
HAL Id: hal-00310123
https://hal.science/hal-00310123v1

Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Call-by-value mixin modules: Reduction semantics, side
effects, types

Tom Hirschowitz, Xavier Leroy, J. B. Wells

To cite this version:
Tom Hirschowitz, Xavier Leroy, J. B. Wells. Call-by-value mixin modules: Reduction semantics,
side effects, types. European Symposium on Programming, 2004, Barcelona, Spain. pp.64-78,
�10.1007/b96702�. �hal-00310123�

https://hal.science/hal-00310123v1
https://hal.archives-ouvertes.fr

Call-by-Value Mixin Modules ?

Reduction Semantics, Side Effects, Types

Tom Hirschowitz1, Xavier Leroy2, and J. B. Wells3

1 École Normale Supérieure de Lyon
2 INRIA Rocquencourt

3 Heriot-Watt University

Abstract. Mixin modules are a framework for modular programming
that supports code parameterization, incremental programming via late
binding and redefinitions, and cross-module recursion. In this paper, we
develop a language of mixin modules that supports call-by-value evalu-
ation, and formalize a reduction semantics and a sound type system for
this language.

1 Introduction

For programming “in the large”, it is desirable that the programming language
offers linguistic support for the decomposition and structuring of programs into
modules. A good example of such linguistic support is the ML module system
and its powerful support for parameterized modules. Nevertheless, this system
is weak on two important points.

– Mutual recursion: Mutually recursive definitions cannot be split across sepa-
rate modules. There are several cases where this hinders modularization [7].

– Modifiability: The language does not propose any mechanism for incremen-
tal modification of an already-defined module, similar to inheritance and
overriding in object-oriented languages.

Class-based object-oriented languages provide excellent support for these two
features. Classes are naturally mutually recursive, and inheritance and method
overriding answer the need for modifiability. However, viewed as a module sys-
tem, classes have two weaknesses: they do not offer a general parameterization
mechanism (no higher-order functions on classes), and the mechanisms they offer
to describe pre-computations (initialization of static and instance variables) lack
generality, since a module system should allow to naturally alternate function
definitions with computational definitions using these functions.

Mixin modules [4] (hereafter simply called mixins) provide an alternative ap-
proach to modularity that combines some of the best aspects of classes and ML-
style modules. Mixins are modules with “holes” (not-yet-defined components),
where the holes can be plugged later by composition with other mixins, follow-
ing a late-binding semantics. However, the handling of pre-computations and

? Partially supported by EPSRC grant GR/R 41545/01

initializations in mixins is still problematic. Most of the previous work on mix-
ins, notably by Ancona and Zucca [2] and Wells and Vestergaard [26], is better
suited to a call-by-name evaluation strategy. This strategy makes it impossible
to trigger computations at initialization time.

Our goal in this paper is to define a call-by-value semantics for mixins
that supports cleanly the evaluation of mixin components into values in a
programmer-controlled evaluation order. In an earlier paper, Hirschowitz and
Leroy [17] define a a typed language of mixins in a call-by-value setting, whose
semantics is given by type-directed translation into an enriched λ-calculus. The
present paper improves over this first attempt in the following ways:

– Reduction semantics: We give a source-to-source, small-step reduction
semantics for the mixin language. This semantics is simpler than the
translation-based semantics, and is untyped. It also simplifies the proof of
type soundness to a standard argument by subject reduction and progress.

– Side effects: The semantics makes it easy for the programmer to (1) know
when side-effects occur, and (2) control the order in which they occur.

– Anonymous definitions: Our system features anonymous definitions, that
is, definitions that are evaluated, but not exported as components of the
final module.4 The translation-based semantics cannot handle anonymous
definitions, because it is type-directed and anonymous definitions do not
appear in mixin types.

– Practicality of mixin types: The type of a mixin must carry some dependency
information about its contents. Requiring the dependency information to
match exactly between the declared type of a mixin and its actual type,
like Hirschowitz and Leroy did, is not practical. To address this issue, we
introduce a new notion of subtyping w.r.t. dependencies, allowing a mixin
to be viewed with more dependencies than it actually has. Furthermore,
appropriate syntactic sugar allows to specify the dependencies of a large
class of mixins with low syntactic overhead.

Section 2 informally presents MM. Section 3 defines the language and its
dynamic semantics. Section 4 presents the type system and the soundness re-
sult. Section 5 emphasizes the importance of subtyping of dependency graphs.
Section 6 examines related work. Section 7 concludes with some future work.

2 Overview

2.1 An operational semantics of mixins

Our central idea for bringing mutual recursion and modifiability to modules
is to adapt the distinction between classes and objects to the context of mix-
ins. Following this idea, this paper designs a kernel language of mixins called

4 Anonymous is not exactly the same as private, since private definitions are generally
mentioned in the types as private, whereas anonymous ones are not mentioned at
all.

MM, which distinguishes mixins from actual modules. Mixins are dedicated to
modularity operations, and feature parameterization, modifiability and mutual
recursion. The contents of mixins are never reduced, so no computation takes
place at the mixin level. Modules are dedicated to computation, contain fully
evaluated values, and can be obtained by mixin instantiation, written close.

