B Wells

Tom Hirschowitz

Xavier Leroy

J B Wells

Call-by-Value Mixin Modules Reduction Semantics, Side Effects, Types

Introduction

For programming "in the large", it is desirable that the programming language offers linguistic support for the decomposition and structuring of programs into modules. A good example of such linguistic support is the ML module system and its powerful support for parameterized modules. Nevertheless, this system is weak on two important points.

-Mutual recursion: Mutually recursive definitions cannot be split across separate modules. There are several cases where this hinders modularization [START_REF] Crary | What is a recursive module?[END_REF]. -Modifiability: The language does not propose any mechanism for incremental modification of an already-defined module, similar to inheritance and overriding in object-oriented languages.

Class-based object-oriented languages provide excellent support for these two features. Classes are naturally mutually recursive, and inheritance and method overriding answer the need for modifiability. However, viewed as a module system, classes have two weaknesses: they do not offer a general parameterization mechanism (no higher-order functions on classes), and the mechanisms they offer to describe pre-computations (initialization of static and instance variables) lack generality, since a module system should allow to naturally alternate function definitions with computational definitions using these functions.

Mixin modules [START_REF] Bracha | The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance[END_REF] (hereafter simply called mixins) provide an alternative approach to modularity that combines some of the best aspects of classes and MLstyle modules. Mixins are modules with "holes" (not-yet-defined components), where the holes can be plugged later by composition with other mixins, following a late-binding semantics. However, the handling of pre-computations and initializations in mixins is still problematic. Most of the previous work on mixins, notably by Ancona and Zucca [START_REF] Ancona | A calculus of module systems[END_REF] and Wells and Vestergaard [START_REF] Wells | Equational reasoning for linking with first-class primitive modules[END_REF], is better suited to a call-by-name evaluation strategy. This strategy makes it impossible to trigger computations at initialization time.

Our goal in this paper is to define a call-by-value semantics for mixins that supports cleanly the evaluation of mixin components into values in a programmer-controlled evaluation order. In an earlier paper, Hirschowitz and Leroy [START_REF] Hirschowitz | Mixin modules in a call-by-value setting[END_REF] define a a typed language of mixins in a call-by-value setting, whose semantics is given by type-directed translation into an enriched λ-calculus. The present paper improves over this first attempt in the following ways:

-Reduction semantics: We give a source-to-source, small-step reduction semantics for the mixin language. This semantics is simpler than the translation-based semantics, and is untyped. It also simplifies the proof of type soundness to a standard argument by subject reduction and progress. -Side effects: The semantics makes it easy for the programmer to (1) know when side-effects occur, and (2) control the order in which they occur. -Anonymous definitions: Our system features anonymous definitions, that is, definitions that are evaluated, but not exported as components of the final module. 4 The translation-based semantics cannot handle anonymous definitions, because it is type-directed and anonymous definitions do not appear in mixin types. -Practicality of mixin types: The type of a mixin must carry some dependency information about its contents. Requiring the dependency information to match exactly between the declared type of a mixin and its actual type, like Hirschowitz and Leroy did, is not practical. To address this issue, we introduce a new notion of subtyping w.r.t. dependencies, allowing a mixin to be viewed with more dependencies than it actually has. Furthermore, appropriate syntactic sugar allows to specify the dependencies of a large class of mixins with low syntactic overhead.

Section 2 informally presents MM. Section 3 defines the language and its dynamic semantics. Section 4 presents the type system and the soundness result. Section 5 emphasizes the importance of subtyping of dependency graphs. Section 6 examines related work. Section 7 concludes with some future work.

Overview

An operational semantics of mixins

Our central idea for bringing mutual recursion and modifiability to modules is to adapt the distinction between classes and objects to the context of mixins. Following this idea, this paper designs a kernel language of mixins called MM, which distinguishes mixins from actual modules. Mixins are dedicated to modularity operations, and feature parameterization, modifiability and mutual recursion. The contents of mixins are never reduced, so no computation takes place at the mixin level. Modules are dedicated to computation, contain fully evaluated values, and can be obtained by mixin instantiation, written close.

