definitions, and are restricted to a certain class of values. Conversely, singles can contain arbitrary, non-recursive computations. Composition preserves the order of both of its arguments, and instantiation straightforwardly converts its argument into a module.

In Mix , the components of a mixin are ordered once for all at definition time, so Mix is less expressive than MM . Yet, it has other advantages. First, with respect to side effects, annotations are no longer needed, since side effects always respect the syntactic order. Moreover, instantiation is less costly than in MM , since it runs in O(n log n), where n is the size of the input. Concerning typing, mixin types have the same structure as mixins themselves: they are sequences of specifications, which can be either singles or blocks. They avoid the use of explicit graphs, which improves over MM . Compared to ML module types, the only differences are that the order matters and that mutually recursive specifications must be explicitly grouped together. Finally, the meta theory of Mix is much simpler than the one of MM , which makes it more likely to scale up to a fully-featured language. In summary, we propose Mix as a good trade-off between expressiveness and user-friendliness for incorporating mixins into a practical programming language like ML.

The rest of the paper is organized as follows. Section 2 presents an informal overview of Mix by example. Section 3 formally defines Mix and its dynamic semantics. Section 4 defines a sound type system for Mix . Finally, sections 5 and 6 review related and future work, respectively. The proofs are omitted from this paper for lack of space, but a longer version including them is available as a research report [START_REF] Hirschowitz | Rigid mixin modules[END_REF]. As a simplistic introductory example, consider a program that defines two mutually recursive functions for testing whether an integer is even or odd, and then tests whether 56 is even, and whether it is odd. Assume now that it is conceptually obvious that everything concerning oddity must go into one program fragment, and everything concerning evenness must go into another, clearly distinct fragment. Here is how this can be done in an informal programming language based on Mix , with a syntax mimicking OCaml [START_REF] Leroy | The Objective Caml system. Software and documentation available on the Web[END_REF].

First, define two mixins Even and Odd as follows.

¡ ¤£ ¡ §¦ Even = ¢¡ ¤£ ¡ © £¢ ¥¤ §¦ ©£¢ ? odd : int -> bool ¦ ! even x = x = 0 ¡ odd (x -1) ! even56 = even 56 © ¨¦ ¡ ¤£ ¡ §¦ Odd = ¡ ¤£ ¡ © £¢ ¥¤ §¦ ©£¢ ? even : int -> bool ¦ ! odd x = x > 0 ¦ even (x -1) ! odd56 = odd 56

© ¨¦

Each of these mixins declares the missing function (marking it with ?) and defines the other one (marking it with !), inside a ¡ © ¢ ¤ ¦ ¢ which delimits a recursive block. Then, outside of this block, each mixin performs one computation.

In order to link them, and obtain the desired complete mixin, one composes

Even and Odd, by writing ¡ £ ¡ ¦ OpenNat = Odd >> Even. Intuitively, compo- sition connects the missing components of Even to the corresponding definitions of Odd, and vice versa, preserving the order of both mixins. Technically, composition somehow passes Odd through Even, with Even acting as a filter, stopping the components of Odd when they match one of its own components. This filtering is governed by some rules: the components of Odd go through Even together, until one of them, say component c, matches some component of Even. Then, the components of Odd defined to the left of c are stuck at the current point.

The other components continue their way through Even. Additionally, when two components match, they are merged into a single component.

In our example, odd and even both stop at Even's recursive block mentioning them, so the two recursive blocks are merged. Further, odd56 remains is unmatched, so it continues until the end of Even. The obtained mixin is thus equivalent to

¡ ¤£ ¡ §¦ OpenNat = ¢¡ ¤£ ¡ © £¢ ¥¤ §¦ ©£¢ ! even x = x = 0 ¡ odd (x -1) ¦ ! odd x = x > 0 ¦ even (x -1)
! even56 = even 56 ! odd56 = odd 56

© ¨¦

Note that composition is asymmetric. This mixin remains yet to be instantiated, in order to trigger its evaluation. This is done by writing ¨ ¢¡ ¦ © Nat = ¢ ¦ ¤£ © OpenNat, which makes OpenNat into a module equivalent to