For the sake of simplicity, MM does not explicitly include a module construct.
Instead, modules are encoded by a combination of records and value binding.
Roughly, a module struct x1 = e1 . . . xn = en end is implemented by let rec x1 =
e1 . . . xn = en in {x1 = e1 . . . xn = en}. Based on previous work on value binding
in a call-by-value setting [18], MM features a single value binding construct that
expresses both recursive and non-recursive definitions. Basically, this construct
evaluates the definitions from left to right, considering variables as values.

A mixin is a pair of a set of input variables x1 . . . xn, and a list of output
definitions y1 = e1 . . . ym = em, written 〈x1 . . . xn; y1 = e1 . . . ym = em〉.

Operators on mixins are adapted from previous works [4, 2, 26]. The main one
is composition: given two mixins e1 and e2, their composition e1 + e2 returns a
new mixin whose outputs are the concatenation of those of e1 and e2, and whose
inputs are the inputs of e1 or e2 that have not been filled by any output.

When closing a mixin 〈∅; y1 = e1 . . . ym = em〉 without inputs (called con-

crete), the order in which to evaluate the definitions is not obvious. Indeed,
the syntactic order arises from previous compositions, and does not necessarily
reflect the intention of the programmer. For instance, the expression 〈f ; x =
f 0〉 + 〈∅; f = λx.x + 1〉 evaluates to 〈∅; x = f 0, f = λx.x + 1〉, which should
be instantiated into struct f = λx.x + 1, x = f 0 end (since definitions are
evaluated from left to right). Thus, the close operator reorders definitions before
evaluating them, thus turning a mixin into a module. It approximates an order
in which the evaluation of each definition only needs previous definitions.

Unfortunately, this makes instantiation quite unintuitive in the presence of
side effects. For example, if we are programming a ticket-vending machine for
buying train tickets, it is reasonable to expect that the machine asks for the
destination before asking whether the customer is a smoker or not. Indeed, the
second question is useless if the trains to the requested destination are full.
However, asking the second question does not require any information on the
answer to the first one. So, if the program is built as an assembly of mixins,
dependencies do not impose any order on the two questions, which can be a
source of error. To handle this issue, our language of mixins provides programmer
control over the order of evaluation: a definition can be annotated with the
name of another one, to indicate that it should be evaluated after that one. For
example, we can define s = 〈destination ; smoker [destination] = . . .〉. Intuitively,
the annotation tells the system to do as if smoker depended on destination . This
is why we call these annotations fake dependencies. Additionally, the system
provides an operation for adding such dependencies a posteriori. For instance,
assume our mixin was initially provided without the dependency annotation
above: s0 = 〈destination ; smoker = . . .〉. It is then important to be able to add
it without modifying the source code. This is written s1 = s0 smoker[destination],

which evaluates to the previous mixin s . Fake dependencies make MM ready
for imperative features, although the formalization given in this paper does not
include imperative features to keep it simpler.

2.2 Typing MM

The natural way to type-check mixins is via sets of type declarations for input
and output components. For instance, let m1 = 〈x; y = e1〉 and m2 = 〈y; x = e2〉,
where e1 and e2 denote two arbitrary expressions. It appears natural to give them
the types m1 : 〈x : M2; y : M1〉 and m2 : 〈y : M1; x : M2〉, where M1 and M2 de-
note the types of e1 and e2, respectively, and the semi-colon separates the inputs
from the outputs. The type of their composition is then m : 〈∅; x : M2, y : M1〉.
While adequate for call-by-name mixins, this type system is not sound for call-
by-value evaluation, because it does not guarantee that bindings generated at
close time contain only well-founded recursive definitions that can be safely eval-
uated using call-by-value. In the example above, we could have x bound to y +1
and y bound to x + 1, which is not well-founded. Yet, nothing in the type of m

signals this problem.
In Sect. 4, we enrich these naive mixin types with dependency graphs describ-

ing the dependencies between definitions, and we formalize a simple (monomor-
phic) type system for MM. These graphs distinguish strong dependencies, which
are forbidden in dependency cycles, from weak dependencies, which are allowed.
For instance, x+1 strongly depends on x, while λy.x only weakly depends on it.
The graphs are updated at each mixin operation, and allow to detect ill-founded
recursions, while retaining most of the expressive power of MM.

Moreover, as mixin types carry dependency graphs, the types assigned to
inputs may also contain graphs, and thus constrain the future mixins filling
these inputs to have exactly the same graph. This policy is rather inflexible.
To recover some flexibility, we introduce a notion of subtyping over dependency
graphs: a mixin with a dependency graph G can be viewed as having a more
constraining graph. The type system of MM is the first to handle both subtyping
over dependency graphs and anonymous definitions in mixins.

3 Syntax and dynamic semantics of MM

3.1 Syntax

We now formally define our kernel language of call-by-value mixin modules,
called MM. Following Harper and Lillibridge [14], we distinguish names X from
variables x. Variables are α-convertible, but names are not. MM expressions are
defined in Fig. 1. Expressions include variables x, records (labeled by names)
{X1 = e1 . . . Xn = en}, and record selection e.X , which are standard.

