
HAL Id: hal-00310119
https://hal.science/hal-00310119

Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixin modules in a call-by-value setting
Tom Hirschowitz, Xavier Leroy

To cite this version:
Tom Hirschowitz, Xavier Leroy. Mixin modules in a call-by-value setting. European Symposium on
Programming, 2002, Grenoble, France. pp.207-236, �10.1007/3-540-45927-8�. �hal-00310119�

https://hal.science/hal-00310119
https://hal.archives-ouvertes.fr

Mixin modules in a call-by-value setting

Tom Hirschowitz and Xavier Leroy

INRIA Rocquencourt
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

{Tom.Hirschowitz,Xavier.Leroy}@inria.fr

Abstract. The ML module system provides powerful parameterization
facilities, but lacks the ability to split mutually recursive definitions
across modules, and does not provide enough facilities for incremental
programming. A promising approach to solve these issues is Ancona and
Zucca’s mixin modules calculus CMS . However, the straightforward way
to adapt it to ML fails, because it allows arbitrary recursive definitions
to appear at any time, which ML does not support. In this paper, we
enrich CMS with a refined type system that controls recursive definitions
through the use of dependency graphs. We then develop a separate com-
pilation scheme, directed by dependency graphs, that translate mixin
modules down to a CBV λ-calculus extended with a non-standard let
rec construct.

1 Introduction

Modular programming and code reuse are easier if the programming language
provides adequate features to support them. Three important such features are
(1) parameterization, which allows reusing a module in different contexts; (2)
overriding and late binding, which supports incremental programming by refine-
ments of existing modules; and (3) cross-module recursion, which allows defini-
tions to be spread across several modules, even if they mutually refer to each
other. Many programming languages provide two of these features, but not all
three: class-based object-oriented languages provide (2) and (3), but are weak
on parameterization (1); conventional linkers, as well as linking calculi [9], have
cross-module recursion built in, and sometimes provide facilities for overriding,
but lack parameterization; finally, ML functors and Ada generics provide power-
ful parameterization mechanisms, but prohibit cross-module recursion and offer
no direct support for late binding.

The concept of mixins, first introduced as a generalization of inheritance in
class-based OO languages [8], then extended to a family of module systems [13,
3, 15, 21], offers a promising and elegant solution to this problem. A mixin is a
collection of named components, either defined (bound to a definition) or de-
ferred (declared without definition). The basic operation on mixins is the sum,
which takes two mixins and connects the defined components of one with the
similarly-named deferred components of the other; this provides natural support
for cross-mixin recursion. A mixin is named and can be summed several times
with different mixins; this allows powerful parameterization, including but not

restricted to an encoding of ML functors. Finally, the mixin calculus of Ancona
and Zucca [3] supports both late binding and early binding of defined compo-
nents, along with deleting and renaming operations, thus providing excellent
support for incremental programming.

Our long-term goal is to extend the ML module system with mixins, taking
Ancona and Zucca’s CMS calculus [3] as a starting point. There are two main
issues: one, which we leave for future work, is to support type components in
mixins; the other, which we address in this paper, is to equip CMS with a call-
by-value semantics consistent with that of the core ML language. Shifting CMS
from its original call-by-name semantics to a call-by-value semantics requires a
precise control of recursive definitions created by mixin composition. The call-by-
name semantics of CMS puts no restrictions on recursive definitions, allowing ill-
founded ones such as let rec x = 2 * y and y = x + 1, causing the program
to diverge when x or y is selected. In an ML-like, call-by-value setting, recursive
definitions are statically restricted to syntactic values, e.g. let rec f = λx...
and g = λy... This provides stronger guarantees (ill-founded recursions are
detected at compile-time rather than at run-time), and supports more efficient
compilation of recursive definitions. Extending these two desirable properties
to mixin modules in the presence of separate compilation [9, 18] is challenging:
illegal recursive definitions can appear a posteriori when we take the sum A + B
of two mixin modules, at a time where only the signatures of A and B are known,
but not their implementations.

The solution we develop here is to enrich the CMS type system, adding
graphs in mixin signatures to represent the dependencies between the compo-
nents. The resulting typed calculus, called CMSv, guarantees that recursive def-
initions created by mixin composition evaluate correctly under a call-by-value
regime, yet leaves considerable flexibility in composing mixins. We then pro-
vide a type-directed, separate compilation scheme for CMSv. The target of this
compositional translation is λB , a simple call-by-value λ-calculus with a non-
standard let rec construct in the style of Boudol [6]. Finally, we prove that the
compilation of a type-correct CMSv mixin is well typed in a sound, non-standard
type system for λB that generalizes that of [6], thus establishing the soundness
of our approach.