¨ ¥¡ ¦ © Nat = £ ¤¦ ¡ §¡ §¢ ¥¦ ¦ © §¦ ¡ © ¢ even x = x = 0 ¡ odd (x -1) odd x = x > 0 ¦ even (x -1) ¦ © §¦ even56 = even 56 ¦ © §¦ odd56 = odd 56 © ¨¦
which evaluates to the desired result. For comparison, in MM , the final evaluation order would be computed upon instantiation, instead of composition. It would involve a topological sort of the strongly-connected components of the dependency graph of OpenNat. Incidentally, in MM , in order to ensure that even56 is evaluated before odd56, the definition of odd56 should better explicitly state it. From the standpoint of typing, explicitly grouping possibly recursive definitions together allows to get rid of dependency graphs in the types, thus greatly simplifying the type system.

3 The Mix language and its dynamic semantics

Syntax

Pre-terms. Figure 1 defines the set of pre-terms of Mix . It distinguishes names X from variables x, following Harper and Lillibridge [START_REF] Harper | A type-theoretic approach to higher-order modules with sharing[END_REF]. It includes a standard record construct {s}, where s ::= (X 1 = e 1 . . . X n = e n), and selection e.X. It features two constructs for value binding, letrec for mutually recursive definitions, and let for single, non-recursive definitions. Finally, the language provides four mixin constructs. Basic mixins consist of structures m = (c 1 . . . c n), wich are lists of components. A component c is either a single, or a block. A single u is either a named declaration X x = •, or a definition L x = e, where L is a label. Labels can be names or the special anonymous label, written , in which case the definition is also said anonymous. Finally, a block q is a list of singles. The other constructs are composition (e 1 e 2), instantiation (close e), and deletion of a name X, written (e |-X).

Terms. Proper terms are defined by restricting the set of pre-terms, as follows.

We define Mix values v by v ::= {s v } | m , where

s v ::= (X 1 = v 1 . . . X n = v n).
Then The system is parameterized by the set RecExp of valid recursive expressions, which must contain only values, and be closed under substitution.

Definition 1 (Terms)

A term of Mix is a pre-term such that: records do not define the same name twice ; bindings do not define the same variable twice ; structures define neither The restriction of letrec and block definitions to valid recursive expressions both simplifies the semantics of letrec, and models the restrictions put by standard call-by-value languages on recursive definitions [START_REF] Leroy | The Objective Caml system. Software and documentation available on the Web[END_REF][START_REF] Milner | The Definition of Standard ML[END_REF]. Typically, recursive definitions can only be functions.

Records, bindings and structures are respectively considered as finite maps from names to terms, variables to terms, and pairs of a label and a variable to terms or •. Thus, given a structure m, the restriction of dom(m) (the domain of m) to pairs of a name and a variable can be seen as an injective finite map from names to variables, which we call VofN(m).

Terms are considered equivalent modulo proper [START_REF] Wells | Equational reasoning for linking with first-class primitive modules[END_REF] renaming of bound variables and modulo the order in blocks and letrec. We denote by DV(m) and DV(b) the sets of variables defined by m and b, respectively, and by DN(m) and DN(s) the sets of names defined by m and s, respectively.

Dynamic semantics

The semantics of Mix is defined as a reduction relation on pre-terms in figure 2, using notions defined in figure 3. It is compatible with bound variable renaming and preserves well-formedness, so we extend it to terms.

Figure 3 defines evaluation contexts, which enforce a deterministic, call-byvalue strategy. We can now examine the rules, from the most interesting to the most standard.

m1 m2 → Add(m1, m2, ε) if m1 m2 (Compose) close m c → Bind(m c , {Record(m c)}) (Close) m |-X → Del(m, X) (Delete) letrec b in e → {x → letrec b in b(x) | x ∈ dom(b)}(e) (LetRec) let x = v in e → {x → v}(e) (Let) {s v }.X → s v (X) (Select) E[e] → E[e] if e → e (Context)