The basic mixins are called mixin structures, which we abbreviate as simply
structures. A structure 〈ι; o〉 is a pair of an input ι of the shape X1.x1 . . .Xn.xn,
and of an output o of the shape d1 . . . dm. The input ι maps external names

Expression: e ::= x Variable
| {X1 = e1 . . . Xn = en} Record
| e.X Record selection
| 〈X1 . x1 . . . Xn . xn; d1 . . . dm〉 Structure
| e1 + e2 Composition
| close e Closure
| e|−X1...Xn Deletion
| eX[Y] Fake dependency
| let rec x1 = e1 . . . xn = en in e let rec

Definition: d ::= X[x1 . . . xn] . x = e Named definition
| [x1 . . . xn] . x = e Anonymous definition

Fig. 1. Syntax of MM

imported by the structure to internal variables (used in o). The output o is an
ordered list of definitions d. A definition is of the shape L[~x].x = e, where e is the
body of the definition, and the label L is either a name X or the anonymous label
. The symbol ~x stands for a possibly empty finite list of variables x1 . . . xn, the

list of fake dependencies of this definition on other definitions of the structure.

We provide four representative operators over mixins: compose e1 + e2, close
close e, delete e|−X1...Xn

, and fake dependency eX[Y]. Additional operators are
formalized in Hirschowitz’s PhD thesis [16].

Finally, MM features a single value binding construct let rec b in e, where b is
a list of recursive definitions x1 = e1 . . . xn = en, called a binding. As in previous
work [18], this construct encompasses ML recursive and non-recursive binding
constructs. Moreover, we restrict recursion syntactically as follows.

Backward dependencies In a binding b = (x1 = e1 . . . xn = en), we say that
there is a backward dependency of xi on xj if 1 ≤ i ≤ j ≤ n and xj ∈ FV(ei),
where FV(ei) denotes the set of free variables of ei. A backward dependency
of xi on xj is syntactically incorrect, except when ej is of predictable shape.

Predictable shape Expressions of predictable shape are defined by
e↓ ∈ Predictable ::= {sv} | 〈ι; o〉 | let rec b in e↓, where sv ranges over
evaluated record sequences (see below the definition of values).

In the sequel, we only consider syntactically correct bindings. Moreover, we
consider expressions equivalent up to α-conversion of variables bound in struc-
tures and let rec expressions. We also consider inputs equivalent up to reordering,
and fake dependency lists equivalent up to reordering and repetition. Further,
we assume that bindings, inputs, outputs, and structures (resp. records, inputs,
outputs, and structures) do not define the same variable (resp. name) twice.

3.2 Dynamic semantics

Values and answers. MM values are defined by

v ::= x | {sv} | 〈X1 . x1 . . . Xn . xn; d1 . . . dn〉

where sv ::= X1 = v1 . . . X1 = v1.

Evaluation answers are values, possibly surrounded by an evaluated binding:
a ::= v | let rec bv in v, where bv ::= x1 = v1 . . . xn = vn.

Contraction relation. In preparation for the reduction relation, we first define a
local contraction relation by the rules in Fig. 2. Reduction will contain the
closure of contraction under evaluation contexts.

Rule Compose defines composition. Outputs o are viewed as finite maps
from pairs (L, x) to pairs (~y, e). For any ι and o, we let Bind(ι, o) = ι ∪ dom(o).
Moreover, the restriction of dom(o) to pairs with a name as first component
is a finite map from names to variables, which we denote by Input(o). The
composition of two structures 〈ι1; o1〉 and 〈ι2; o2〉 is a structure 〈ι; o〉, defined
as follows: ι is the union of ι1 and ι2, where names defined in o1 or o2 are
removed. The result output o is defined as the concatenation of o1 and o2. There
is a side condition checking that the obtained mixin is well-formed, and that no
variable capture occurs. (Given a binary relation R, rng(R) denotes its range,
i.e. the set of all of the right-hand-sides of the pairs in R.) For example, let
e1 = 〈X . x; Y . y = z + x〉 and e2 = 〈X . x; Z . z = x〉. After suitable α-
conversion, the composition e1 + e2 reduces to 〈X . x; Y . y = z + x, Z . z′ = x〉.

Rule Close defines the instantiation of a structure 〈ι; o〉. The input ι must
be empty. The instantiation is in three steps.