The remainder of the paper is organized as follows. Section 2 gives a high-
level overview of the CMS and CMSv mixin calculi, and explains the recursion
problem. Section 3 defines the syntax and typing rules for CMSv, our call-by-
value mixin module calculus. The compilation scheme (from CMSv to λB) is
presented in section 4. Section 5 outlines a proof of correctness of the compilation
scheme. We review related work in section 6, and conclude in section 7. Proofs
are omitted, but can be found in the long version of this paper [17].

2 Overview

2.1 The CMS calculus of mixins

We start this paper by an overview of the CMS module calculus of [3], using
an ML-like syntax for readability. A basic mixin module is similar to an ML
structure, but may contain “holes”:

mixin Even = mix
? val odd: int -> bool (* odd is deferred *)
let even = λx. x = 0 or odd(x-1) (* even is defined *)

end

In other terms, a mixin module consists of defined components, let-bound to an
expression, and deferred components, declared but not yet defined. The funda-
mental operator on mixin modules is the sum, which combines the components
of two mixins, connecting defined and deferred components having the same
names. For example, if we define Odd as

mixin Odd = mix
? val even: int -> bool
let odd = λx. x > 0 and even(x-1)

end

the result of mixin Nat = Even + Odd is equivalent to writing

mixin Nat = mix
let even = λx. x = 0 or odd(x-1)
let odd = λx. x > 0 and even(x-1)

end

As in class-based languages, all defined components of a mixin are mutually
recursive by default; thus, the above should be read as the ML structure

module Nat = struct
let rec even = λx. x = 0 or odd(x-1)

and odd = λx. x > 0 and even(x-1)
end

Another commonality with classes is that defined components are late bound by
default: the definition of a component can be overridden later, and other defini-
tions that refer to this component will “see” the new definition. The overriding
is achieved in two steps: first, deleting the component via the \ operator, then
redefining it via a sum. For instance,

mixin Nat’ = (Nat \ even) + (mix let even = λx. x mod 2 = 0 end)

is equivalent to the direct definition

mixin Nat’ = mix
let even = λx. x mod 2 = 0
let odd = λx. x > 0 and even(x-1)

end

Early binding (definite binding of a defined name to an expression in all other
components that refer to this name) can be achieved via the freeze operator !.
For instance, Nat ! odd is equivalent to

mix
let even = let odd = λx. x > 0 and even(x-1) in

λx. x = 0 or odd(x-1)
let odd = λx. x > 0 and even(x-1)

end

For convenience, our CMSv calculus also provides a close operator that freezes
all components of a mixin in one step. Projections (extracting the value of a
mixin component) are restricted to closed mixins – for the same reasons that
in class-based languages, one cannot invoke a method directly from a class: an
instance of the class must first be taken using the ”new” operator.

A component of a mixin can itself be a mixin module. Not only does this
provide ML-style nested mixins, but it also supports a general encoding of ML
functors, as shown in [2].

2.2 Controlling recursive definitions

As recalled in introduction, call-by-value evaluation of recursive definitions is
usually allowed only if the right-hand sides are syntactic values (e.g. λ-abstrac-
tions or constants). This semantic issue is exacerbated by mixin modules, which
are in essence big mutual let rec definitions. Worse, ill-founded recursive defi-
nitions can appear not only when defining a basic mixin such as

mixin Bad = close(mix let x = y + 1 let y = x * 2 end)

but also a posteriori when combining two innocuous-looking mixins:
mixin OK1 = mix ? val y : int let x = y + 1 end
mixin OK2 = mix ? val x : int let y = x * 2 end
mixin Bad = close(OK1 + OK2)

Although OK1 and OK2 contain no ill-founded recursions, the sum OK1 + OK2
contains one. If the definitions of OK1 and OK2 are known when we type-check
and compile their sum, we can simply expand OK1 + OK2 into an equivalent
monolithic mixin and reject the faulty recursion. But in a separate compilation
setting, OK1 + OK2 can be compiled in a context where the definitions of OK1 and
OK2 are not known, but only their signatures are. Then, the ill-founded recursion
cannot be detected. This is the major problem we face in extending ML with
mixin modules.