For the sake of simplicity, MM does not explicitly include a module construct. Instead, modules are encoded by a combination of records and value binding. Roughly, a module struct x 1 = e 1 . . . x n = e n end is implemented by let rec x 1 = e 1 . . . x n = e n in {x 1 = e 1 . . . x n = e n }. Based on previous work on value binding in a call-by-value setting [START_REF] Hirschowitz | Compilation of extended recursion in call-by-value functional languages[END_REF], MM features a single value binding construct that expresses both recursive and non-recursive definitions. Basically, this construct evaluates the definitions from left to right, considering variables as values.

A mixin is a pair of a set of input variables x 1 . . . x n , and a list of output definitions y 1 = e 1 . . . y m = e m , written x 1 . . . x n ; y 1 = e 1 . . . y m = e m .

Operators on mixins are adapted from previous works [START_REF] Bracha | The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance[END_REF][START_REF] Ancona | A calculus of module systems[END_REF][START_REF] Wells | Equational reasoning for linking with first-class primitive modules[END_REF]. The main one is composition: given two mixins e 1 and e 2 , their composition e 1 + e 2 returns a new mixin whose outputs are the concatenation of those of e 1 and e 2 , and whose inputs are the inputs of e 1 or e 2 that have not been filled by any output.

When closing a mixin ∅; y 1 = e 1 . . . y m = e m without inputs (called concrete), the order in which to evaluate the definitions is not obvious. Indeed, the syntactic order arises from previous compositions, and does not necessarily reflect the intention of the programmer. For instance, the expression f ; x = f 0 + ∅; f = λx.x + 1 evaluates to ∅; x = f 0, f = λx.x + 1 , which should be instantiated into struct f = λx.x + 1, x = f 0 end (since definitions are evaluated from left to right). Thus, the close operator reorders definitions before evaluating them, thus turning a mixin into a module. It approximates an order in which the evaluation of each definition only needs previous definitions.

Unfortunately, this makes instantiation quite unintuitive in the presence of side effects. For example, if we are programming a ticket-vending machine for buying train tickets, it is reasonable to expect that the machine asks for the destination before asking whether the customer is a smoker or not. Indeed, the second question is useless if the trains to the requested destination are full. However, asking the second question does not require any information on the answer to the first one. So, if the program is built as an assembly of mixins, dependencies do not impose any order on the two questions, which can be a source of error. To handle this issue, our language of mixins provides programmer control over the order of evaluation: a definition can be annotated with the name of another one, to indicate that it should be evaluated after that one. For example, we can define s = destination; smoker [destination] = Intuitively, the annotation tells the system to do as if smoker depended on destination. This is why we call these annotations fake dependencies. Additionally, the system provides an operation for adding such dependencies a posteriori. For instance, assume our mixin was initially provided without the dependency annotation above: s 0 = destination; smoker = It is then important to be able to add it without modifying the source code. This is written s 1 = s 0 smoker[destination] , which evaluates to the previous mixin s. Fake dependencies make MM ready for imperative features, although the formalization given in this paper does not include imperative features to keep it simpler.

Typing MM

The natural way to type-check mixins is via sets of type declarations for input and output components. For instance, let m 1 = x; y = e 1 and m 2 = y; x = e 2 , where e 1 and e 2 denote two arbitrary expressions. It appears natural to give them the types m 1 : x : M 2 ; y : M 1 and m 2 : y : M 1 ; x : M 2 , where M 1 and M 2 denote the types of e 1 and e 2 , respectively, and the semi-colon separates the inputs from the outputs. The type of their composition is then m : ∅; x : M 2 , y : M 1 . While adequate for call-by-name mixins, this type system is not sound for callby-value evaluation, because it does not guarantee that bindings generated at close time contain only well-founded recursive definitions that can be safely evaluated using call-by-value. In the example above, we could have x bound to y + 1 and y bound to x + 1, which is not well-founded. Yet, nothing in the type of m signals this problem.

In Sect. 4, we enrich these naive mixin types with dependency graphs describing the dependencies between definitions, and we formalize a simple (monomorphic) type system for MM. These graphs distinguish strong dependencies, which are forbidden in dependency cycles, from weak dependencies, which are allowed. For instance, x + 1 strongly depends on x, while λy.x only weakly depends on it. The graphs are updated at each mixin operation, and allow to detect ill-founded recursions, while retaining most of the expressive power of MM.