– First, o is reordered according to its dependencies, its fake dependencies,
and its syntactic ordering, thus yielding a new output Reorder(o). This is
done by considering the syntactic definition order in o, written Bo, and the
unlabeled dependency graph of o, written ⇀o, and defined by the following
rules:

x′ ∈ FV(e)
(L[~y] . x = e), (L′[~z] . x′ = e′) ∈ o

x′ ⇀o x

(L[x1 . . . xn] . x = e) ∈ o

(L′[~z] . xi = e′) ∈ o

xi ⇀o x

(Here, x′ ⇀ x means that x depends on x′.) Given an unlabeled graph ⇀ on
variables, we define the binary relation�⇀ by {x�⇀ y | x⇀+ y and y ⇀∗

/

x}, where ⇀+ and ⇀∗ respectively are the transitive and reflexive-transitive
closure of ⇀, and ⇀∗

/ is the complementary relation to ⇀∗. It defines a
partial order on the variables defined by o, which respects dependencies,
in the sense that if x �⇀ y, then x does not depend on y. The output
Reorder(o) is then o, reordered w.r.t. the left-to-right lexicographical order
(�⇀o ,Bo). Thus, when dependencies do not impose an order, we choose
the syntactic definition order as a default. By construction, in Reorder(o),

Contraction rules

e = 〈(ι1 ∪ ι2) \ Input(o1, o2); o1, o2〉 e is well-formed
rng(Bind(ι1, o1)) ⊥ FV(〈ι2; o2〉) rng(Bind(ι2, o2)) ⊥ FV(〈ι1; o1〉)

〈ι1; o1〉 + 〈ι2; o2〉 e
(Compose)

close〈∅; o〉 let rec BofO(Reorder(o)) in RofO(Reorder(o)) (Close)

〈ι; o〉|−X1...Xn 〈ι ∪ Input(o)| {X1...Xn}; o| dom(o)\({X1...Xn}×Vars)〉 (Delete)

(Y, y) ∈ Input(ι, (o1, X[z∗] . x = e, o2))

〈ι; o1, X[z∗] . x = e, o2〉X[Y] 〈ι; o1, X[yz
∗] . x = e, o2〉

(Fake)

{sv}.X sv(X) (Select)
dom(b) ⊥ FV(L)

L [let rec b in e] let rec b in L [e]
(Lift)

Reduction rules

e e
′

E [e] → E [e′]
(Context)

E [D](x) = v

E [D [x]] → E [D [v]]
(Subst)

dom(b1) ⊥ ({x} ∪ dom(bv, b2) ∪ FV(bv, b2) ∪ FV(e′))

let rec bv, x = (let rec b1 in e), b2 in e
′ → let rec bv, b1, x = e, b2 in e

′ (IM)

dom(b) ⊥ (dom(bv) ∪ FV(bv))

let rec bv in let rec b in e → let rec bv, b in e
(EM)

Evaluation contexts

Evaluation context:
E ::= F

| let rec bv in F

| let rec bv, x = F , b in e

Nested lift context:
F ::= 2 | L [F]

Lift context:
L ::= {sv, X = 2, s} | 2.X | close 2 | 2X[Y]

| 2|−X1...Xn | 2 + e | v + 2

Dereferencing context:
D ::= 2.X | close 2 | 2|−X1...Xn | 2X[Y]

| 2 + v1 | v2 + 2 (v2 is not a variable).

Access in evaluation contexts

(let rec bv in F)(x) = bv(x) (EA) (let rec bv, y = F , b in e)(x) = bv(x) (IA)

Fig. 2. Dynamic semantics of MM

all backward dependencies are part of cycles. For example, consider the mixin
e = 〈∅; X . x = e1(z), Y . y = e2(x, z), Z . z = e3(x)〉. Its instantiation will
evaluate X , then Z, then Y .

– Second, a binding BofO(Reorder(o)) is generated, defining, for each defini-
tion d = (L[~y].x = e) in Reorder(o), the definition x = e, in the same order
as in Reorder(o). As we only write syntactically correct expressions, the rule
has an implicit side condition that BofO(Reorder(o)) be syntactically cor-
rect. For instance, the reduction of the expression close〈∅; X . x = x + x〉 is
stuck, since x + x is not of predictable shape.

– Third, the values of the named definitions of Reorder(o) are grouped in a
record RofO(Reorder(o)), with, for each named definition X [~y] . x = e, a
field X = x. This record is the result of the instantiation.

Rule Delete describes how MM deletes a finite set of names {X1 . . .Xn}
from a structure 〈ι; o〉. Let Vars denote the set of all variables. First, o is restricted
to the other definitions. Second, the removed definitions remain bound as inputs,
by adding the corresponding inputs to ι.

Rule Fake describes the fake dependency operation, which allows adding a
fake dependency to a mixin a posteriori. Let Input(ι, o) denote ι∪ Input(o), and
assume given an input ι and an output o = (o1, X [~z].x = e, o2). Further assume
that (Y, y) ∈ Input(ι, o). Then, the expression 〈ι; o〉X[Y] adds a fake dependency
on y to the definition of X , thus yielding 〈ι; o1, X [y~z] . x = e, o2〉.

The record selection rule Select is standard.

Finally, in MM, there is no rule for eliminating let rec. Instead, evaluated
bindings remain at top-level in the expression as a kind of run-time environment.
Bindings that are not at top-level in the expression must be lifted before their
evaluation can begin, as defined by rule Lift and lift contexts L .

Reduction relation. We now define the dynamic semantics of MM by the global
reduction relation →, defined by the rules in Fig. 2.

