ON LONG TIME BEHAVIOR FOR SOLUTIONS OF SEMI-LINEAR HARMONIC OSCILLATOR WITH SMALL CAUCHY DATA ON \mathbb{R}^{d}.

by
Benoît Grébert, Rafik Imekraz, Eric Paturel

$$
\begin{aligned}
& \text { Abstract. - We consider the semi-linear harmonic oscillator } \\
& \qquad i \psi_{t}=\left(-\Delta+x^{2}+M\right) \psi+\partial_{2} g(\psi, \bar{\psi}), \quad x \in \mathbb{R}^{d}, t \in \mathbb{R}
\end{aligned}
$$

where M is a Hermite multiplier and g a smooth function globally of order at least three.
We prove that such a Hamiltonian equation admits, in a neighborhood of the origin, a Birkhoff normal form at any order and that, under generic conditions on M related to the non resonance of the linear part, this normal form is integrable when $d=1$ and gives rise to simple dynamics (in particular bounded) when $d \geq 2$.
As a consequence we prove the almost global existence for solutions of the above equation with small Cauchy data.

Résumé (Comportement pour des temps grands des solutions de l'oscillateur harmonique semi-linéaire avec donnée de Cauchy petite sur \mathbb{R}^{d}.)

Dans cette article nous considérons l'oscillateur harmonique semi-linéaire :

$$
i \psi_{t}=\left(-\Delta+x^{2}+M\right) \psi+\partial_{2} g(\psi, \bar{\psi}), \quad x \in \mathbb{R}^{d}, t \in \mathbb{R}
$$

où M est un multiplicateur de Hermite et g est une fonction régulière gobalement d'ordre au moins trois.
Nous montrons qu'une telle équation admet, au voisinage de zéro, une forme normale de Birkhoff à n'importe quel ordre et que, sous des hypothèses génériques sur M liées à la non résonance de la partie linéaire, cette forme normale est complètement intégrable si $d=1$ et donne lieu à une dynamique simple (et en particulier bornée) pour $d \geq 2$.
Ce résultat nous permet de démontrer l'existence presque globale des solutions de l'équation nonlinéaire ci-dessus avec donnée initiale petite

Key words and phrases. - Birkhoff normal form, Semi-linear quantum harmonic oscillator, Hamiltonian PDEs, long time stability. AMS classification: 37K55,37K45, 35B34, 35B35.

1. Introduction, statement of the results

The aim of this paper is to study long-time existence and behavior for semilinear harmonic oscillator equations of type

$$
\left\{\begin{align*}
i \psi_{t} & =\left(-\Delta+x^{2}+M\right) \psi+\partial_{2} g(\psi, \bar{\psi}) \tag{1.1}\\
\left.\psi\right|_{t=0} & =\psi_{0}
\end{align*}\right.
$$

on the whole space \mathbb{R}^{d}. Here M is a Hermite multiplier (see Section 3 for a precise definition), g is a smooth function, globally of order $p \geq 3$ and $\partial_{2} g$ denotes the partial derivative of g with respect to the second variable.. Let

$$
\begin{align*}
\tilde{H}^{s}= & \left\{\left.f \in H^{s}\left(\mathbb{R}^{d}, \mathbb{C}\right)|x \mapsto| x\right|^{\alpha} \partial^{\beta} f \in L^{2}\left(\mathbb{R}^{d}\right)\right. \\
& \left.\quad \text { for any } \alpha, \beta \in \mathbb{N}^{d} \text { satisfying } 0 \leq|\alpha|+|\beta| \leq s\right\} \tag{1.2}
\end{align*}
$$

where $H^{s}\left(\mathbb{R}^{d}, \mathbb{C}\right)$ is the standard Sobolev space on \mathbb{R}^{d}. Let $T=-\Delta+x^{2}$, denotes the quantum harmonic oscillator on $\mathbb{R}^{d}(d \geq 1)$. We note that, for any $s \geq 0$, the domain of $T^{s / 2}$ is \tilde{H}^{s}.
If $\psi_{0} \in \tilde{H}^{s}$ is small, say of norm ϵ, local existence theory implies that (1.1) admits a unique solution in \tilde{H}^{s} defined on intervals of length $c \epsilon^{-p+2}$. Our goal is to prove that for M outside an exceptional subset, given any integer $r \geq 1$ and providing that s is large enough and ϵ is small enough, the solution extends over an interval of length $c \epsilon^{-r}$. Furthermore we control the norm of the solution in \tilde{H}^{s}-norm $(d \geq 1)$ and localize the solution in the neighborhood of a torus (only in the case $d=1$, cf. Theorem 3.4 and Theorem 3.10). Precisely we have

Theorem 1.1. - Let $r \in \mathbb{N}$ be an arbitrary integer. For generic M, there is $s_{0} \in \mathbb{N}$ such that for any $s \geq s_{0}$, for any $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right)$ with $g(z, \bar{z}) \in \mathbb{R}$ vanishing at least at order 3 at the origin, there are $\epsilon_{0}>0, c>0$, such that for any $\epsilon \in\left(0, \epsilon_{0}\right)$, for any ψ_{0} in \tilde{H}^{s} with $\left\|\psi_{0}\right\|_{s} \leq \epsilon$, the Cauchy problem (1.1) with Cauchy datum ψ_{0} has a unique solution

$$
\psi \in C^{1}\left(\left(-T_{\epsilon}, T_{\epsilon}\right), \tilde{H}^{s}\right)
$$

with $T_{\epsilon} \geq c \epsilon^{-r}$. Moreover there is $C>0$ such that, for any $t \in\left(-T_{\epsilon}, T_{\epsilon}\right)$, one has

$$
\begin{equation*}
\|\psi(t, \cdot)\|_{\tilde{H}^{s}} \leq C \epsilon \tag{1.3}
\end{equation*}
$$

To prove this result we use the Birkhoff normal form theory. This technique has been developped by Bourgain [Bou96], Bambusi [Bam03], BambusiGrébert [BG06] for semilinear PDEs (typically semilinear Schrödinger equation or semilinear wave eqation) on the one dimensional torus and by Bambusi-Delort-Grébert-Szeftel [BDGS07] for the semilinear Klein-Gordon equation on the sphere S^{d} (or a Zoll manifold). These cases were concerned with compact domains. In our work the domain is \mathbb{R}^{d}, the potential x^{2} guarantees that the spectrum remains pure point but the free modes of the harmonic oscillator are not so well localized.
For general reference on Hamiltonian PDEs and their perturbations, see the recent monographies [Cra00, Kuk00, Bou05, KP03].