One partial solution, that we find unsatisfactory, is to rely on lazy evalua-
tion to implement a call-by-name semantics for modules, evaluating components
only at selection or when the module is closed. (This is the approach followed by
the Moscow ML recursive modules [20], and also by class initialization in Java.)
This would have several drawbacks. Besides potential efficiency problems, lazy
evaluation does not mix well with ML, which is a call-by-value imperative lan-
guage. For instance, ML modules may contain side-effecting initialization code

that must be evaluated at predictable program points; that would not be the
case with lazy evaluation of modules. The second drawback is that ill-founded
recursive definitions (as in the Bad example above) would not be detected stati-
cally, but cause the program to loop or fail at run-time. We believe this seriously
decreases program safety: compile-time detection of ill-founded recursive defini-
tions is much preferable.

Our approach consists in enriching mixin signatures with graphs representing
the dependencies between components of a mixin module, and rely on these
graphs to detect statically ill-founded recursive definitions. For example, the
Nat and Bad mixins shown above have the following dependency graphs:

Nat: even
1

!! odd
1""

Bad: x
0

y
0

$$

Edges labeled 0 represent an immediate dependency: the value of the source
node is needed to compute that of the target node. Edges labeled 1 represent a
delayed dependency, occurring under at least one λ-abstraction; thus, the value
of the target node can be computed without knowing that of the source node.
Ill-founded recursions manifest themselves as cycles in the dependency graph
involving at least one “0” edge. Thus, the correctness criterion for a mixin is,
simply: all cycles in its dependency graph must be composed of “1” edges only.
Hence, Nat is correct, while Bad is rejected.

The power of dependency graphs becomes more apparent when we consider
mixins that combine recursive definitions of functions and immediate computa-
tions that sit outside the recursion:

mixin M1 = mix mixin M2 = mix
? val g : ... ? val f : ...
let f = λx. ...g... let g = λx. ...f...
let u = f 0 let v = g 1

end end

The dependency graph for the sum M1 + M2 is:

u f
0%%

1
&& g 0 ''

1

((v

It satisfies the correctness criterion, thus accepting this definition; other systems
that record a global “valuability” flag on each signature, such as the recursive
modules of [11], would reject this definition.

3 The CMS calculus

We now define formally the syntax and typing rules of CMSv, our call-by-value
variant of CMS .

Core terms: C ::= x | cst variable, constant
| λx.C | C1 C2 abstraction, application
| E.X component projection

Mixin terms: E ::= C core term
| 〈ι; o〉 mixin structure
| E1 + E2 sum
| E[X ← Y] rename X to Y
| E ! X freeze X
| E \ X delete X
| close(E) close

Input assignments: ι ::= xi
i∈I$→ Xi ι injective

Output assignments: o ::= Xi
i∈I$→ Ei

Core types: τ ::= int | bool | τ → τ

Mixin types: T ::= τ core type
| {I;O;D} mixin signature

Type assignments: I,O ::= Xi
i∈I$→ Ti

Dependency graphs: D (see section 3.2)

Fig. 1. Syntax of CMSv

3.1 Syntax

The syntax of CMSv terms and types is defined in figure 1. Here, x ranges over a
countable set Vars of (α-convertible) variables, while X ranges over a countable
set Names of (non-convertible) names used to identify mixin components.

Although our module system is largely independent of the core language, for
the sake of specificity we use a standard simply-typed λ-calculus with constants
as core language. Core terms can refer by name to a (core) component of a mixin
structure, via the notation E.X.

Mixin terms include core terms (proper stratification of the language is en-
forced by the typing rules), structure expressions building a mixin from a col-
lection of components, and the various mixin operators mentioned in section 2:
sum, rename, freeze, delete and close.

A mixin structure 〈ι; o〉 is composed of an input assignment ι and an output
assignment o. The input assignment associates internal variables to names of im-
ported components, while the output assignment associates expressions to names
of exported components. These expressions can refer to imported components
via their associated internal variables. This explicit distinction between names
and internal variables allows internal variables to be renamed by α-conversion,
while external names remain immutable, thus making projection by name un-
ambiguous [19, 2, 21].

Due to late binding, a virtual (defined but not frozen) component of a mixin
is both imported and exported by the mixin: it is exported with its current

definition, but is also imported so that other exported components refer to its
final value at the time the component is frozen or the mixin is closed, rather
than to its current value. In other terms, component X of 〈ι; o〉 is deferred
when X ∈ cod(ι) \ dom(o), virtual when X ∈ cod(ι) ∩ dom(o), and frozen when
X ∈ dom(o) \ cod(ι).