Fig. 2. Reduction rules

Composition. Rule Compose describes mixin composition. In order to be composed, the structures must be made compatible by α-conversion. Namely, we say that two structures m 1 and m 2 are compatible, and write m 1 m 2 , iff DV(m 1)∩ FV(m 2) = DV(m 2) ∩ FV(m 1) = ∅, and for any x ∈ DV(m 1) ∩ DV(m 2), there exists a name X such that VofN(m 1)(X) = VofN(m 2)(X) = x. This basically says that both structures agree on the names of variables. Then, their composition m 1 m 2 is Add(m 1 , m 2 , ε), where Add is defined by induction on m 1 by

Add(ε, m 1 , m 2) = m 1 , m 2 Add((m 1 , c), m 2 , m 3) = Add(m 1 , m 2 , (c, m 3)) if DN(c) ∩ DN(m 2 , m 3) = ∅ Add((m 1 , c 1), (m 1 2 , c 2 , m 2 2), m 3) = Add(m 1 , m 1 2 , (c 1 ⊗ c 2 , m 2 2 , m 3)) if DN(c 1) ∩ DN(m 1 2 , m 2 2 , m 3) = ∅ and DN(c 1) ∩ DN(c 2) = ∅
Given three arguments m 1 , m 2 , m 3 , Add roughly works as follows. If m 1 is empty, it returns the concatenation of m 2 and m 3 . If the last component c of m 1 defines names that are not defined in m 2 or m 3 , then c is pushed at the head of m 3 . Finally, when the last component c 1 of m 1 defines a name also defined by some c 2 in m 2 , so that m 2 = (m 1 2 , c 2 , m 2 2), then the third argument becomes (c 1 ⊗ c 2 , m 2 2 , m 3), where c 1 ⊗ c 2 is the merging of c 1 and c 2 , which is defined by

c 1 ⊗ c 2 = c 2 ⊗ c 1 (X x = •) ⊗ c = c if VofN(c)(X) = x [q 1] ⊗ [q 2] = [q 1 , q 2] if DN(q 1) ∩ DN(q 2) = ∅ [X x = •, q 1] ⊗ [q 2] = [q 1] ⊗ [q 2] if VofN(q 2)(X) = x
This definition is not algorithmic, but uniquely defines the merging of two components, and an algorithm is easy to derive from it: one has to apply rules 2 and 4 as long as possible, then commute the arguments and apply rules 2 and 4 as long as possible again, and then finally apply rule 3. Technically, as soon as a declaration is matched, it is removed, and when two blocks have no more common defined names, their merging is their union. Note that initially, only components with common defined names are merged, but that the union takes place after all the common names have been reduced. The next two rules, LetRec, Let, handle value binding. The only nonobvious rule is LetRec, which enforces the following behavior. The idea is that the rule applies when the considered binding is fully evaluated, which is always the case for proper terms. A pre-term letrec b in e reduces to e, where each x ∈ dom(b) is replaced with a kind of closure representing its definition, namely letrec b in b(x). Note the notation for capture-avoiding substitution.

E ::= {s v , X = , s} | .X | let x = in e | e | v | close | |-X
Finally, rule Select defines record selection, and rule Context extends the rule to any evaluation context.

Static semantics

We now define a sound type system for Mix terms. Defining it on terms rather than pre-terms means that the considered expressions are well-formed by definitions. Types are defined in figure 4. A Mix type τ can be either a record type or a mixin type. A mixin type has the shape M , where M is a signature. A signature is a list of specifications C, which can be either single specifications U or block specifications Q. A single specification has the shape δX : τ where δ is a flag indicating whether the considered name is a declaration of a definition. It can be either ?, for declarations, or !, for definitions. A block specification is a list of single specifications. Record types are finite maps from names to types. Types are identified modulo the order of specifications in blocks. Environments Γ are finite maps from variables to types. The disjoint union of two environments Γ 1 and Γ 2 is written Γ 1 + Γ 2 (which applies only if their domains are disjoint).

Figure 5 presents our type system for Mix .