Moreover, as mixin types carry dependency graphs, the types assigned to inputs may also contain graphs, and thus constrain the future mixins filling these inputs to have exactly the same graph. This policy is rather inflexible. To recover some flexibility, we introduce a notion of subtyping over dependency graphs: a mixin with a dependency graph G can be viewed as having a more constraining graph. The type system of MM is the first to handle both subtyping over dependency graphs and anonymous definitions in mixins.

3 Syntax and dynamic semantics of MM

Syntax

We now formally define our kernel language of call-by-value mixin modules, called MM. Following Harper and Lillibridge [START_REF] Harper | A type-theoretic approach to higher-order modules with sharing[END_REF], we distinguish names X from variables x. Variables are α-convertible, but names are not. MM expressions are defined in Fig. 1. Expressions include variables x, records (labeled by names) {X 1 = e 1 . . . X n = e n }, and record selection e.X, which are standard.

The basic mixins are called mixin structures, which we abbreviate as simply structures. A structure ι; o is a pair of an input ι of the shape X 1 x 1 . . . Finally, MM features a single value binding construct let rec b in e, where b is a list of recursive definitions x 1 = e 1 . . . x n = e n , called a binding. As in previous work [START_REF] Hirschowitz | Compilation of extended recursion in call-by-value functional languages[END_REF], this construct encompasses ML recursive and non-recursive binding constructs. Moreover, we restrict recursion syntactically as follows.

Backward dependencies In a binding b = (x 1 = e 1 . . . x n = e n), we say that there is a backward dependency of x i on x j if 1 ≤ i ≤ j ≤ n and x j ∈ FV(e i), where FV(e i) denotes the set of free variables of e i . A backward dependency of x i on x j is syntactically incorrect, except when e j is of predictable shape.

Predictable shape Expressions of predictable shape are defined by e ↓ ∈ Predictable ::= {s v } | ι; o | let rec b in e ↓ , where s v ranges over evaluated record sequences (see below the definition of values).

In the sequel, we only consider syntactically correct bindings. Moreover, we consider expressions equivalent up to α-conversion of variables bound in structures and let rec expressions. We also consider inputs equivalent up to reordering, and fake dependency lists equivalent up to reordering and repetition. Further, we assume that bindings, inputs, outputs, and structures (resp. records, inputs, outputs, and structures) do not define the same variable (resp. name) twice.

Dynamic semantics

Values and answers. MM values are defined by

v ::= x | {s v } | X 1 x 1 . . . X n x n ; d 1 . . . d n where s v ::= X 1 = v 1 . . . X 1 = v 1 .
Evaluation answers are values, possibly surrounded by an evaluated binding:

a ::= v | let rec b v in v, where b v ::= x 1 = v 1 . . . x n = v n .

Contraction relation. In preparation for the reduction relation, we first define a local contraction relation

by the rules in Fig. 2. Reduction will contain the closure of contraction under evaluation contexts.

Rule Compose defines composition. Outputs o are viewed as finite maps from pairs (L, x) to pairs (y, e). For any ι and o, we let Bind(ι, o) = ι ∪ dom(o). Moreover, the restriction of dom(o) to pairs with a name as first component is a finite map from names to variables, which we denote by Input(o). The composition of two structures ι 1 ; o 1 and ι 2 ; o 2 is a structure ι; o , defined as follows: ι is the union of ι 1 and ι 2 , where names defined in o 1 or o 2 are removed. The result output o is defined as the concatenation of o 1 and o 2 . There is a side condition checking that the obtained mixin is well-formed, and that no variable capture occurs. (Given a binary relation R, rng(R) denotes its range, i.e. the set of all of the right-hand-sides of the pairs in R.) For example, let e 1 = X x; Y y = z + x and e 2 = X x; Z z = x . After suitable αconversion, the composition e 1 + e 2 reduces to X x; Y y = z + x, Z z = x .

Rule Close defines the instantiation of a structure ι; o . The input ι must be empty. The instantiation is in three steps.