First, by rule Context, it extends contraction to evaluation contexts. More-
over, as mentioned above, only the top-level binding can be evaluated. As soon
as one of its definitions gets evaluated, evaluation can proceed with the next one,
or with the enclosed expression if there is no definition left. This is enforced by
the definition of evaluation contexts E : evaluation happens under (if evaluated)
or inside an optional top-level binding, and a nested lift context F (which is sim-
ply a series of lift contexts). If evaluation meets a binding inside the considered
expression, then this binding is lifted to the top level of the expression, or just
before the top-level binding if there is one. In this case, it is merged with the
latter, either internally or externally, as described by rules IM and EM, respec-
tively. External and internal substitutions (rules Subst, EA and IA) allow to
copy one of the already evaluated definitions of the top-level binding, when they
are needed by the evaluation, i.e. when they appear in a dereferencing context.
The condition that v2 is not a variable in the grammar ensures determinism of
the reduction in cases such as x + y. The left argument is always copied first.

4 Static semantics of MM

Types are defined by M ∈ Types ::= {O} | 〈I ; O; G〉, where I and O are sig-

natures, that is, finite maps from names to types, and where G is a graph over
names, labeled by degrees. A degree χ is one of • and ◦, respectively representing
strong and weak dependencies. There are only two kinds of types: record types
{O} and mixin types 〈I ; O; G〉. Environments Γ are finite maps from variables
to types. Type, signature, and environment well-formedness only require that
for any mixin type 〈I ; O; G〉, G is safe, in the sense that its cycles only contain
weak dependencies (labeled by ◦), and O ≤ I| dom(O), in the sense of signature
subtyping, defined below.

The type system is defined in Fig. 3. After the standard typing rule T-

Variable for variables, rule T-Struct defines the typing of structures 〈ι; o〉.
The rule introduces a well-formed input signature I corresponding to ι, and a
well-formed type environment Γo corresponding to o. Given I and Γo, the rule
checks that the definitions in o indeed have the types mentioned in Γo. The
types of named definitions of o, obtained by composing Γo with Input(o), are
retained both as inputs and outputs. Finally, the condition ` −→〈ι;o〉 checks that
the dependencies of the structure are safe. It relies on the labeled dependency
graph of 〈ι; o〉, which is defined by the following rules:

(L′, x′) ∈ Bind(ι, o)
(L[~y] . x = e) ∈ o

Node(L′, x′)
Degree(x′,e)
−−−−−−−→〈ι;o〉 Node(L, x)

(Li, xi) ∈ Bind(ι, o)
(L[x1 . . . xn] . x = e) ∈ o

Node(Li, xi)
•
−→〈ι;o〉 Node(L, x)

where Node(L, x) denotes L if L is a name, and x otherwise. The edges of
this graph are labeled by degrees, which are computed by the Degree function,
defined if x ∈ FV(e) by Degree(x, e) = ◦ if e ∈ Predictable and Degree(x, e) = •
otherwise. Finally, variables should not appear in types, so we lift the graph to
a labeled graph over names written b−→〈ι;o〉c. Namely, we extend edges through

anonymous components: for each path N1
χ1

−→x
χ2

−→N2, we add the edge N1
χ
−→N2,

where χ is the minimum of χ1 and χ2, given that • < ◦. Then, b−→〈ι;o〉c denotes
the restriction of the obtained graph to names.

The subsumption rule T-Sub materializes the presence of subtyping in MM.
Subtyping is defined by the following rules:

I2 ≤ I1 O1 ≤ O2 G1 ⊂ G2

〈I1; O1; G1〉 ≤ 〈I2; O2; G2〉

O1 ≤ O2

{O1} ≤ {O2}

where subtyping between signatures is defined component-wise. Subtyping allows
a dependency graph to be replaced by a more constraining graph. Section 5
illustrates the practical importance of subtyping between dependency graphs.

Rule T-Compose types the composition of two expressions. It guesses a
lower bound I of the input signatures I1 and I2 of its arguments, such that
dom(I) = dom(I1)∪dom(I2). This lower bound is used as the input signature of
the result. Checking that it is a lower bound implies that common names between

Expressions

x ∈ dom(Γ)

Γ ` x : Γ (x)
(T-Variable)

dom(ι) = dom(I) ` I ` Γo ` −→〈ι;o〉

Γ 〈I ◦ ι
−1 ∪ Γo〉 ` o : Γo O = Γo ◦ Input(o)

Γ ` 〈ι; o〉 : 〈I ∪ O; O; b−→〈ι;o〉c〉
(T-Struct)

Γ ` e : M
′

M
′ ≤ M ` M

Γ ` e : M
(T-Sub)

Γ ` e1 : 〈I1; O1; G1〉 Γ ` e2 : 〈I2; O2; G2〉
` G1 ∪ G2 dom(I) = dom(I1) ∪ dom(I2) ` I

I| dom(I1) ≤ I1 I| dom(I2) ≤ I2 (O1 + O2) ≤ I| dom(O1+O2)

Γ ` e1 + e2 : 〈I; O1 + O2; G1 ∪ G2〉
(T-Compose)

Γ ` e : 〈I; O; G〉 dom(I) = dom(O)