Basic mixin modules and enriched specifications. Let us begin with the typing of basic mixins. Rule T-Struct simply delegates the typing of a basic mixin m to the rules for typing structures. These rules basically give each component c an enriched specification, which is a specification, enriched with the corresponding variable. Formally, single enriched specifications have the shape δL x : τ , and enriched block specifications are finite sets of these. Notably, this allows to type anonymous definitions (using enriched specifications like δ x : τ), and also to recover a typing environment (namely {x → τ }) for typing the next components. Ancona and Zucca [START_REF] Ancona | A calculus of module systems[END_REF] propose a call-by-name module system based on some of Bracha's ideas, called CMS . As Mix , CMS extends Jigsaw by allowing any kind of expressions as mixin definitions, not just values. Unlike in Mix , in CMS , there is no distinction between modules and mixin modules, which makes sense in call-by-name languages, since the contents of modules are not evaluated until selection. In call-by-value, the contents of a module are eagerly evaluated, so they cannot have a late binding semantics. Thus, modules must be dinstinguished from mixin modules, and so CMS is not a suitable model. From the standpoint of typing, CMS , unlike Mix , but consistently with most call-by-name languages, does not control recursive definitions.

T-Close Γ e : M c Γ close e : {Record(M c)} T-Delete Γ m : M Γ m |-X : Del(M, X) T-Var Γ x : Γ (x) T-Record dom(s) = dom(S) ∀X ∈ dom(s), Γ s(X) : S(X) Γ {s} : {S} T-Select Γ e : {S} Γ e.X : S(X) T-LetRec Γ + Γ b b : Γ b Γ + Γ b e : τ Γ letrec b in e : τ T-Let Γ e1 : τ1 Γ + {x → τ1} e2 : τ2 Γ let x = e1 in e2 : τ2 Singles T-Some Γ e : τ Γ (L x = e) : (!L x : τ) T-None Γ (X x = •) : (?X x : τ)
The separation between mixin modules and modules, as well as late binding, can be encoded in Wells and Vestergaard's m-calculus [START_REF] Wells | Equational reasoning for linking with first-class primitive modules[END_REF], which however is untyped, and does not provide programmer control over the order of evaluation.

In a more recent calculus [START_REF] Ancona | Mixin modules and computational effects[END_REF], Ancona et al. separate mixin modules from modules, and handle side effects as a monad. However, they do not attempt to statically reject faulty recursive definitions. Moreover, in their system, given a composition e 1 e 2 , the monadic (i.e., side-effective) definitions of e 1 are necessarily evaluated before those of e 2 , which is less flexible than our proposal.

Language designs with mixin modules. Duggan and Sourelis [START_REF] Duggan | Mixin modules[END_REF] propose an extension of ML with mixin modules, where mixin modules are divided into a prelude, a body, and an initialization section. Only definitions from the body are concerned by mixin module composition, the other sections being simply concatenated (and disjoint). Also, the body is restricted to functions and data-type definitions, which prevents illegal recursive definitions from arising dynamically. This is less flexible than Mix , since it considerably limits the alternation of functional and computational definitions.

Flatt and Felleisen [START_REF] Flatt | Units: cool modules for HOT languages[END_REF] introduce the closely related notion of units, in the form of (1) a theoretical extension to Scheme and ML and (2) an actual extension of their PLT Scheme implementation of Scheme [START_REF] Flatt | PLT MzScheme: language manual[END_REF]. In their theoretical work, they only permit values as unit components, except for a separate initialization section. This is more restrictive than Mix , in the same way as Duggan and Sourelis. In the implementation, however, the semantics is different. Any expression is allowed as a definition, and instantiation works in two phases. First, all fields are initialized to nil; and second, they are evaluated and updated, one after another. This yields both unexpected behavior (consider the definition x = cons(1, x)), and dynamic type errors (consider x = x + 1), which do not occur in Mix . Finally, units do not feature late binding, contrarily to Mix .