-First, o is reordered according to its dependencies, its fake dependencies, and its syntactic ordering, thus yielding a new output Reorder(o). This is done by considering the syntactic definition order in o, written o , and the unlabeled dependency graph of o, written o , and defined by the following rules:

x ∈ FV(e) (L[y] x = e), (L [z] x = e) ∈ o x o x (L[x 1 . . . x n] x = e) ∈ o (L [z] x i = e) ∈ o x i o x (
ι; o |-X 1 ...Xn ι ∪ Input(o) | {X 1 ...Xn} ; o | dom(o)\({X 1 ...Xn}×Vars) (Delete) (Y, y) ∈ Input(ι, (o1, X[z *] x = e, o2)) ι; o1, X[z *] x = e, o2 X[Y] ι; o1, X[yz *] x = e, o2 (Fake) {sv}.X sv(X) (Select) dom(b) ⊥ FV(L) L [let rec b in e] let rec b in L [e] (Lift)
Reduction rules Lift context:

e e E [e] → E [e] (Context) E [D](x) = v E [D [x]] → E [D [v]] (Subst
L ::= {sv, X = , s} | .X | close | X[Y] | |-X 1 ...Xn | + e | v + Dereferencing context: D ::= .X | close | |-X 1 ...Xn | X[Y] | + v1 | v2 + (v2 is not a variable).
Access in evaluation contexts Rule Delete describes how MM deletes a finite set of names {X 1 . . . X n } from a structure ι; o . Let Vars denote the set of all variables. First, o is restricted to the other definitions. Second, the removed definitions remain bound as inputs, by adding the corresponding inputs to ι.

(let rec bv in F)(x) = bv(x) (EA) (let rec bv, y = F , b in e)(x) = bv(x) (IA)
Rule Fake describes the fake dependency operation, which allows adding a fake dependency to a mixin a posteriori. Let Input(ι, o) denote ι ∪ Input(o), and assume given an input ι and an output o = (o 1 , X[z] x = e, o 2). Further assume that (Y, y) ∈ Input(ι, o). Then, the expression ι; o X[Y] adds a fake dependency on y to the definition of X, thus yielding ι; o 1 , X[y z] x = e, o 2 .

The record selection rule Select is standard. Finally, in MM, there is no rule for eliminating let rec. Instead, evaluated bindings remain at top-level in the expression as a kind of run-time environment. Bindings that are not at top-level in the expression must be lifted before their evaluation can begin, as defined by rule Lift and lift contexts L .

Reduction relation. We now define the dynamic semantics of MM by the global reduction relation →, defined by the rules in Fig. 2.

First, by rule Context, it extends contraction to evaluation contexts. Moreover, as mentioned above, only the top-level binding can be evaluated. As soon as one of its definitions gets evaluated, evaluation can proceed with the next one, or with the enclosed expression if there is no definition left. This is enforced by the definition of evaluation contexts E : evaluation happens under (if evaluated) or inside an optional top-level binding, and a nested lift context F (which is simply a series of lift contexts). If evaluation meets a binding inside the considered expression, then this binding is lifted to the top level of the expression, or just before the top-level binding if there is one. In this case, it is merged with the latter, either internally or externally, as described by rules IM and EM, respectively. External and internal substitutions (rules Subst, EA and IA) allow to copy one of the already evaluated definitions of the top-level binding, when they are needed by the evaluation, i.e. when they appear in a dereferencing context. The condition that v 2 is not a variable in the grammar ensures determinism of the reduction in cases such as x + y. The left argument is always copied first.

Types are defined by M ∈ Types ::= {O} | I; O; G , where I and O are signatures, that is, finite maps from names to types, and where G is a graph over names, labeled by degrees. A degree χ is one of • and •, respectively representing strong and weak dependencies. There are only two kinds of types: record types {O} and mixin types I; O; G . Environments Γ are finite maps from variables to types. Type, signature, and environment well-formedness only require that for any mixin type I; O; G , G is safe, in the sense that its cycles only contain weak dependencies (labeled by •), and O ≤ I | dom(O) , in the sense of signature subtyping, defined below.

The type system is defined in Fig.