Γ ` close e : {O}
(T-Close)

Γ ` e : 〈I;O; G〉

Γ ` e|−X1...Xn : 〈I; O\{X1...Xn}; G|−{X1...Xn}〉
(T-Delete)

Γ ` e : 〈I;O; G〉 X ∈ dom(O) Y ∈ dom(I) ` GX[Y]

Γ ` eX[Y] : 〈I;O; GX[Y]〉
(T-Fake)

` b ` Γb Γ 〈Γb〉 ` b : Γb Γ 〈Γb〉 ` e : M

Γ ` let rec b in e : M
(T-LetRec)

∀X ∈ dom(s), Γ ` s(X) : O(X)

Γ ` {s} : {O}
(T-Record)

Γ ` e : {O}

Γ ` e.X : O(X)
(T-Select)

Sequences

Γ ` ε : ∅
Γ ` e : M Γ ` o : Γo

Γ ` (L[x∗] . x = e, o) : {x : M} ∪ Γo

Γ ` e : M Γ ` b : Γb

Γ ` (x = e, b) : {x : M} ∪ Γb

Fig. 3. Static semantics of MM

I1 and I2 have compatible types. The rule also checks that the union of the two
dependency graphs is safe, and that no name is defined twice (i.e. appears in
both outputs). The result type shares the inputs and takes the disjoint union,
written +, of the outputs and the union of the dependency graphs.

Rule T-Close transforms a mixin type whose inputs are all matched by its
outputs into a record type.

Rule T-Delete, exactly as the corresponding contraction rule, removes the
selected names from the output types, reporting the other ones in the input signa-
ture. The abstract graph is modified accordingly by the operation G|−{X1...Xn},
which removes the edges leading to the deleted components.

Rule T-Fake types an expression of the shape eX[Y]. If e has a type 〈I ; O; G〉,
with X ∈ dom(O), and Y ∈ dom(I), then adding a fake dependency of X on
Y only modifies the graph G: GX[Y] denotes G, augmented with a strong edge
from Y to X . The rule checks that this does not make the graph unsafe.

Rule T-LetRec for typing bindings let rec b in e is standard, except for
its side condition: ` b means that b does not contain backward dependen-
cies on definitions of unpredictable shape, and is well ordered with respect to
its dependencies, in the following sense. The labeled dependency graph −→b of
b = (x1 = e1 . . . xn = en) is defined as the labeled dependency graph of the
equivalent output ([].x1 = e1 . . . [].xn = en). Then, we require that all paths
of −→b whose last edge is labeled by • are forward. This is sufficient to ensure
that b contains no dependency problem.

The T-Select and T-Record rules for typing record construction and se-
lection are standard. Rule T-Select implicitly requires that X ∈ dom(O).

Finally, Fig. 3 also presents the typing of outputs and bindings, which is
straightforward, since it consists in successively typing their definitions.

Theorem 1 (Soundness). A closed, well-typed expression must either not ter-

minate or reach an answer.

The proof of this theorem (via the standard subject reduction and progress
properties) can be found in Hirschowitz’s PhD thesis [16].

5 Practical syntactic signatures and subtyping w.r.t.

dependencies

As mentioned in the introduction, enriching mixin types with dependency graphs
without graph subtyping would make the type system too rigid. Assuming such
a system, consider a mixin e which imports a mixin X . The type of e has an
input declaration named X that associates a graph to X . If we later want to
use e twice in the program, composing it with two different mixins e′ and e′′, it
is unlikely that X has exactly the same dependency graph in e′ and e′′, so we
cannot attribute a graph to X in e that allows both compositions. Furthermore,
from the standpoint of separate development, the dependency graph is part of
the specification of a mixin. It informs clients of dependencies, but also of non-
dependencies. Thus, definitions must depend exactly on the components that

the graph claims they depend on. So, if the implementation of a mixin changes
for any reason such as optimization, bug fix, etc, then probably its specification
will also have to change. This is undesirable for separate development, which en-
courages the independent development of mixins, based on stable specifications.

Our previous type systems for mixins [17, 19] suffer from this drawback:
they require the dependency graph of an output to exactly match the one of
the input it fills. We improve over these type systems here, by incorporating a
simple notion of subtyping in our type system for MM, which allows to see a
mixin with dependency graph G as a mixin with a more constraining dependency
graph, that is, a super graph of G. The idea is that when giving the type of an
input, the programmer (or possibly a type inference algorithm, although we have
no such algorithm to propose yet) chooses a reasonably constraining dependency
graph that remains compatible with the uses made of the input. Subtyping, then,
allows the input to be filled by less constrained definitions.

Another related problem is that dependency graphs, and a fortiori the con-
straining graphs mentioned above, are very cumbersome to write by hand for the
programmer. To alleviate this issue, we propose the introduction of appropriate
syntactic sugar: we define the new form of mixin type mixsig Q1 . . . Qn end, with

Q ::= U | [U1 . . . Un]
U ::= ?X : M | !X : M

This new form is a list of enriched specifications Q. An enriched specification
Q is either a single declaration U , or a block of single declarations [U1 . . . Un].
A single declaration assigns a type to a name, with a flag ? or !, to indicate
that it is an input or an output, respectively. Blocks are considered equivalent
modulo the order, and they represent groups of potentially recursive definitions
of predictable shape. Single declarations represent arbitrary definitions.