For example, consider the following mixin, expressed in the ML-like syntax
of section 2: mix ?val x: int let y = x + 2 let z = y + 1 end. It is
expressed in CMSv syntax as the structure 〈ι; o〉, where ι = [x %→ X; y %→
Y ; z %→ Z] and o = [Y %→ x + 2; Z %→ y + 1]. The names X, Y , Z correspond to
the variables in the ML-like syntax, while the variables x, y, z bind them locally.
Here, X is only an input, but Y and Z are both input and output, since these
components are virtual. The definition of Z refers to the imported value of Y ,
thus allowing later redefinition of Y to affect Z.

3.2 Types and dependency graphs

Types T are either core types (those of the simply-typed λ-calculus) or mixin
signatures {I;O;D}. The latter are composed of two mappings I and O from
names to types, one for input components, the other for output components;
and a safe dependency graph D.

A dependency graph D is a directed multi-graph whose nodes are external
names of imported or exported components, and whose edges carry a valuation
χ ∈ {0, 1}. An edge X

1−→ Y means that the term E defining Y refers to the value
of X, but in such a way that it is safe to put E in a recursive definition that
simultaneously defines X in terms of Y . An edge X

0−→ Y means that the term
E defining Y cannot be put in such a recursive definition: the value of X must
be entirely computed before E is evaluated. It is generally undecidable whether
a dependency is of the 0 or 1 kind, so we take the following conservative approx-
imation: if E is an abstraction λx.C, then all dependencies for Y are labeled 1;
in all other cases, they are all labeled 0. (Other, more precise approximations
are possible, but this one works well enough and is consistent with core ML.)

More formally, for x ∈ FV (E), we define ν(x, E) = 1 if E = λy.C and
ν(x, E) = 0 otherwise. Given the mixin structure s = 〈ι; o〉, we then define its
dependency graph D(s) as follows: its nodes are the names of all components of
s, and it contains an edge X

χ−→ Y if and only if there exist E and x such that
o(Y) = E and ι(x) = X and x ∈ FV (E) and χ = ν(x, E). We then say that a
dependency graph D is safe, and write (D, if all cycles of D are composed of
edges labeled 1. This captures the idea that only dependencies of the “1” kind
are allowed inside a mutually recursive definition.

In order to type-check mixin operators, we must be able to compute the
dependency graph for the result of the operator given the dependency graphs
for its operands. We now define the graph-level operators corresponding to the
mixin operators.
Sum: the sum D1 + D2 of two dependency graphs is simply their union:

D1 + D2 = {X χ−→ Y | (X χ−→ Y) ∈ D1 or (X χ−→ Y) ∈ D2}

Rename: assuming Y is not mentioned in D, the graph D[X ← Y] is the graph
D where the node X, if any, is renamed Y , keeping all edges unchanged.

D[X ← Y] = {A{X ← Y } χ−→ B{X ← Y } | (A χ−→ B) ∈ D}
Delete: the graph D\X is the graph D where we remove all edges leading to X.

D\X = D \ {Y χ−→ X | Y ∈ Names, χ ∈ {0, 1}}

Freeze: operationally, the effect of freezing the component X in a mixin structure
is to replace X by its current definition E in all definitions of other exported
components. At the dependency level, this causes all components Y that previ-
ously depended on X to now depend on the names on which E depends. Thus,
paths Y

χ1−→ X
χ2−→ Z in the original graph become edges Y

min(χ1,χ2)−−−−−−−→ Z in the
result graph.

D!X = (D ∪Daround) \ Dremove

where Daround = {Y min(χ1,χ2)−−−−−−−→ Z | (Y χ1−→ X) ∈ D, (X χ2−→ Z) ∈ D}
and Dremove = {X χ−→ Y | Y ∈ Names, χ ∈ {0, 1}}

The sum of two safe graphs is not necessarily safe (unsafe cycles may appear);
thus, the typing rules explicitly check the safety of the sum. However, it is
interesting to note that the other graph operations preserve safety:

Lemma 1 If D is a safe dependency graph, then the graphs D[X ← Y], D\X
and D!X are safe.

3.3 Typing rules

The typing rules for CMSv are shown in figure 2. The typing environment Γ is
a finite map from variables to types. We assume given a mapping TC from con-
stants to core types. All dependency graphs appearing in the typing environment
and in input signatures are assumed to be safe.

The rules resemble those of [3], with additional manipulations of dependency
graphs. Projection of a structure component requires that the structure has no
input components. Structure construction type-checks every output component
in an environment enriched with the types assigned to the input components;
it also checks that the corresponding dependency graph is safe. For the sum
operator, both mixins must agree on the types of common input components,
and must have no output components in common; again, we need to check that
the dependency graph of the sum is safe, to make sure that the sum introduces
no illegal recursive definitions. Freezing a component requires that its type in the
input signature and in the output signature of the structure are identical, then
removes it from the input signature. In contrast, deleting a component removes
it from the output signature. Finally, closing a mixin is equivalent to freezing all
its input components, and results in an empty input signature and dependency
graph.