Let us describe roughly the general method. Consider a Hamiltonian system whose Hamiltonian function decomposes in a quadratic part, H_{0} (associated to the linear part of the equation), and a perturbative nonlinear part P (at least cubic): $H=H_{0}+P$. We assume that H_{0} is diagonal in a Hilbert basis $\left(\phi_{j}\right)_{j \geq 1}$ of the phase space \mathcal{P} (for the harmonic oscillator, this basis is given by the Hermite functions and $\left.\mathcal{P}=\ell^{2} \times \ell^{2}\right) H_{0}=\sum_{j} \omega_{j} \xi_{j} \eta_{j}$ for $(\xi, \eta) \in \mathcal{P}$ and where $\omega=\left(\omega_{j}\right)_{j \geq 1}$ is the vector of free frequencies (the eigenvalues of the linear part). The heuristic idea could be resumed as follows: if the free modes do not interact linearly (i.e. if ω is non resonant) and if they do not interact too much via the nonlinear term then the system will remain close to an integrable one, up to a nonlinear term of very high order and thus the solutions will exist and will be under control during a very long time. More precisely, by a Birkhoff normal form approach we prove (cf. Theorem 2.20) that $H \sim H_{0}^{\prime}+P^{\prime}$ where H_{0}^{\prime} is no more quadratic but remains integrable (in the case $d=1$) and P^{\prime} is at least of order r, where r can be chosen arbitrarily large as soon as we work in a sufficiently small neighborhood of the origin.
To guarantee the second condition, i.e. that the free modes do not interact too much via the nonlinear term, we have to control the integral of the product of three or more modes:

$$
\begin{equation*}
a_{j}=\int_{D} \phi_{j_{1}}(x) \cdots \phi_{j_{k}}(x) d x \tag{1.4}
\end{equation*}
$$

where D is the working domain $\left(\mathbb{R}^{d}\right.$ in our case) and j is a multi-index in \mathbb{N}^{k}, k being smaller than the order r fixed. It turns out that in our case the control of such an expression cannot be as good as in the cases on compact domains studied previously.
Let us consider ordered multi-index j, i.e. such that $j_{1} \geq j_{2} \geq \cdots \geq j_{k}$. In [BDGS07, Gré07, Bam07] the following control was used: there exists
$\nu>0$ and for any $N \geq 1$ there exists $C_{N}>0$ such that for all ordered j

$$
\begin{equation*}
\left|a_{j}\right| \leq C_{N} j_{3}^{\nu}\left(\frac{j_{3}}{j_{3}+j_{1}-j_{2}}\right)^{N} \tag{1.5}
\end{equation*}
$$

In the case of the harmonic oscillator this estimate is false (cf [Wan08] where an equivalent is computed for four modes) and we only are able to prove the following: there exists $\nu>0$ and for any $N \geq 1$ there exists $C_{N}>0$ such that for all ordered j

$$
\begin{equation*}
\left|a_{j}\right| \leq C_{N} \frac{j_{3}^{\nu}}{j_{1}^{1 / 24}}\left(\frac{\sqrt{j_{2} j_{3}}}{\sqrt{j_{2} j_{3}}+j_{1}-j_{2}}\right)^{N} \tag{1.6}
\end{equation*}
$$

The difference could seem minimal but it is technically important:
$\sum_{j_{1}}\left(\frac{j_{3}}{j_{3}+j_{1}-j_{2}}\right)^{\mu} \sim C j_{3}$ for an uniform constant C providing $\mu>1$ and similarly $\sum_{j_{1}}\left(\frac{\sqrt{j_{2} j_{3}}}{\sqrt{j_{2} j_{3}}+j_{1}-j_{2}}\right)^{\mu} \sim C \sqrt{j_{2} j_{3}}$ for $\mu>1$. In the first case, the extra term j_{3} can be absorbed by changing the value of ν in $(1.5)\left(\nu^{\prime}=\nu+1\right)$. This is not possible in the second case. In some sense the perturbative nonlinearity is no more short range (cf. [Wan08]).
Actually in the case studied in $[\mathbf{B o u 9 6}, \mathbf{B a m 0 3}, \mathbf{B G 0 6}]$ the linear modes (i.e. the eigenfunctions of the linear part) are localized around the exponential $e^{i k x}$ that are the eigenfunctions of the Laplacian on the torus. In particular the product of eigenfunctions is close to an other eigenfunction which makes much more simpler the control of (1.4). In the harmonic oscillator case, the eigenfunctions are no more localized and the product of eigenfunctions has no more simple properties. Notice that in the case of the semi-linear Klein-Gordon equation on the sphere, the control of (1.4) was also more complicated to obtain but an estimate of type (1.5) has been proved in [DS04] for the KleinGordon equation on Zoll manifold.
In the normal form point of view, the substitution of (1.5) by (1.6) has the following consequence:
Consider, \mathcal{T}^{ν}, the class of formal polynomials

$$
Q(\xi, \eta) \equiv Q(z)=\sum_{l=0}^{k} \sum_{j \in \mathbb{N}^{l}} a_{j} z_{j_{1}} \ldots z_{j_{l}}
$$

with coefficients a_{j} satisfying (1.5) (resp. (1.6)). In [Gré07] it is proved that if a polynomial P is in the class \mathcal{T}^{ν} then its hamiltonian vector field X_{P} is regular from ${ }^{(1)} \mathcal{P}_{s}=\ell_{s}^{2} \times \ell_{s}^{2}$ to \mathcal{P}_{s} for all s large enough (depending on