This construct can be elaborated to core MM types: basically, ? declarations
are inputs, and ! declarations are both inputs and outputs. A single ! declaration
strongly depends on all the preceding declarations. A ! declaration in a block
strongly depends on the preceding declarations, and weakly depends on all the
declarations of its block. This form makes mixin types more concise and intuitive.

6 Related work

Mixin-based inheritance. The notion of mixin originates in the object-oriented
language Flavors [22], and was further investigated both as a linguistic device
addressing many of the shortcomings of inheritance [13, 11, 3] and as a semantic
foundation for inheritance [6]. Here, we call this kind of mixins mixin classes.
An issue with mixin classes that is generally not addressed is the treatment
of instance fields and their initialization. Mixin classes where instance fields
can be initialized by arbitrary expressions raise exactly the same problems of
finding a correct evaluation order and detecting cyclic dependencies that we have
addressed in this paper in the context of call-by-value mixins. Initialization can
also be performed by an initialization method with a standard name (say, init),

but this breaks data encapsulation. Instead, MM naturally allows interleaving
function definitions and arbitrary computations.

Recursive modules. Harper et al. [7, 9] and Russo [25] extend the ML module sys-
tem with recursive definitions of modules. This addresses the mutual recursion
issue we mentioned in introduction, but not the modifiability (open recursion)
issue. Russo relies on lazy evaluation for the recursive definitions and makes
no attempt to statically detect ill-founded recursions. Harper et al. use a stan-
dard call-by-value fixed-point operator, and statically constrain components of
recursively-defined modules to be valuable. This is less flexible than our proposal,
since module components can only weakly depend on the recursive variable. Re-
cent work by Dreyer [8] lifts this restriction by using an effect system to track
strong dependencies on recursively-defined variables.

Language designs with mixins. Bracha [4] formulated the concept of mixin-based
inheritance (composition) independently of an object-oriented setting. His mix-
ins do not address the initialization issue. Duggan and Sourelis [10] extended his
proposal and adapted it to ML. In their system, a mixin comprises a body, con-
taining only function and data-type definitions, surrounded by a prelude and an
initialization section, containing arbitrary computations. During composition,
only the bodies of the two mixins are connected, but neither the preludes nor
the initialization sections. This ensures that mixin composition never creates ill-
founded recursive definitions, but forbids to alternate standard definitions and
composable definitions.

Flatt and Felleisen [12] introduce the closely related concept of units. A first
difference with our proposal is that units do not feature late binding. Moreover,
the initialization problem is handled differently. The formalization of units in
[12, Sect. 4] restricts definitions to syntactic values, but includes in each unit
an initialization expression that can perform arbitrary computations. Like Dug-
gan and Sourelis’s approach, this approach prevents the creation of ill-founded
recursive definitions, but is less flexible than our approach. The implementa-
tion of units for Scheme allows arbitrary computations within the definitions of
unit components. The defined variables are implicitly initialized to nil before
evaluating the right-hand sides of the definitions and updating the defined vari-
ables with the results of the computation. Ill-founded recursions are thus not
prevented statically, and result either in a run-time type error or in a value that
is not a fixed-point of the recursive definition.

Linking calculi and mixin calculi. Cardelli [5] initiated the study of linking cal-
culi. His system is a first-order linking model, that is, modules are compilation
units and cannot be nested. His type system does not restrict recursion at all,
but the operational semantics is sequential in nature and does not appear to
handle cross-unit recursion. As a result, the system seems to lack the progress
property.

Machkasova and Turbak [21] explore a very expressive linking calculus, which
is not confluent. Instead, it is argued that it is computationally sound, in the

sense that all strategies lead to the same outcome. The system is untyped, and
does not feature nested modules.

Ancona and Zucca [2] propose a call-by-name module system called CMS .
As MM, CMS extends Jigsaw by allowing any kind of expressions as mixin defi-
nitions, not just values. Unlike in MM, in CMS , there is no distinction between
modules and mixin modules, which makes sense in call-by-name languages, since
the contents of modules are not evaluated until selection. In call-by-value, the
contents of a module are eagerly evaluated, so CMS is not a suitable model.
From the standpoint of typing, CMS , unlike MM, and consistently with most
call-by-name languages, does not control recursive definitions.

In a more recent calculus [1], Ancona et al. do distinguish mixins from
modules. They propose to handle side effects using monadic operators. However,
they do not attempt to statically reject faulty recursive definitions. Moreover,
in their system, given a composition e1 + e2, the monadic definitions of e1 are
necessarily evaluated before those of e2, which is less flexible than our proposal.

As CMS , Wells and Vestergaard’s m-calculus [26] is targeted to call-by-name
evaluation. Nevertheless, it has a rich equational theory that allows to see MM

as a strongly-typed version of the m-calculus specialized to call-by-value plus
built-in late binding behavior (encoded in the m-calculus), explicit distinction
between mixins and modules, programmer control over the order of evaluation,
and a sound and flexible type system.