Γ & x : Γ (x) (var) Γ & c : TC(c) (const)
Γ + {x : τ1} & C : τ2

(abstr)
Γ & λx.C : τ1 → τ2

Γ & C1 : τ ′ → τ Γ & C2 : τ ′
(app)

Γ & C1 C2 : τ

Γ & E : {∅;O; ∅}
(select)

Γ & E.X : O(X)

& D〈ι; o〉 dom(o) = dom(O)
Γ + {x : I(ι(x)) | x ∈ dom(ι)} & o(X) : O(X) for X ∈ dom(o)

(struct)
Γ & 〈ι; o〉 : {I;O;D〈ι; o〉}

Γ & E1 : {I1;O1;D1} Γ & E2 : {I2;O2;D2} & D1 + D2

dom(O1) ∩ dom(O2) = ∅ I1(X) = I2(X) for all X ∈ dom(I1) ∩ dom(I2)
(sum)

Γ & E1 + E2 : {I1 + I2;O1 + O2;D1 + D2}

Γ & E : {I;O;D} I(X) = O(X)
(freeze)

Γ & E ! X : {I\X ;O;D!X}

Γ & E : {I;O;D} X ∈ dom(O)
(delete)

Γ & E \ X : {I;O\X ;D \ X}

Γ & E : {I;O;D} Y /∈ dom(I) ∪ dom(O)
(rename)

Γ & E[X ← Y] : {I ◦ [Y $→ X];O ◦ [Y $→ X];D[X ← Y]}

Γ & E : {I;O;D} dom(I) ⊆ dom(O) I(X) = O(X) for all X ∈ dom(I)
(close)

Γ & close(E) : {∅;O; ∅}

Fig. 2. Typing rules

4 Compilation

We now present a compilation scheme translating CMSv terms into call-by-
value λ-calculus extended with records and a let rec binding. This compilation
scheme is compositional, and type-directed, thus supporting separate compila-
tion.

4.1 Intuitions

A mixin structure is translated into a record, with one field per output com-
ponent of the structure. Each field corresponds to the expression defining the
output component, but λ-abstracts all input components on which it depends,
that is, all its direct predecessors in the dependency graph. These extra param-
eters account for the late binding semantics of virtual components. Consider
again the M1 and M2 example at the end of section 2. These two structures are
translated to:

m1 = { f = λg.λx. ...g...; u = λf. f 0 }

m2 = { g = λf.λx. ...f...; v = λg. g 1 }
The sum M = M1 + M2 is then translated into a record that takes the union of
the two records m1 and m2:

m = { f = m1.f; u = m1.u; g = m2.g; v = m2.v }
Later, we close M. This requires connecting the formal parameters representing in-
put components with the record fields corresponding to the output components.
To do this, we examine the dependency graph of M, identifying the strongly
connected components and performing a topological sort. We thus see that we
must first take a fixpoint over the f and g components, then compute u and v
sequentially. Thus, we obtain the following code for close(M):

let rec f = m.f g and g = m.g f in
let u = m.u f in
let v = m.v g in
{ f = f; g = g; u = u; v = v }

Notice that the let rec definition we generate is unusual: it involves function
applications in the right-hand sides, which is usually not supported in call-by-
value λ-calculi. Fortunately, Boudol [6] has already developed a non-standard
call-by-value calculus that supports such let rec definitions; we adopt a variant
of his calculus as our target language.

4.2 The target language

The target language for our translation is the λB calculus, a variant of the λ-
calculus with records and recursive definitions studied in [6]. Its syntax is as
follows:

M ::= x | cst | λx.M | M1 M2

| 〈X1 = M1; . . . ;Xn = Mn〉 | M.X
| let x = M1 in M
| let rec x1 = M1 and . . . and xn = Mn in M

4.3 The translation

The translation scheme for our language is defined in figure 3. The translation
is type-directed and operates on terms annotated by their types. For the core
language constructs (variables, constants, abstractions, applications), the trans-
lation is a simple morphism; the corresponding cases are omitted from figure 3.