[^0]$\nu)$. Here we prove that if $P \in \mathcal{T}^{\nu}$ then X_{P} is regular from \mathcal{P}_{s} to $\mathcal{P}_{s^{\prime}}$ for all $s^{\prime}<s-1 / 2+1 / 24$ and s large enough. This loss of regularity would be of course dramatic for an iterative procedure. However at the principle of the iteration the nonlinearity P is regular is the sense that X_{P} maps continuously \mathcal{P}_{s} to \mathcal{P}_{s} for s large enough (essentially because the space \tilde{H}^{s} is an algebra). Furthermore we prove that the canonical transform that we contruct at each step of the iteration preserves the regularity. Actually, at each iteration, when we compute the canonical transformation as the time 1 flow of a Hamiltonian χ, the resolution of the so called homological equation lets appear an extra term in (1.6) for the coefficient of the polynomial χ :
\[

$$
\begin{equation*}
\left|a_{j}\right| \leq C_{N} \frac{j_{3}^{\nu}}{j_{1}^{1 / 24}\left(1+j_{1}-j_{2}\right)}\left(\frac{\sqrt{j_{2} j_{3}}}{\sqrt{j_{2} j_{3}}+j_{1}-j_{2}}\right)^{N} \tag{1.7}
\end{equation*}
$$

\]

Using such an estimate on the coefficients (the class ${ }^{(2)}$ denoted $\mathcal{T}^{\nu,+}$ in Section 2.2), we prove in Proposition 2.12 that X_{χ} is regular from \mathcal{P}_{s} to \mathcal{P}_{s} for all s large enough. Further we prove in Proposition 2.16 that the Poisson bracket of a polynomial in \mathcal{T}^{ν} with a polynomial in $\mathcal{T}^{\nu,+}$ is in $\mathcal{T}^{\nu^{\prime}}$ for some ν^{\prime} larger than ν. So an iterative procedure is possible in \mathcal{P}_{s}.

Our article is organized as follows: in Section 2 we state and prove a specific Birkhoff normal form theorem adapted to the loss of regularity that we explained above. In Section 3, we apply this theorem to the $1-d$ semi-linear harmonic oscillator equation (Subsection 3.1) and we generalize it to cover the multidimensional case (Subsection 3.2).

Acknowledgements: it is a great pleasure to thank Dario Bambusi and Didier Robert for many helpful discussions.

2. The Birkhoff normal form

2.1. The abstract model. - To begin with, we give an abstract model of infinite dimensional Hamiltonian system. In section 3 we will verify that the nonlinear harmonic oscillator that can be described in this abstract framework. We work in the phase space $\mathcal{P}_{s} \equiv \mathcal{P}_{s}(\mathbb{C}):=\ell_{s}^{2}(\mathbb{C}) \times \ell_{s}^{2}(\mathbb{C})$ where, for $s \in \mathbb{R}_{+}$, $\ell_{s}^{2}(\mathbb{C}):=\left\{\left.\left(a_{j}\right)_{j \geq 1} \in \mathbb{C}^{\mathbb{N}}\left|\sum_{j \geq 1} j^{2 s}\right| a_{j}\right|^{2}\right\}$ is a Hilbert space for the standard norm: $\|a\|_{s}^{2}=\sum_{j \geq 1}|j|^{2 s}\left|a_{j}\right|^{2}$. In the whole paper, we denote $\overline{\mathbb{N}}=\mathbb{N} \backslash\{0\}$ and $\overline{\mathbb{Z}}=\mathbb{Z} \backslash\{0\}$. Finally we denote $\mathcal{P}_{s}(\mathbb{R}):=\left\{(\xi, \bar{\xi}) \in \mathcal{P}_{s}(\mathbb{C})\right\}$ the "real" part of

[^1]$\mathcal{P}_{s}(\mathbb{C})$. We shall denote a genral point of \mathcal{P}_{s} by $z=(\xi, \eta)$ with $z=\left(z_{j}\right)_{j \in \mathbb{Z}}$, $\xi=\left(\xi_{j}\right)_{j \in \overline{\mathbb{N}}}, \eta=\left(\eta_{j}\right)_{j \in \overline{\mathbb{N}}}$ and the correspondence: $z_{j}=\xi_{j}, z_{-j}=\eta_{j}$ for all $j \in \overline{\mathbb{N}}$.

Definition 2.1. - Let $s \geq 0$, we denote by \mathcal{H}^{s} the space of Hamiltonian functions H defined on a neighborhood \mathcal{U} of the origin in $\mathcal{P}_{s} \equiv \mathcal{P}_{s}(\mathbb{C})$, satisfying $H(\xi, \bar{\xi}) \in \mathbb{R}$ (we say that H is real) and

$$
H \in C^{\infty}(\mathcal{U}, \mathbb{C}) \quad \text { and } \quad X_{H} \in C^{\infty}\left(\mathcal{U}, \mathcal{P}_{s}\right)
$$

In particular the Hamiltonian vector fields of functions F, G in \mathcal{H}^{s} are in $\ell_{s}^{2}(\mathbb{C}) \times \ell_{s}^{2}(\mathbb{C})$ and we can define their Poisson bracket by

$$
\{F, G\}=i \sum_{j \geq 1} \frac{\partial F}{\partial \xi_{j}} \frac{\partial G}{\partial \eta_{j}}-\frac{\partial F}{\partial \eta_{j}} \frac{\partial G}{\partial \xi_{j}} .
$$

The following simple property of functions belonging in \mathcal{H}^{s} will be very useful :

Lemma 2.2. - Let $P \in \mathcal{H}^{s}$ such that P vanishes up to order $r+1$ at the origin, that is :

$$
\forall k \leq r+1, \forall j \in \overline{\mathbb{Z}}^{k}, \frac{\partial^{k} P}{\partial z_{j_{1}} \ldots \partial z_{j_{k}}}(0)=0
$$

Then there exists $\varepsilon_{0}>0$ and $C>0$ such that, for $z \in \mathcal{P}_{s}$ satisfying $\|z\|_{s} \leq \varepsilon_{0}$, we have

$$
\left\|X_{P}(z)\right\|_{s} \leq C\|z\|_{s}^{r} .
$$

Proof. - This estimate comes from the fact that X_{P} is a C^{∞} function from a neighborhood of 0 in \mathcal{P}_{s} to \mathcal{P}_{s} : using the Taylor formula for X_{P} at order r, and since the map $z \mapsto D^{r} X_{P}(z)$ is continuous, and thus locally bounded, from a neighborhood of the origin in \mathcal{P}_{s} to the space of r-linear continuous applications from $\mathcal{P}_{s}{ }^{r}$ to \mathcal{P}_{s}, we obtain directly the above estimate.