Linking calculi. Other languages that are close to mixin modules are linking calculi [START_REF] Cardelli | Program fragments, linking, and modularization[END_REF][START_REF] Machkasova | A calculus for link-time compilation[END_REF]. Generally, they support neither nested modules nor late binding, which significantly departs from Mix . Furthermore, among them, Cardelli's proposal [START_REF] Cardelli | Program fragments, linking, and modularization[END_REF] does not restrict recursion at all, but the operational semantics is sequential in nature and does not appear to handle cross-unit recursion. As a result, the system seems to lack the progress property. Finally, Machkasova and Turbak [START_REF] Machkasova | A calculus for link-time compilation[END_REF] explore a linking calculus with a very rich equational theory, but which does not restrict recursion and is untyped.

Flexible mixin modules. In the latest versions of MM [START_REF] Hirschowitz | Modules mixins, modules et récursion étendue en appel par valeur[END_REF], a solution to the problem of dependency graphs in types is proposed. Instead of imposing that the graph in a mixin module type exactly reflect the dependencies of the considered mixin module, it is seen as a bound on its dependencies, thanks to an adequate notion of subtyping. Roughly, it ensures that the considered mixin module has no more dependencies than exposed by the graph. This allows two techniques for preventing MM mixin module types from being verbose and overspecified. First, the interfaces of a mixin module e can be given more constrained dependency graphs than that of e. This makes interfaces more robust to later changes. Second, a certain class of dependency graphs is characterized, that bear a convenient syntactic description, thus avoiding users to explicitly write graphs by hand. In fact, this syntactic sugar allows to write MM types exactly as Mix types. We call MM 2 the language obtained by restricting MM to such types (in a way that remains to be made precise, for instance by insertion of implicit coercions).

The expressive power of typed MM 2 w.r.t. reordering lies between MM and Mix . Intuitively, the order in Mix mixins is fixed at definition time, while MM 2 allows later reordering of input components. For instance, the Mix basic mixin e 1 = X x = •, Y y = • cannot be composed with e 2 = !Y y = 0, !X x = 0 , which is unfortunate. The equivalent composition is well-typed in MM 2 .

The importance of this loss of flexibility has to be further investigated. Intuitively, it can only be annoying when a mixin is reused in an unexpected way, which makes the initial order incorrect. Unfortunately, the classical examples using mixins modules (and modules in general) generally show the modular decomposition of programs, not really the reuse of existing code, with possibly badly ordered components. This comes from the lack of extensive practice of any system with mixin modules, which is one of our priorities for future work.

Future work

Type components and subtyping. Before to incorporate mixin modules into a practical language, we have to refine our type system in at least two respects. First, we have to design an extended version of Mix including ML-style userdefined type components and data types. This task should benefit from recent advances in the design of recursive module systems [START_REF] Crary | What is a recursive module?[END_REF][START_REF] Dreyer | Toward a practical type theory for recursive modules[END_REF]. Second, we have to enrich our type system with a notion of subtyping over mixin modules. Indeed, it might turn out too restrictive for a module system to require, as Mix does, a definition filling a declaration of type τ to have exactly type τ .

Compilation. The Mix language features anonymous definitions, and thus the compilation scheme for mixin modules proposed by Hirschowitz and Leroy [START_REF] Hirschowitz | Mixin modules in a call-by-value setting[END_REF] does not apply. A possible extension of this scheme to anonymous definitions is sketched in later work [START_REF] Hirschowitz | Modules mixins, modules et récursion étendue en appel par valeur[END_REF], but not formalized. This extension might apply to Mix . However, it should be possible to do better than this, by taking advantage of the more rigid structure of Mix mixin modules.

Other definitions of composition. The composition operator of Mix is somewhat arbitrary. This gives the idea to explore other definitions, perhaps more flexible. Ideally, the system should be parameterized over the notion of composition.

 of these mixins declares the missing value (marking it with ?) and defines the other one (marking it with !). The composition of A and B involves the mutually recursive definition x = y * 2 ¦ y = x + 1.

Fig. 1 .

 1 Fig. 1. Syntax

Fig. 3 .Fig. 4 .

 34 Fig. 3. Evaluation contexts

:

 Γ c1 . . . cn : M e Γ c1 . . . cn : Sig(M e) Add(M1, M2, ε)

Fig. 5 .