7 Conclusion

We have presented a language of call-by-value mixin modules, equipped with a
reduction semantics and a sound type system. Some open issues remain to be
dealt with, which are related to different practical uses of mixin modules. If mixin
modules are used as first-class, core language constructs, then the simple type
system presented here is not expressive enough. Some form of polymorphism over
mixin module types seems necessary, along the lines of type systems for record
concatenation proposed by Harper and Pierce [15] and by Pottier [24]. If one
wants to build a module system based on mixin modules, then type abstraction
and user-defined type components have to be considered. We are working on
extending the type systems for ML modules [20, 14] to mixin modules with
type components. For this, we plan to build on previous work on recursive, non-
mixin modules [7, 9]. Nevertheless, an issue appears for finding the inputs of a
composition, which involves a kind of greatest lower bound operation on types.
In a similar context, Odersky et al. [23] resort to explicit annotations, which is
not entirely satisfactory.

References

[1] D. Ancona, S. Fagorzi, E. Moggi, E. Zucca. Mixin modules and computational effects. In Int’l
Col. on Automata, Lang. and Progr., 2003.

[2] D. Ancona, E. Zucca. A calculus of module systems. J. Func. Progr., 12(2), 2002.

[3] V. Bono, A. Patel, V. Shmatikov. A core calculus of classes and mixins. In R. Guerraoui, ed.,
Europ. Conf. on Object-Oriented Progr., vol. 1628 of LNCS. Springer-Verlag, 1999.
[4] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheri-

tance. PhD thesis, University of Utah, 1992.
[5] L. Cardelli. Program fragments, linking, and modularization. In 24th symp. Principles of

Progr. Lang. ACM Press, 1997.
[6] W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Department of Computer
Science, Brown University, 1989.
[7] K. Crary, R. Harper, S. Puri. What is a recursive module? In Prog. Lang. Design and Impl.

ACM Press, 1999.
[8] D. Dreyer. A type system for well-founded recursion. In 31st symp. Principles of Progr. Lang.

ACM Press, 2004. To appear.
[9] D. R. Dreyer, R. Harper, K. Crary. Toward a practical type theory for recursive modules.
Technical Report CMU-CS-01-112, Carnegie Mellon University, Pittsburgh, PA, 2001.
[10] D. Duggan, C. Sourelis. Mixin modules. In Int. Conf. on Functional Progr. ACM Press, 1996.
[11] R. B. Findler, M. Flatt. Modular object-oriented programming with units and mixins. In Int.
Conf. on Functional Progr. ACM Press, 1998.
[12] M. Flatt, M. Felleisen. Units: cool modules for HOT languages. In Prog. Lang. Design and
Impl. ACM Press, 1998.
[13] M. Flatt, S. Krishnamurthi, M. Felleisen. Classes and mixins. In 25th symp. Principles of
Progr. Lang. ACM Press, 1998.
[14] R. Harper, M. Lillibridge. A type-theoretic approach to higher-order modules with sharing. In
21st symp. Principles of Progr. Lang. ACM Press, 1994.
[15] R. Harper, B. Pierce. A record calculus based on symmetric concatenation. In 18th symp.
Principles of Progr. Lang., Orlando, Florida, 1991.
[16] T. Hirschowitz. Modules mixins, modules et récursion étendue en appel par valeur. PhD
thesis, University of Paris VII, 2003.
[17] T. Hirschowitz, X. Leroy. Mixin modules in a call-by-value setting. In D. Le Métayer, ed.,
Europ. Symp. on Progr., vol. 2305 of LNCS, 2002.
[18] T. Hirschowitz, X. Leroy, J. B. Wells. Compilation of extended recursion in call-by-value
functional languages. In Princ. and Practice of Decl. Prog. ACM Press, 2003.
[19] T. Hirschowitz, X. Leroy, J. B. Wells. A reduction semantics for call-by-value mixin modules.
Research report RR-4682, Inria, 2003.
[20] X. Leroy. Manifest types, modules, and separate compilation. In 21st symp. Principles of
Progr. Lang. ACM Press, 1994.
[21] E. Machkasova, F. A. Turbak. A calculus for link-time compilation. In Europ. Symp. on Progr.,
vol. 1782 of LNCS. Springer-Verlag, 2000.
[22] D. A. Moon. Object-oriented programming with Flavors. In OOPSLA, 1986.
[23] M. Odersky, V. Cremet, C. Röckl, M. Zenger. A nominal theory of objects with dependent
types. Fool’03.
[24] F. Pottier. A versatile constraint-based type inference system. Nordic Journal of Computing,
7(4), 2000.
[25] C. V. Russo. Recursive structures for Standard ML. In Int. Conf. on Functional Progr. ACM
Press, 2001.
[26] J. B. Wells, R. Vestergaard. Equational reasoning for linking with first-class primitive modules.
In Europ. Symp. on Progr., vol. 1782 of LNCS. Springer-Verlag, 2000.