Our model of integrable system is the harmonic oscillator

$$
H_{0}=\sum_{j \geq 1} \omega_{j} \xi_{j} \eta_{j}
$$

where $\omega=\left(\omega_{j}\right)_{j \geq 1} \in \mathbb{R}^{\overline{\mathbb{N}}}$ is the frequencies vector. We will assume that these frequencies grow at most polynomially, i.e. that there exist $C>0$ and $\bar{d} \geq 0$ such that for any $j \in \overline{\mathbb{N}}$,

$$
\begin{equation*}
\left|\omega_{j}\right| \leq C|j|^{\bar{d}} \tag{2.1}
\end{equation*}
$$

in such a way that H_{0} be well defined on \mathcal{P}_{s} for s large enough.
The perturbation term is a real function, $P \in \mathcal{H}^{s}$, having a zero of order at least 3 at the origin. Our Hamiltonian function is then given by

$$
H=H_{0}+P
$$

and the Hamilton's equations read,

$$
\left\{\begin{array}{c}
\dot{\xi}_{j}=-i \omega_{j} \xi_{j}-i \frac{\partial P}{\partial \eta_{j}}, j \geq 1 \tag{2.2}\\
\dot{\eta}_{j}=i \omega_{j} \eta_{j}+i \frac{\partial P}{\partial \xi_{j}}, j \geq 1
\end{array}\right.
$$

Our theorem will require essentially two hypotheses: one on the perturbation P (see Definition 2.5 in the next section) and one on the frequencies vector ω that we describe now.

For $j \in \overline{\mathbb{Z}}^{k}$ with $k \geq 3$, we define $\mu(j)$ as the third largest integer between $\left|j_{1}\right|, \ldots,\left|j_{k}\right|$. Then we set $S(j):=\left|j_{i_{1}}\right|-\left|j_{i_{2}}\right|$ where $\left|j_{i_{1}}\right|$ and $\left|j_{i_{2}}\right|$ are respectively the largest integer and the second largest integer between $\left|j_{1}\right|, \ldots,\left|j_{k}\right|$. In particular, if the multi-index j is ordered i.e. if $\left|j_{1}\right| \geq \ldots \geq\left|j_{k}\right|$ then

$$
\mu(j):=\left|j_{3}\right| \text { and } S(j)=\left|j_{1}\right|-\left|j_{2}\right|
$$

In [Bam03, BG06, Gré07, Bam07] the non resonance condition on ω reads

Definition 2.3. - A frequencies vector $\omega \in \mathbb{R}^{\overline{\mathbb{N}}}$ is non resonant if for any $r \in \overline{\mathbb{N}}$, there are $\gamma>0$ and $\delta>0$ such that for any $j \in \overline{\mathbb{N}}^{r}$ and any $1 \leq i \leq r$, one has

$$
\begin{equation*}
\left|\omega_{j_{1}}+\cdots+\omega_{j_{i}}-\omega_{j_{i+1}}-\cdots-\omega_{j_{r}}\right| \geq \frac{\gamma}{\mu(j)^{\delta}} \tag{2.3}
\end{equation*}
$$

except if $\left\{j_{1}, \ldots, j_{i}\right\}=\left\{j_{i+1}, \ldots, j_{r}\right\}$.
In the harmonic oscillator case ${ }^{(3)}$, we are able to verify a slightly refined condition

Definition 2.4. - A frequencies vector $\omega \in \mathbb{R}^{\overline{\mathbb{N}}}$ is strongly non resonant if for any $r \in \overline{\mathbb{N}}$, there are $\gamma>0$ and $\delta>0$ such that for any $j \in \overline{\mathbb{N}}^{r}$ and any $1 \leq i \leq r$, one has

$$
\begin{equation*}
\left|\omega_{j_{1}}+\cdots+\omega_{j_{i}}-\omega_{j_{i+1}}-\cdots-\omega_{j_{r}}\right| \geq \gamma \frac{1+S(j)}{\mu(j)^{\delta}} \tag{2.4}
\end{equation*}
$$

except if $\left\{j_{1}, \ldots, j_{i}\right\}=\left\{j_{i+1}, \ldots, j_{r}\right\}$.

[^2]2.2. Polynomial structure. - For $j \in \overline{\mathbb{Z}}^{k}$ with $k \geq 3$, we have already defined $\mu(j)$ and $S(j)$ we now introduce
$$
B(j)=\left|j_{i_{2}} j_{i_{3}}\right|^{1 / 2}
$$
where $\left|j_{i_{2}}\right|$ and $\left|j_{i_{3}}\right|$ are respectively the second largest integer and the third largest integer between $\left|j_{1}\right|, \ldots,\left|j_{k}\right|$. We also define
\[

$$
\begin{equation*}
A(j)=\frac{B(j)}{B(j)+S(j)} \tag{2.5}
\end{equation*}
$$

\]

We also introduce

$$
\begin{equation*}
C(j)=\left|j_{i_{1}}\right| \tag{2.6}
\end{equation*}
$$

In particular, if the multi-index j is ordered i.e. if $\left|j_{1}\right| \geq \ldots \geq\left|j_{k}\right|$ then

$$
A(j)=\frac{\left|j_{2} j_{3}\right|^{1 / 2}}{\left|j_{2} j_{3}\right|^{1 / 2}+\left|j_{1}\right|-\left|j_{2}\right|}
$$

and

$$
C(j)=\left|j_{1}\right|
$$

The symplectic variables $\left(\xi_{j}, \eta_{j}\right)$ will be denoted using the same superscript:

$$
\left\{\begin{array}{l}
z_{j}=\xi_{j} \text { if } j \geq 1 \\
z_{j}=\eta_{j} \text { if } j \leq-1
\end{array}\right.
$$