(L , x) ∈ Bind(ι, o) (L[y] x = e) ∈ o Node(L , x) Degree(x ,e) -------→ ι;o Node(L, x) (L i , x i) ∈ Bind(ι, o) (L[x 1 . . . x n] x = e) ∈ o Node(L i , x i) • -→ ι;o Node(L, x)
where Node(L, x) denotes L if L is a name, and x otherwise. The edges of this graph are labeled by degrees, which are computed by the Degree function, defined if x ∈ FV(e) by Degree(x, e) = • if e ∈ Predictable and Degree(x, e) = • otherwise. Finally, variables should not appear in types, so we lift the graph to a labeled graph over names written -→ ι;o . Namely, we extend edges through anonymous components: for each path N 1 χ1 -→x χ2 -→N 2 , we add the edge N 1 χ -→N 2 , where χ is the minimum of χ 1 and χ 2 , given that • < •. Then, -→ ι;o denotes the restriction of the obtained graph to names.

The subsumption rule T-Sub materializes the presence of subtyping in MM. Subtyping is defined by the following rules:

I 2 ≤ I 1 O 1 ≤ O 2 G 1 ⊂ G 2 I 1 ; O 1 ; G 1 ≤ I 2 ; O 2 ; G 2 O 1 ≤ O 2 {O 1 } ≤ {O 2 }
where subtyping between signatures is defined component-wise. Subtyping allows a dependency graph to be replaced by a more constraining graph. Section 5 illustrates the practical importance of subtyping between dependency graphs.

Rule T-Compose types the composition of two expressions. It guesses a lower bound I of the input signatures I 1 and I 2 of its arguments, such that dom(I) = dom(I 1) ∪ dom(I 2). This lower bound is used as the input signature of the result. Checking that it is a lower bound implies that common names between The rule also checks that the union of the two dependency graphs is safe, and that no name is defined twice (i.e. appears in both outputs). The result type shares the inputs and takes the disjoint union, written +, of the outputs and the union of the dependency graphs.

Expressions x ∈ dom(Γ) Γ x : Γ (x) (T-Variable) dom(ι) = dom(I) I Γo - → ι;o Γ I • ι -1 ∪ Γo o : Γo O = Γo • Input(o) Γ ι; o : I ∪ O; O; - → ι;o (T-Struct) Γ e : M M ≤ M M Γ e : M (T-Sub) Γ e1 : I1; O1; G1 Γ e2 : I2; O2; G2 G1 ∪ G2 dom(I) = dom(I1) ∪ dom(I2) Γ (L[x *] x = e, o) : {x : M } ∪ Γo Γ e : M Γ b : Γ b Γ (x = e, b) : {x : M } ∪ Γ b
Rule T-Close transforms a mixin type whose inputs are all matched by its outputs into a record type.

Rule T-Delete, exactly as the corresponding contraction rule, removes the selected names from the output types, reporting the other ones in the input signature. The abstract graph is modified accordingly by the operation G |-{X1...Xn} , which removes the edges leading to the deleted components.

Rule T-Fake types an expression of the shape e X [Y] . If e has a type I; O; G , with X ∈ dom(O), and Y ∈ dom(I), then adding a fake dependency of X on Y only modifies the graph G: G X[Y] denotes G, augmented with a strong edge from Y to X. The rule checks that this does not make the graph unsafe.

Rule T-LetRec for typing bindings let rec b in e is standard, except for its side condition:

b means that b does not contain backward dependencies on definitions of unpredictable shape, and is well ordered with respect to its dependencies, in the following sense. The labeled dependency graph -→ b of b = (x 1 = e 1 . . . x n = e n) is defined as the labeled dependency graph of the equivalent output ([] x 1 = e 1 . . . [] x n = e n). Then, we require that all paths of -→ b whose last edge is labeled by • are forward. This is sufficient to ensure that b contains no dependency problem.

The T-Select and T-Record rules for typing record construction and selection are standard. Rule T-Select implicitly requires that X ∈ dom(O).

Finally, Fig. 3 also presents the typing of outputs and bindings, which is straightforward, since it consists in successively typing their definitions.

Theorem 1 (Soundness). A closed, well-typed expression must either not terminate or reach an answer.

The proof of this theorem (via the standard subject reduction and progress properties) can be found in Hirschowitz's PhD thesis [START_REF] Hirschowitz | Modules mixins, modules et récursion étendue en appel par valeur[END_REF].