Access to a structure component E.X is translated into an access to field X
of the record obtained by translating E. Conversely, a structure 〈ι; o〉 is trans-
lated into a record construction. The resulting record has one field for each
exported name X ∈ dom(o), and this field is associated to o(X) where all input
parameters on which X depends are λ-abstracted. Some notation is required
here. We write D−1(X) for the list of immediate predecessors of node X in
the dependency graph D, ordered lexicographically. (The ordering is needed

!(E : T ′).X : T " = !E : T ′".X
!〈ι; o〉 : {I;O;D}" =

〈X = ι−1(D−1(X)).!o(X) : O(X)" | X ∈ dom(O)〉
!(E1 : {I1;O1;D1}) + (E2 : {I2;O2;D2}) : {I;O;D}" =

let e1 = !E1 : {I1;O1;D1}" in let e2 = !E2 : {I2;O2;D2}" in

〈X = e1.X | X ∈ dom(O1);

Y = e2.Y | Y ∈ dom(O2)〉
!(E : {I′;O′;D′}) \ X : {I;O;D}" =

let e = !E : {I′;O′;D′}" in 〈Y = e.Y | Y ∈ dom(O)〉
!(E : {I′;O′;D′})[X ← Y] : {I;O;D}" =

let e = !E : {I′;O′;D′}" in

〈Z{X ← Y } = D−1(Z{X ← Y }).(e.Z D′−1(Z)){X ← Y } | Z ∈ dom(O′)〉
!(E : {I′;O′;D′}) ! X : {I;O;D}" =

let e = !E : {I′;O′;D′}" in

〈Z = e.Z | Z ∈ dom(O), X /∈ D′−1(Z);

Y = D−1(Y).let rec X = e.X D′−1(X) in e.Y D′−1(Y) | X ∈ D′−1(Y)〉
!close(E : {I′;O′;D′}) : {∅;O; ∅}" =

let e = !E : {I′;O′;D′}" in

let rec X1
1 = e.X1

1 D′−1(X1
1) and . . . and X1

n1 = e.X1
n1 D′−1(X1

n1) in

. . .

let rec Xp
1 = e.Xp

1 D′−1(Xp
1) and . . . and Xp

np = e.Xp
np D′−1(Xp

np) in

〈X = X | X ∈ dom(O)〉
where ({X1

1 . . . X1
n1}, . . . , {X

p
1 . . . Xp

np}) is a serialization of dom(O′) against D′

Fig. 3. The translation scheme

to ensure that values for these predecessors are provided in the correct order
later; any fixed total ordering will do.) If (X1, . . . , Xn) = D−1(X) is such a
list, we write ι−1(D−1(X)) for the list (x1, . . . , xn) of variables associated to the
names (X1, . . . , Xn) by the input mapping ι. Finally, we write λ(x1, . . . , xn).M
as shorthand for λx1 . . . λxn.M . With all this notation, the field X in the record
translating 〈ι; o〉 is bound to λι−1(D−1(X)).!o(X) : O(X)".

The sum of two mixins E1 +E2 is translated by building a record containing
the union of the fields of the translations of E1 and E2. For the delete operator
E \ X, we return a copy of the record representing E in which the field X is
omitted. Renaming E[X ← Y] is harder: not only do we need to rename the field
X of the record representing E into Y , but the renaming of X to Y in the input
parameters can cause the order of the implicit arguments of the record fields to
change. Thus, we need to abstract again over these parameters in the correct

order after the renaming, then apply the corresponding field of !E" to these
parameters in the correct order before the renaming. Again, some notation is in
order: to each name X we associate a fresh variable written X, and similarly for
lists of names, which become lists of variables. Moreover, we write M (x1, . . . , xn)
as shorthand for M x1 . . . xn.

The freeze operation E ! X is perhaps the hardest to compile. Output com-
ponents Z that do not depend on X are simply re-exported from !E". For
the other output components, consider a component Y of E that depends on
Y1, . . . , Yn, and assume that one of these dependencies is X, which itself depends
on X1, . . . , Xp. In E ! X, the Y component depends on ({Yi} ∪{ Xj}) \ {X}.
Thus, we λ-abstract on the corresponding variables, then compute X by apply-
ing !E".X to the parameters Xj . Since X can depend on itself, this application
must be done in a let rec binding over X. Then, we apply !E".Y to the param-
eters that it expects, namely Yi, which include X.