 5 Fig. 5. Type system

Enriched single specifications, block specifications, and signatures are denoted by U e , Q e , and M e , respectively. Once the structure m has been given such an enriched signature M e , this result is converted to a proper signature M = Sig(M e), assigning to the basic mixin m the type M . The Sig function merely forgets variables and anonymous definitions of its argument: it is defined by straightforward extension of

Here is how structures are given such enriched signatures. By rule T-Some, a single definition L x = e is given the enriched single specification !L x : τ if e has type τ . By rule T-None, a single declaration X x = • can be given any enriched specification of the shape ?X x : τ .

Given this, we can define the typing of structures. By rule T-Empty, an empty structure is given the empty signature. By rule T-Single, a structure of the shape (u, m) is typed as follows. First, u is typed, yielding an enriched specification U e . This U e is made into an environment by the Env function from enriched signatures to environments. This function associates to any enriched single specification δL x : τ the finite map {x → τ }, and is straightforwardly extended to signatures. The obtained environment is added to the current environment for typing the remaining components inductively, yielding an enriched signature M e . The type of the whole structure is (U e , M e).

By rule T-Block, a structure of the shape ([q], m) is typed as follows. An enriched single specification U e u is guessed for each single u of q. Then, the set of these enriched single specifications is converted into an environment Γ q = u∈q Env(U e u). This environment Γ q is added to the current environment.

Then, it is checked that each single u indeed has the enriched specification U e u . Additionally, it is checked that each single u of q is defined by a valid recursive expression or is a declaration. By abuse of notation, we write this u ∈ RecExp ? . Finally, the structure m is typed, yielding an enriched signature M e , which is concatenated to

Composition. The typing of composition, defined by rule T-Compose, recalls its dynamic semantics. The type of the composition of two mixins of types M 1 and M 2 , respectively, is Add(M 1 , M 2 , ε) , where Add is defined by

which does the same as Add on structures. The merging of two specifications is similarly defined by

It differs from component merging, because it checks that the types of matching specifications are the same.

Example 2. When some mutually recursive definitions are grouped together in blocks, rule T-Block ensures that they are all defined by valid recursive expressions. Let us now show how the type system rules out mutually recursive definitions that are not in blocks. Assume given mixins with types e 1 : ?Y : τ Y , !X : τ X and e 2 : ?X : τ X , !Y : τ Y . When typing their composition e 1 e 2 , the component X in e 1 , by the third rule in the definition of Add, is merged with its counterpart in e 2 . This pushes the component Y of e 2 to the right, so that we obtain the triple (?Y : τ Y , ε, (!X : τ X , !Y : τ Y)), to which no rule applies.

Other rules. Rule T-Close types instantiation. Following previous notation, we let M c denote complete signatures. Given a complete mixin of type M c , close makes it into a record. The type of the result is {Record(M c)}, which is obtained by flattening the blocks in M c , forgetting the ! flags.

Rule T-Delete types deletion. For a mixin e of type M , the rule gives e |-X the type Del(M, X) , in which Del(M, X) denotes M , where any declaration of the shape !X : τ is replaced with ?X : τ .

The other typing rules are straightforward.

Soundness. The type sytem is sound, in the sense that the following results hold.

Lemma 1 (Subject reduction)

If Γ e : τ and e → e , then Γ e : τ .

Lemma 2 (Progress)

If ∅ e : τ , then either e is a value, or there exists e such that e → e .

Theorem 1 (Soundness)

If ∅ e : τ , then either e reduces to a value, or its evaluation does not terminate.

Related work

Kernel calculi with mixin modules. The idea of mixin modules comes from that of mixins, introduced by Bracha [START_REF] Bracha | The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance[END_REF] as a model of inheritance. In this model, called Jigsaw, classes are represented by mixins, which are equipped with a powerful set of modularity operations, and can be instantiated into objects. Syntactically, mixins may contain only values, which makes them as restrictive as classes. What differentiates them from classes is their cleaner design, which gave other authors the idea to generalize them to handle modules as well as objects.