Practical syntactic signatures and subtyping w.r.t. dependencies

As mentioned in the introduction, enriching mixin types with dependency graphs without graph subtyping would make the type system too rigid. Assuming such a system, consider a mixin e which imports a mixin X. The type of e has an input declaration named X that associates a graph to X. If we later want to use e twice in the program, composing it with two different mixins e and e , it is unlikely that X has exactly the same dependency graph in e and e , so we cannot attribute a graph to X in e that allows both compositions. Furthermore, from the standpoint of separate development, the dependency graph is part of the specification of a mixin. It informs clients of dependencies, but also of nondependencies. Thus, definitions must depend exactly on the components that the graph claims they depend on. So, if the implementation of a mixin changes for any reason such as optimization, bug fix, etc, then probably its specification will also have to change. This is undesirable for separate development, which encourages the independent development of mixins, based on stable specifications. Our previous type systems for mixins [START_REF] Hirschowitz | Mixin modules in a call-by-value setting[END_REF][START_REF] Hirschowitz | A reduction semantics for call-by-value mixin modules[END_REF] suffer from this drawback: they require the dependency graph of an output to exactly match the one of the input it fills. We improve over these type systems here, by incorporating a simple notion of subtyping in our type system for MM, which allows to see a mixin with dependency graph G as a mixin with a more constraining dependency graph, that is, a super graph of G. The idea is that when giving the type of an input, the programmer (or possibly a type inference algorithm, although we have no such algorithm to propose yet) chooses a reasonably constraining dependency graph that remains compatible with the uses made of the input. Subtyping, then, allows the input to be filled by less constrained definitions.

Another related problem is that dependency graphs, and a fortiori the constraining graphs mentioned above, are very cumbersome to write by hand for the programmer. To alleviate this issue, we propose the introduction of appropriate syntactic sugar: we define the new form of mixin type mixsig Q 1 . . . Q n end, with

Q ::= U | [U 1 . . . U n] U ::= ?X : M | !X : M This new form is a list of enriched specifications Q. An enriched specification Q is either a single declaration U , or a block of single declarations [U 1 . . . U n].
A single declaration assigns a type to a name, with a flag ? or !, to indicate that it is an input or an output, respectively. Blocks are considered equivalent modulo the order, and they represent groups of potentially recursive definitions of predictable shape. Single declarations represent arbitrary definitions.

This construct can be elaborated to core MM types: basically, ? declarations are inputs, and ! declarations are both inputs and outputs. A single ! declaration strongly depends on all the preceding declarations. A ! declaration in a block strongly depends on the preceding declarations, and weakly depends on all the declarations of its block. This form makes mixin types more concise and intuitive.

Related work

Mixin-based inheritance. The notion of mixin originates in the object-oriented language Flavors [START_REF] Moon | Object-oriented programming with Flavors[END_REF], and was further investigated both as a linguistic device addressing many of the shortcomings of inheritance [START_REF] Flatt | Classes and mixins[END_REF][START_REF] Findler | Modular object-oriented programming with units and mixins[END_REF][START_REF] Bono | A core calculus of classes and mixins[END_REF] and as a semantic foundation for inheritance [START_REF] Cook | A Denotational Semantics of Inheritance[END_REF]. Here, we call this kind of mixins mixin classes. An issue with mixin classes that is generally not addressed is the treatment of instance fields and their initialization. Mixin classes where instance fields can be initialized by arbitrary expressions raise exactly the same problems of finding a correct evaluation order and detecting cyclic dependencies that we have addressed in this paper in the context of call-by-value mixins. Initialization can also be performed by an initialization method with a standard name (say, init), but this breaks data encapsulation. Instead, MM naturally allows interleaving function definitions and arbitrary computations.

Recursive modules. Harper et al. [START_REF] Crary | What is a recursive module?[END_REF][START_REF] Dreyer | Toward a practical type theory for recursive modules[END_REF] and Russo [START_REF] Russo | Recursive structures for Standard ML[END_REF] extend the ML module system with recursive definitions of modules. This addresses the mutual recursion issue we mentioned in introduction, but not the modifiability (open recursion) issue. Russo relies on lazy evaluation for the recursive definitions and makes no attempt to statically detect ill-founded recursions. Harper et al. use a standard call-by-value fixed-point operator, and statically constrain components of recursively-defined modules to be valuable. This is less flexible than our proposal, since module components can only weakly depend on the recursive variable. Recent work by Dreyer [START_REF] Dreyer | A type system for well-founded recursion[END_REF] lifts this restriction by using an effect system to track strong dependencies on recursively-defined variables.