Definition 2.5. - Let $k \geq 3, \beta \in(0,+\infty)$ and $\nu \in[0,+\infty)$ and let

$$
\begin{equation*}
Q(\xi, \eta) \equiv Q(z)=\sum_{j \in \overline{\mathbb{Z}}^{k}} a_{j} z_{j_{1}} \ldots z_{j_{l}} \tag{2.7}
\end{equation*}
$$

be a formal polynomial homogeneous of degree k on $\mathcal{P}_{s}(\mathbb{C}) . Q$ is in the class $\mathcal{T}_{k}^{\nu, \beta}$ if for any $N \geq 1$ there exists a constant $c_{N}>0$ such that for all $j \in \overline{\mathbb{Z}}^{k}$

$$
\begin{equation*}
\left|a_{j}\right| \leq c_{N} \frac{\mu(j)^{\nu}}{C(j)^{\beta}} A(j)^{N} \tag{2.8}
\end{equation*}
$$

We will also use
Definition 2.6. - Let $k \geq 3, \beta \in[0,+\infty)$ and $\nu \in[0,+\infty)$ and let

$$
Q(\xi, \eta) \equiv Q(z)=\sum_{j \in \overline{\mathbb{Z}}^{k}} a_{j} z_{j_{1}} \ldots z_{j_{l}}
$$

be a formal polynomial homogeneous of degree k on $\mathcal{P}_{s}(\mathbb{C}) . Q$ is in the class $\mathcal{T}_{k}^{\nu, \beta,+}$ if for any $N \geq 1$ there exists a constant $c_{N}>0$ such that for all $j \in \overline{\mathbb{Z}}^{k}$

$$
\begin{equation*}
\left|a_{j}\right| \leq c_{N} \frac{\mu(j)^{\nu}}{C(j)^{\beta}(1+S(j))} A(j)^{N} \tag{2.9}
\end{equation*}
$$

Remark 2.7. - Notice that the formula (2.7) does not give a unique representation of polynomials on \mathcal{P}_{s}. However, since the estimates (2.8) and (2.9) are symmetric with respect to the order of the indexes j_{1}, \cdots, j_{k}, this non uniqueness does not affect the definitions 2.5 and 2.6.

Remark 2.8. - In the estimate (2.8), the numerator allows an increasing behaviour with respect to $\mu(j)$ that will be useful to control the small divisors. The denominator imposes a slight decreasing behaviour with respect to the largest index $C(j)$ and a high decreasing behaviour for monomials having their two modes of largest indexes that are not of the same order. This control is slightly better in $\mathcal{T}_{k}^{\nu, \beta,+}$.

Remark 2.9. - We will see in Proposition 2.12 that, when $\beta>1 / 2, \mathcal{T}_{k}^{\nu, \beta} \subset$ \mathcal{H}^{s} for $s \geq \nu+1$. Unfortunately β is not that large in the harmonic oscillator case where we only prove that we can take $\beta=1 / 24$. Thus $P \in \mathcal{T}_{k}^{\nu, \beta}$ is not sufficient to ensure that $P \in \mathcal{H}^{s}$. Nevertheless, a polynomial in $\mathcal{T}_{k}^{\nu, \beta}$ is well defined and continuous on a neighborhood of the origin in $\mathcal{P}_{s}(\mathbb{C})$ for s large enough (cf. Proposition 2.12). In [Gré07, Bam07] instead of estimate (2.8) we had

$$
\begin{equation*}
\left|a_{j}\right| \leq C_{N} \frac{\mu(j)^{N+\nu}}{(\mu(j)+S(j))^{N}} \tag{2.10}
\end{equation*}
$$

which is actually better than (2.8). It turns out that a polynomial that satisfies (2.10) belongs to \mathcal{H}^{s}.

The best constants c_{N} in (2.8) define a family of semi-norms for which $\mathcal{T}_{k}^{\nu, \beta}$ is a Fréchet space.

Definition 2.10. - Let $\nu \geq 0$ and $\beta \geq 0$. A function P is in the class $\mathcal{T}^{\nu, \beta}$ if

- there exists $s_{0} \geq 0$ such that, for any $s \geq s_{0}$ there exists a \mathcal{U}_{s} a neighborhood of the origin in \mathcal{P}_{s} such that $P \in C^{\infty}\left(\mathcal{U}_{s}, \mathbb{C}\right)$.
- P has a zero of order at least 3 in 0.
- for each $k \geq 3$ the Taylor's expansion of degree k of P at zero belongs to $\otimes_{l=3}^{k} \mathcal{T}_{l}^{\nu, \beta}$.

We now define the class of polynomials in normal form:

Definition 2.11. - Let $k=2 m$ be an even integer, a formal polynomial Z homogeneous of degree k on \mathcal{P}_{s} is in normal form if it reads

$$
\begin{equation*}
Z(z)=\sum_{j \in \overline{\mathbb{N}}^{m}} b_{j} z_{j_{1}} z_{-j_{1}} \ldots z_{j_{m}} z_{-j_{m}} \tag{2.11}
\end{equation*}
$$

i.e. Z depends only on the actions $I_{l}:=z_{l} z_{-l}=\xi_{l} \eta_{l}$.

The aim of the Birkhoff normal form theorem is to reduce a given Hamiltonian of the form $H_{0}+P$ with P in \mathcal{H}^{s} to a Hamiltonian of the form $Z+R$ where Z is in normal form and R remains very small in the sense that it has a zero of high order at the origin.

We now review the properties of polynomials in the class $\mathcal{T}^{\nu, \beta}$.
Proposition 2.12. - Let $k \in \overline{\mathbb{N}}, \nu \in[0,+\infty), \beta \in[0,+\infty)$, $s \in \mathbb{R}$ with $s>\nu+1$, and let $P \in \mathcal{T}_{k+1}^{\nu, \beta}$. Then
(i) P extends as a continuous polynomial on $\mathcal{P}_{s}(\mathbb{C})$ and there exists a constant $C>0$ such that for all $z \in \mathcal{P}_{s}(\mathbb{C})$

$$
|P(z)| \leq C\|z\|_{s}^{k+1}
$$

(ii) For any $s^{\prime}<s+\beta-\frac{1}{2}$, the Hamiltonian vector field X_{P} extends as a bounded function from $\mathcal{P}_{s}(\mathbb{C})$ to $\mathcal{P}_{s^{\prime}}(\mathbb{C})$. Furthermore, for any $s_{0} \in(\nu+$ $1, s]$, there is $C>0$ such that for any $z \in \mathcal{P}_{s}(\mathbb{C})$

$$
\begin{equation*}
\left\|X_{P}(z)\right\|_{s^{\prime}} \leq C\|z\|_{s}\|z\|_{s_{0}}^{(k-1)} \tag{2.12}
\end{equation*}
$$