The only operator that remains to be explained is close(E). Here, we take
advantage of the fact that close removes all input dependencies to generate
code that is more efficient than a sequence of freeze operations. We first serialize
the set of names exported by E against its dependency graph D. That is, we
identify strongly connected components of D, then sort them in topological order.
The result is an enumeration ({X1

1 . . . X1
n1
}, . . . , {Xp

1 . . . Xp
np
}) of the exported

names where each cluster {Xi
1 . . . Xi

ni
} represents mutually recursive definitions,

and the clusters are listed in an order such that each cluster depends only on
the preceding ones. We then generate a sequence of let rec bindings, one for
each cluster, in the order above. In the end, all output components are bound
to values with no dependencies, and can be grouped together in a record.

5 Type soundness of the translation

The translation scheme defined above can generate recursive definitions of the
form let rec x = M x in N . In λB , these definitions can either evaluate to a
fixpoint (i.e. M = λx.λy.y), or get stuck (i.e. M = λx.x + 1). In the full paper,
we prove that no term generated by the translation of a well-typed mixin can
get stuck. To this end, we equip λB with a sound type system that guarantees
that all recursive definitions are correct. Boudol [6] gave such a type system,
using function types of the form τ1

0−→ τ2 or τ1
1−→ τ2 to denote functions that

respectively do or do not inspect the value of their argument immediately when
applied. However, this type system does not type-check curried function ap-
plications with sufficient precision for our purposes. Therefore, we developed a
refinement of this type system based on function types of the form τ1

n−→ τ2,
where n is an integer indicating the number of applications that can be per-
formed without inspecting the value of the first argument. In the full paper [17],
we formally define this type system, show its soundness (well-typed terms do
not get stuck), and prove that λB terms produced by the compilation scheme
applied to well-typed mixins are well typed.

6 Related work

Bracha [8, 7] introduced the concept of mixin as a generalization of (multiple)
inheritance in class-based OO languages, allowing more freedom in deferring the
definition of a method in a class and implementing it later in another class than
is normally possible with inheritance and overriding.

Duggan and Sourelis [13, 14] were the first to transpose Bracha’s mixin con-
cept to the ML module system. Their mixin module system supports extensible
functions and datatypes: a function defined by cases can be split across sev-
eral mixins, each mixin defining only certain cases, and similarly a datatype
(sum type) can be split across several mixins, each mixin defining only certain
constructors; a composition operator then stitches together these cases and con-
structors. The problem with ill-founded recursions is avoided by allowing only
functions (λ-abstractions) in the combinable parts of mixins, while initialization
code goes into a separate, non-combinable part of mixins. Their compilation
scheme (into ML modules) is less efficient than ours, since the fixpoint defining
a function is computed at each call, rather than only once at mixin combination
time as in our system.

The units of Flatt and Felleisen [15] are a module system for Scheme. The ba-
sic program units import names and export definitions, much like in Ancona and
Zucca’s CMS calculus. The recursion problem is solved as in [13] by separating
initialization from component definition.

Ancona and Zucca [1–3] develop a theory of mixins, abstracting over much
of the core language, and show that it can encode the pure λ-calculus, as well
as Abadi and Cardelli’s object calculus. The emphasis is on providing a calcu-
lus, with reduction rules but no fixed reduction strategy, and nice confluence
properties. Another calculus of mixins is Vestergaard and Wells’ m-calculus [21],
which is very similar to CMS in many points, but is not based on any core
language, using only variables instead. The emphasis is put on the equational
theory, allowing for example to replace some variables with their definition inside
a structure, or to garbage collect unused components, yielding a powerful the-
ory. Neither Ancona-Zucca nor Vestergaard-Wells attempt to control recursive
definitions statically, performing on-demand unwinding instead. Still, some care
is required when unwinding definitions inside a structure, because of confluence
problems [4].

Crary et al [11, 12] and Russo [20] extend the Standard ML module system
with mutually recursive structures via a structure rec binding. Like mixins,
this construct addresses ML’s cross-module recursion problem; unlike mixins, it
does not support late binding and incremental programming. The structure
rec binding does not lend itself directly to separate compilation (the definitions
of all mutually recursive modules must reside in the same source file), although
some amount of separate compilation can be achieved by functorizing each recur-
sive module over the others. ML structures contain type components in addition
to value components, and this raises delicate static typing issues that we have
not yet addressed within our CMSv framework. Crary et al formalize static
typing of recursive structure using recursively-defined signatures and the phase

distinction calculus, while Russo remains closer to Standard ML’s static seman-
tics. Concerning ill-founded recursive value definitions, Russo does not attempt
to detect them statically, relying on lazy evaluation to catch them at run-time.
Crary et al statically require that all components of recursive structures are syn-
tactic values. This is safe, but less flexible than our component-per-component
dependency analysis.