Language designs with mixins. Bracha [START_REF] Bracha | The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance[END_REF] formulated the concept of mixin-based inheritance (composition) independently of an object-oriented setting. His mixins do not address the initialization issue. Duggan and Sourelis [START_REF] Duggan | Mixin modules[END_REF] extended his proposal and adapted it to ML. In their system, a mixin comprises a body, containing only function and data-type definitions, surrounded by a prelude and an initialization section, containing arbitrary computations. During composition, only the bodies of the two mixins are connected, but neither the preludes nor the initialization sections. This ensures that mixin composition never creates illfounded recursive definitions, but forbids to alternate standard definitions and composable definitions.

Flatt and Felleisen [START_REF] Flatt | Units: cool modules for HOT languages[END_REF] introduce the closely related concept of units. A first difference with our proposal is that units do not feature late binding. Moreover, the initialization problem is handled differently. The formalization of units in [START_REF] Flatt | Units: cool modules for HOT languages[END_REF]Sect. 4] restricts definitions to syntactic values, but includes in each unit an initialization expression that can perform arbitrary computations. Like Duggan and Sourelis's approach, this approach prevents the creation of ill-founded recursive definitions, but is less flexible than our approach. The implementation of units for Scheme allows arbitrary computations within the definitions of unit components. The defined variables are implicitly initialized to nil before evaluating the right-hand sides of the definitions and updating the defined variables with the results of the computation. Ill-founded recursions are thus not prevented statically, and result either in a run-time type error or in a value that is not a fixed-point of the recursive definition.

Linking calculi and mixin calculi. Cardelli [START_REF] Cardelli | Program fragments, linking, and modularization[END_REF] initiated the study of linking calculi. His system is a first-order linking model, that is, modules are compilation units and cannot be nested. His type system does not restrict recursion at all, but the operational semantics is sequential in nature and does not appear to handle cross-unit recursion. As a result, the system seems to lack the progress property.

Machkasova and Turbak [START_REF] Machkasova | A calculus for link-time compilation[END_REF] explore a very expressive linking calculus, which is not confluent. Instead, it is argued that it is computationally sound, in the sense that all strategies lead to the same outcome. The system is untyped, and does not feature nested modules.

Ancona and Zucca [START_REF] Ancona | A calculus of module systems[END_REF] propose a call-by-name module system called CMS . As MM, CMS extends Jigsaw by allowing any kind of expressions as mixin definitions, not just values. Unlike in MM, in CMS , there is no distinction between modules and mixin modules, which makes sense in call-by-name languages, since the contents of modules are not evaluated until selection. In call-by-value, the contents of a module are eagerly evaluated, so CMS is not a suitable model. From the standpoint of typing, CMS , unlike MM, and consistently with most call-by-name languages, does not control recursive definitions.

In a more recent calculus [START_REF] Ancona | Mixin modules and computational effects[END_REF], Ancona et al. do distinguish mixins from modules. They propose to handle side effects using monadic operators. However, they do not attempt to statically reject faulty recursive definitions. Moreover, in their system, given a composition e 1 + e 2 , the monadic definitions of e 1 are necessarily evaluated before those of e 2 , which is less flexible than our proposal.

As CMS , Wells and Vestergaard's m-calculus [START_REF] Wells | Equational reasoning for linking with first-class primitive modules[END_REF] is targeted to call-by-name evaluation. Nevertheless, it has a rich equational theory that allows to see MM as a strongly-typed version of the m-calculus specialized to call-by-value plus built-in late binding behavior (encoded in the m-calculus), explicit distinction between mixins and modules, programmer control over the order of evaluation, and a sound and flexible type system.