(iii) Assume moreover that $P \in \mathcal{T}_{k+1}^{\nu, \beta,+}$ with $\beta>0$, then the Hamiltonian vector field X_{P} extends as a bounded function from $\mathcal{P}_{s}(\mathbb{C})$ to $\mathcal{P}_{s}(\mathbb{C})$. Furthermore, for any $s_{0} \in(\nu+1, s]$, there is $C>0$ such that for any $z \in \mathcal{P}_{s}(\mathbb{C})$

$$
\begin{equation*}
\left\|X_{P}(z)\right\|_{s} \leq C\|z\|_{s}\|z\|_{s_{0}}^{(k-1)} \tag{2.13}
\end{equation*}
$$

(iv) Assume finally that $P \in \mathcal{T}_{k+1}^{\nu, \beta}$ and P is in normal form in the sense of definition 2.11, then the Hamiltonian vector field X_{P} extends as a bounded function from $\mathcal{P}_{s}(\mathbb{C})$ to $\mathcal{P}_{s}(\mathbb{C})$. Furthermore, for any $s_{0} \in(\nu, s]$, there is $C>0$ such that for any $z \in \mathcal{P}_{s}(\mathbb{C})$

$$
\begin{equation*}
\left\|X_{P}(z)\right\|_{s} \leq C\|z\|_{s}\|z\|_{s_{0}}^{(k-1)} \tag{2.14}
\end{equation*}
$$

Note that, when $0<\beta \leq 1 / 2$, assertion (ii) does not guarantee that the Hamiltonian vector field X_{P} extends as a bounded function from $\mathcal{P}_{s}(\mathbb{C})$ to $\mathcal{P}_{s}(\mathbb{C})$ which will be of course an important fact in the sequel. Thus in this case
assertions (iii) and (iv) are important. Naturally, when $\beta>1 / 2$, assertions (iii) and (iv) remain useless.

Proof. - (i) Let P be an homogeneous polynomial of degree $k+1$ in $\mathcal{T}_{k+1}^{\nu, \beta}$ and write for $z \in \mathcal{P}_{s}(\mathbb{C})$

$$
\begin{equation*}
P(z)=\sum_{j \in \overline{\mathbb{Z}}^{k+1}} a_{j} z_{j_{1}} \ldots z_{j_{k+1}} \tag{2.15}
\end{equation*}
$$

One has, using first (2.8) and then $A(j) \leq 1, C(j) \geq 1$,

$$
\begin{aligned}
|P(z)| & \leq C \sum_{j \in \overline{\mathbb{Z}}^{k+1}} \frac{\mu(j)^{\nu}}{C(j)^{\beta}} A(j)^{N} \prod_{i=1}^{k+1}\left|z_{j_{i}}\right| \\
& \leq C \sum_{j \in \overline{\mathbb{Z}}^{k+1}} \frac{\mu(j)^{\nu}}{\prod_{i=1}^{k+1}\left|j_{i}\right|^{s}} \prod_{i=1}^{k+1}\left|j_{i}\right|^{s}\left|z_{j_{i}}\right| \\
& \leq C \sum_{j \in \overline{\mathbb{Z}}^{k+1}} \frac{1}{\prod_{i=1}^{k+1}\left|j_{i}\right|^{s-\nu}} \prod_{i=1}^{k+1}\left|j_{i}\right|^{s}\left|z_{j_{i}}\right| \\
& \leq C\left(\sum_{l \in \overline{\mathbb{Z}}} \frac{1}{|l|^{2 s-2 \nu}}\right)^{\frac{k+1}{2}}\|z\|_{s}^{k+1}
\end{aligned}
$$

where, in the last inequality, we used $k+1$ times the Cauchy-Schwarz inequality. Since $s>\nu+1 / 2$, the last sum converges and the first assertion is proved.
(ii) We have to estimate the derivative of polynomial P with respect to any of its variables. Thanks to (2.8), given any N, we get

$$
\left|\frac{\partial P}{\partial z_{l}}\right| \leq C_{N}(k+1) \sum_{j \in \overline{\mathbb{Z}}^{k}} \frac{\mu(j, l)^{\nu}}{C(j, l)^{\beta}} A(j, l)^{N}\left|z_{j_{1}}\right| \ldots\left|z_{j_{k}}\right|
$$

where the quantities $\mu(j, l), C(j, l)$ and $A(j, l)$ are computed for the $k+1$-uple made of j_{1}, \ldots, j_{k}, l. We have

$$
\begin{align*}
\left\|X_{P}(z)\right\|_{s^{\prime}}^{2} & \leq C \sum_{l \in \overline{\mathbb{Z}}}\left(\sum_{j \in \overline{\mathbb{Z}}^{k}} \frac{\left.|l|\right|^{s^{\prime}} \mu(j, l)^{\nu}}{C(j, l) \beta} A(j, l)^{N}\left|z_{j_{1}}\right| \ldots\left|z_{j_{k}}\right|\right)^{2} \\
& \leq C(k!)^{2} \sum_{l \in \overline{\mathbb{Z}}}\left(\sum_{j \in \overline{\mathbb{Z}}_{>}^{k}} \frac{|l|^{s^{\prime}} \mu(j, l)^{\nu}}{C(j, l)^{\beta}} A(j, l)^{N}\left|z_{j_{1}}\right| \ldots\left|z_{j_{k}}\right|\right)^{2} \\
(2.16) & \leq C^{\prime}| | z \|_{s_{0}}^{2(k-3)} \sum_{l \in \overline{\mathbb{Z}}}\left(\sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|} \frac{|l|^{s^{\prime}} \mu(j, l)^{\nu}}{C(j, l)^{\beta}} A(j, l)^{N}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right|\right)^{2}, \tag{2.16}
\end{align*}
$$

where $\overline{\mathbb{Z}}_{>}^{k}$ denotes the set of ordered k-uples $\left(j_{1}, \ldots, j_{k}\right)$ such that $\left|j_{1}\right| \geq\left|j_{2}\right| \geq$ $\cdots \geq\left|j_{k}\right|$. We used in the last inequality the following result :