Bono et al [5] use a notion of dependency graph in the context of a type
system for extensible and incomplete objects. However, they do not distinguish
between “0” and “1” dependencies.

7 Conclusions and future work

As a first step towards a full mixin module system for ML, we have developed a
call-by-value variant of Ancona and Zucca’s calculus of mixins. The main techni-
cal innovation of our work is the use of dependency graphs in mixin signatures,
statically guaranteeing that cross-module recursive definitions are well founded,
yet leaving maximal flexibility in mixing recursive function definitions and non-
recursive computations within a single mixin. Dependency graphs also allow a
separate compilation scheme for mixins where fixpoints are taken as early as
possible, i.e. during mixin initialization rather than at each component access.

A drawback of dependency graphs is that programmers must (in principle)
provide them explicitly when declaring a mixin signature, e.g. for a deferred
sub-mixin component. This could make programs quite verbose. Future work
includes the design of a concrete syntax for mixin signatures that alleviate this
problem in the most common cases.

Our λB target calculus can be compiled efficiently down to machine code,
using the “in-place updating” trick described in [10] to implement the non-
standard let rec construct. However, this trick assumes constant-sized function
closures; some work is needed to accommodate variable-sized closures as used in
the OCaml compiler among others.

The next step towards mixin modules for ML is to support type definitions
and declarations as components of mixins. While these type components account
for most of the complexity of ML module typing, we are confident that we can
extend to mixins the considerable body of type-theoretic work already done for
ML modules [16, 18] and recursive modules [11, 12].

Acknowledgements. We thank Elena Zucca and Davide Ancona for discussions,
and Vincent Simonet for his technical advice on the typing rules for λB .

References

1. D. Ancona. Modular formal frameworks for module systems. PhD thesis, Universita
di Pisa, 1998.

2. D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nadathur,
editor, Princ. and Practice of Decl. Prog., volume 1702 of LNCS, pages 62–79.
Springer-Verlag, 1999.

3. D. Ancona and E. Zucca. A calculus of module systems. Journal of functional
programming, 2001. To appear.

4. Z. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec.
Annals of pure and applied logic, 2001. To appear.

5. V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping for exten-
sible, incomplete objects. Fundamenta Informaticae, 38(4):325–364, 1999.

6. G. Boudol. The recursive record semantics of objects revisited. Research report
4199, INRIA, 2001. Preliminary version presented at ESOP’01, LNCS 2028.

7. G. Bracha. The programming language Jigsaw: mixins, modularity and multiple
inheritance. PhD thesis, University of Utah, 1992.

8. G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA90, volume 25(10)
of SIGPLAN Notices, pages 303–311. ACM Press, 1990.

9. L. Cardelli. Program fragments, linking, and modularization. In 24th symp. Prin-
ciples of Progr. Lang, pages 266–277. ACM Press, 1997.

10. G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine.
Science of Computer Programming, 8(2):173–202, 1987.

11. K. Crary, R. Harper, and S. Puri. What is a recursive module? In Prog. Lang.
Design and Impl. 1999, pages 50–63. ACM Press, 1999.

12. D. Dreyer, K. Crary, and R. Harper. Toward a practical type theory for recursive
modules. Technical Report CMU-CS-01-112, Carnegie Mellon University, 2001.

13. D. Duggan and C. Sourelis. Mixin modules. In Int. Conf. on Functional Progr.
96, pages 262–273. ACM Press, 1996.

14. D. Duggan and C. Sourelis. Recursive modules and mixin-based inheritance. Un-
published draft, 2001.

15. M. Flatt and M. Felleisen. Units: cool modules for HOT languages. In Prog. Lang.
Design and Impl. 1998, pages 236–248. ACM Press, 1998.

16. R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In 21st symp. Principles of Progr. Lang, pages 123–137. ACM Press,
1994.

17. T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting (long ver-
sion). Available at http://pauillac.inria.fr/~hirschow, 2001.

18. X. Leroy. Manifest types, modules, and separate compilation. In 21st symp. Prin-
ciples of Progr. Lang, pages 109–122. ACM Press, 1994.

19. M. Lillibridge. Translucent sums : a foundation for higher-order module systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1997.

20. C. Russo. Recursive structures for Standard ML. In Int. Conf. on Functional
Progr. 01, pages 50–61, 2001.

21. J. Wells and R. Vestergaard. Equational reasoning for linking with first-class
primitive modules. In Programming Languages and Systems, 9th European Symp.
Programming, volume 1782 of LNCS, pages 412–428. Springer-Verlag, 2000.