Conclusion

We have presented a language of call-by-value mixin modules, equipped with a reduction semantics and a sound type system. Some open issues remain to be dealt with, which are related to different practical uses of mixin modules. If mixin modules are used as first-class, core language constructs, then the simple type system presented here is not expressive enough. Some form of polymorphism over mixin module types seems necessary, along the lines of type systems for record concatenation proposed by Harper and Pierce [START_REF] Harper | A record calculus based on symmetric concatenation[END_REF] and by Pottier [START_REF] Pottier | A versatile constraint-based type inference system[END_REF]. If one wants to build a module system based on mixin modules, then type abstraction and user-defined type components have to be considered. We are working on extending the type systems for ML modules [START_REF] Leroy | Manifest types, modules, and separate compilation[END_REF][START_REF] Harper | A type-theoretic approach to higher-order modules with sharing[END_REF] to mixin modules with type components. For this, we plan to build on previous work on recursive, nonmixin modules [START_REF] Crary | What is a recursive module?[END_REF][START_REF] Dreyer | Toward a practical type theory for recursive modules[END_REF]. Nevertheless, an issue appears for finding the inputs of a composition, which involves a kind of greatest lower bound operation on types. In a similar context, Odersky et al. [START_REF] Odersky | A nominal theory of objects with dependent types[END_REF] resort to explicit annotations, which is not entirely satisfactory.

Fig. 1 .

 1 Fig. 1. Syntax of MM

) dom(b1) ⊥ ({x} ∪ dom(bv, b2) ∪ FV(bv, b2) ∪ FV(e)) let rec bv, x = (let rec b1 in e), b2 in e → let rec bv, b1, x = e, b2 in e (IM) dom(b) ⊥ (dom(bv) ∪ FV(bv)) let rec bv in let rec b in e → let rec bv, b in e (EM) Evaluation contexts Evaluation context: E ::= F | let rec bv in F | let rec bv, x = F , b in e Nested lift context: F ::= | L [F]

Fig. 2 .

 2 Fig. 2. Dynamic semantics of MM

3 .

 3 After the standard typing rule T-Variable for variables, rule T-Struct defines the typing of structures ι; o . The rule introduces a well-formed input signature I corresponding to ι, and a well-formed type environment Γ o corresponding to o. Given I and Γ o , the rule checks that the definitions in o indeed have the types mentioned in Γ o . The types of named definitions of o, obtained by composing Γ o with Input(o), are retained both as inputs and outputs. Finally, the condition -→ ι;o checks that the dependencies of the structure are safe. It relies on the labeled dependency graph of ι; o , which is defined by the following rules:

Fig. 3 .

 3 Fig. 3. Static semantics of MM

 Here, xx means that x depends on x .) Given an unlabeled graph on variables, we define the binary relation by {x y | x + y and y * . It defines a partial order on the variables defined by o, which respects dependencies, in the sense that if x y, then x does not depend on y. The output Reorder(o) is then o, reordered w.r.t. the left-to-right lexicographical order (o , o). Thus, when dependencies do not impose an order, we choose the syntactic definition order as a default. By construction, in Reorder(o),

	Contraction rules	
	e = (ι1 ∪ ι2) \ Input(o1, o2); o1, o2	e is well-formed
	rng(Bind(ι1, o1)) ⊥ FV(ι2; o2) ι1; o1 + ι2; o2 rng(Bind(ι2, o2)) ⊥ FV(ι1; o1) e	(Compose)
	close ∅; o	let rec BofO(Reorder(o)) in RofO(Reorder(o)) (Close)

/

x}, where + and * respectively are the transitive and reflexive-transitive closure of , and * / is the complementary relation to *

Anonymous is not exactly the same as private, since private definitions are generally mentioned in the types as private, whereas anonymous ones are not mentioned at all.

I I | dom(I 1) ≤ I1 I | dom(I 2) ≤ I2 (O1 + O2) ≤ I | dom(O 1 +O 2) Γ e1 + e2 : I; O1 + O2; G1 ∪ G2 (T-Compose) Γ e : I; O; G dom(I) = dom(O) Γ close e : {O} (T-Close) Γ e : I; O; G Γ e |-X 1 ...Xn : I; O \{X 1 ...Xn} ; G |-{X 1 ...Xn} (T-Delete) Γ e : I; O; G X ∈ dom(O) Y ∈ dom(I) G X[Y] Γ e X[Y] : I; O; G X[Y] (T-Fake) b Γ b Γ Γ b b : Γ b Γ Γ b e : M Γ let rec b in e : M (T-LetRec) ∀X ∈ dom(s), Γ s(X) : O(X) Γ {s} : {O} (T-Record) Γ e : {O} Γ e.X : O(X) (T-Select) Sequences Γ : ∅ Γ e : M Γ o : Γo

Partially supported by EPSRC grant GR/R 41545/01