Lemma 2.13. - Given any $s \geq 0, s_{0}>\frac{1}{2}$ and $z \in \ell_{s+s_{0}}^{2}$ we have

$$
\sum_{j \in \overline{\mathbb{Z}}}|j|^{s}\left|z_{j}\right| \leq C_{s_{0}}\|z\|_{s+s_{0}}
$$

Proof. - This result is a trivial consequence of Cauchy-Schwarz inequality :

$$
\sum_{j \in \overline{\mathbb{Z}}}|j|^{s}\left|z_{j}\right|=\sum_{j \in \overline{\mathbb{Z}}} \frac{1}{|j|^{s_{0}}}|j|^{s+s_{0}}\left|z_{j}\right| \leq\left(\sum_{j \in \overline{\mathbb{Z}}} \frac{1}{|j|^{2 s_{0}}}\right)^{\frac{1}{2}} \|\left. z\right|_{s+s_{0}}
$$

We give now two technical lemmas which allow to estimate $A(j, l)$.
Lemma 2.14. - Given any ordered k-uple $j \in \overline{\mathbb{Z}}_{>}^{k}$ and $l \in \overline{\mathbb{Z}}$, we have

$$
|l| A(j, l) \leq 2\left|j_{1}\right|
$$

Proof. - It is straightforward if $|l| \leq 2\left|j_{1}\right|$, since $A(j, l) \leq 1$. If not, the order is the following : $|l|>2\left|j_{1}\right|>\left|j_{1}\right| \geq\left|j_{2}\right|$ and

$$
|l| A(j, l)=\frac{l \sqrt{\left|j_{1} j_{2}\right|}}{\sqrt{\left|j_{1} j_{2}\right|}+|l|-\left|j_{1}\right|} \leq \frac{|l| \sqrt{\left|j_{1} j_{2}\right|}}{|l| / 2} \leq 2\left|j_{1}\right|
$$

and the lemma is proved.

Lemma 2.15. - Given any ordered k-uple $j \in \overline{\mathbb{Z}}_{>}^{k}$ and $l \in \overline{\mathbb{Z}}$ we have

$$
A(j, l) \leq \tilde{A}\left(j_{1}, j_{2}, l\right):=\left\{\begin{array}{cl}
2 \frac{\left|j_{2}\right|}{|l|+\left|j_{1}\right|-\left|j_{2}\right|} & \text { if }|l| \leq\left|j_{2}\right| \\
2 \frac{\sqrt{\left|j_{2}\right|}}{\sqrt{\left|j_{2}\right|}+\left|j_{1}\right|-l l| |} & \text { if }|l| \geq\left|j_{2}\right|
\end{array}\right.
$$

Proof. - If $|l|>2\left|j_{1}\right| ; A(j, l)$ reads :

$$
A(j, l)=\frac{\sqrt{\left|j_{1} j_{2}\right|}}{\sqrt{\left|j_{1} j_{2}\right|}+|l|-\left|j_{1}\right|}
$$

We can write :

$$
\begin{aligned}
\sqrt{\left|j_{1} j_{2}\right|}+|l|-\left|j_{1}\right| & =\sqrt{\left|l j_{2}\right|}+|l|-\left|j_{1}\right|-\sqrt{\left|j_{2}\right|}\left(\sqrt{|l|}-\sqrt{\left|j_{1}\right|}\right) \\
& =\sqrt{\left|l j_{2}\right|}+|l|-\left|j_{1}\right|-\sqrt{\left|j_{2}\right|} \frac{|l|-\left|j_{1}\right|}{\sqrt{|l|}+\sqrt{\left|j_{1}\right|}} \\
& \geq \sqrt{\left|l j_{2}\right|}+|l|-\left|j_{1}\right|-\sqrt{\left|j_{1}\right|} \frac{|l|-\left|j_{1}\right|}{\sqrt{|l|}+\sqrt{\left|j_{1}\right|}} \\
& \geq \sqrt{\left|l j_{2}\right|}+\frac{\sqrt{2}}{\sqrt{2}+1}\left(|l|-\left|j_{1}\right|\right)
\end{aligned}
$$

Hence,

$$
A(j, l) \leq \frac{1+\sqrt{2}}{\sqrt{2}} \frac{\sqrt{\left|j_{1} j_{2}\right|}}{\sqrt{\left|j_{1} j_{2}\right|}+|l|-\left|j_{1}\right|} \leq 2 \frac{\sqrt{\left|l j_{2}\right|}}{\sqrt{\left|l j_{2}\right|}+|l|-\left|j_{1}\right|}
$$

If $\left|j_{2}\right| \leq|l| \leq 2\left|j_{1}\right|$, then $B(j, l)^{2}=\left|j_{2}\right| \min \left(|l|,\left|j_{1}\right|\right) \in\left[\frac{\left|l j_{2}\right|}{2},\left|l j_{2}\right|\right]$, therefore

$$
A(j, l) \leq \frac{\sqrt{\left|l j_{2}\right|}}{1 / \sqrt{2} \sqrt{\left|l j_{2}\right|}+\left||l|-\left|j_{1}\right|\right|} \leq 2 \frac{\sqrt{\left|l j_{2}\right|}}{\sqrt{\left|l j_{2}\right|}+\left||l|-\left|j_{1}\right|\right|}
$$

Finally, if $|l| \leq\left|j_{2}\right|$ we get

$$
A(j, l)=\frac{\sqrt{\left|l j_{2}\right|}}{\sqrt{\left|l j_{2}\right|}+\left|j_{1}\right|-\left|j_{2}\right|} \leq 2 \frac{\left|j_{2}\right|}{|l|+\left|j_{1}\right|-\left|j_{2}\right|}
$$

and this ends the proof of Lemma 2.15.
To continue with the proof of assertion (ii) of Proposition 2.12, we define $0<\varepsilon<s-s^{\prime}-\frac{1}{2}$, and $N=s+1+\varepsilon$. In view of (2.16), we may decompose :

$$
\begin{equation*}
\left\|X_{P}(z)\right\|_{s^{\prime}}^{2} \leq C \sum_{l \in \overline{\mathbb{Z}}}\left(T_{1}(l)+T_{2}(l)\right)^{2} \tag{2.17}
\end{equation*}
$$

with

$$
\begin{aligned}
& T_{1}(l)=\sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|,\left|j_{2}\right|>|l|} \frac{\left.|l|\right|^{s^{\prime}}|\mu(j, l)|^{\nu}}{\left.\max \left(\left|j_{1}\right|,|l|\right)^{\beta}\right)} A(j, l)^{N}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| \\
& T_{2}(l)=\sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|,\left|j_{2}\right| \leq|l|} \frac{|l|^{s^{\prime}}|\mu(j, l)|^{\nu}}{\left.\max \left(\left|j_{1}\right|,|l|\right)^{\beta}\right)} A(j, l)^{N}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| .
\end{aligned}
$$

Since $A(j, l) \leq 1$ and $N>\frac{1}{2}+s^{\prime}+\varepsilon$, we may estimate $T_{1}(l)$ using Lemmas 2.14 and 2.15 :

$$
\begin{aligned}
T_{1}(l) & \leq C \sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|,\left|j_{2}\right|>|l|}\left|j_{1}\right|^{s^{\prime}}\left|j_{2}\right|^{\nu} \tilde{A}\left(j_{1}, j_{2}, l\right)^{\frac{1}{2}+\varepsilon}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| \\
& \leq\left. C| | z\right|_{s_{0}} \sum_{\left|j_{1}\right| \geq\left|j_{2}\right|,\left|j_{2}\right|>|l|} \frac{1}{|l|^{\frac{1}{2}+\varepsilon}\left|j_{1}\right|^{s-\frac{1}{2}-\varepsilon}\left|z_{j_{1}}\right|\left|j_{2}\right|^{\nu+\frac{1}{2}+\varepsilon}\left|z_{j_{2}}\right|} \\
& \leq\left.\left. C| | z\right|_{s_{0}} \frac{1}{|l|^{\frac{1}{2}+\varepsilon}}\|z\|_{s}| | z\right|_{\nu+1+2 \varepsilon},
\end{aligned}
$$

hence $T_{1}(l)$ is a ℓ^{2} sequence, whose ℓ^{2}-norm is bounded above by $C\|z\|_{s_{0}}^{2}\|z\|_{s}$ if $s_{0}>\nu+1+2 \varepsilon$. Concerning $T_{2}(l)$, using Lemmas 2.14 and 2.15 , we obtain

$$
\begin{aligned}
T_{2}(l) & \leq C \sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|,\left|j_{2}\right| \leq|l|} \frac{1}{|l|^{s-s^{\prime}+\beta}}\left|j_{1}\right|^{s}\left|j_{2}\right|^{\nu} \tilde{A}\left(j_{1}, j_{2}, l\right)^{N-s}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| \\
& \leq\left. C| | z\right|_{s_{0}} \frac{1}{\left.|l|\right|^{s-s^{\prime}+\beta}} \sum_{\left|j_{1}\right| \geq\left|j_{2}\right|,\left|j_{2}\right| \leq|l|}\left(\frac{\sqrt{\left|l j_{2}\right|}}{1+\left|\left|j_{1}\right|-|l|\right|}\right)^{1+\varepsilon}\left|j_{1}\right|^{s}\left|z_{j_{1}}\right|\left|j_{2}\right|^{\nu}\left|z_{j_{2}}\right| \\
& \leq C| | z| |_{s_{0}} \frac{1}{\left.|l|\right|^{s-s^{\prime}+\beta-(1+\varepsilon) / 2}} \sum_{j_{2} \in \overline{\mathbb{Z}}}\left|j_{2}\right|^{\nu+(1+\varepsilon) / 2}\left|z_{j_{2}}\right| \sum_{j_{1} \in \overline{\mathbb{Z}}} \frac{\left|j_{1}\right|^{s} \mid z_{j_{1} \mid}}{\left(1+\left|\left|j_{1}\right|-|l|\right|\right)^{1+\varepsilon}} .
\end{aligned}
$$

The last sum in j_{1} is a convolution product of the ℓ^{2} sequence $\left|j_{1}\right|^{s}\left|z_{j_{1}}\right|$ and the ℓ^{1} sequence $\frac{1}{\left(1+\left|j_{1}\right|\right)^{1+\varepsilon}}$. Choosing $\varepsilon>0$ in such a way that $s-s^{\prime}+\beta-$ $(1+\varepsilon) / 2>0$, the sequence $T_{2}(l)$ is in ℓ^{2}, with a norm bounded by

$$
\left\|T_{2}\right\| \leq C\|z\|_{s_{0}}\|z\|_{\nu+(1+\varepsilon) / 2}\|z\|_{s} \leq C\|z\|_{s_{0}}^{2}\|z\|_{s}
$$

with $s_{0}>\nu+(1+\varepsilon) / 2$. Collecting the estimates for T_{1} and T_{2}, we obtain the announced inequality.
(iii) We define $0<\varepsilon<1 / 12$ and $N=s+\frac{1}{2}+\varepsilon$. We have, as in (ii), this first estimate

$$
\begin{equation*}
\left\|X_{P}(z)\right\|_{s}^{2} \leq C\|z\|_{s_{0}}^{2(k-3)} \sum_{l \in \overline{\mathbb{Z}}}\left(\sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|} \frac{|l|^{s} \mu(j, l)^{\nu}}{C(j, l)^{\beta}(1+S(j, l))} A(j, l)^{N}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right|\right)^{2} . \tag{2.18}
\end{equation*}
$$

As in (ii), we may also cut the sum on j_{1}, j_{2} and j_{3} into two pieces, $T_{1}^{+}(l)$ collecting all the terms with $\left|j_{2}\right|>|l|$ and $T_{2}^{+}(l)$ collecting those with $\left|j_{2}\right| \leq|l|$. Following (ii), since $C(j, l) \geq 1$ and $1+S(j, l) \geq 1$, we obtain for T_{1}^{+}:

$$
\begin{aligned}
T_{1}^{+}(l) & \leq C \sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|,\left|j_{2}\right|>|l|}|l|^{s}\left|j_{2}\right|^{\nu} A(j, l)^{N}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| \\
& \leq C \sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{j}\right|,\left|j_{2}\right|>|l|}|l|^{1 / 2+\varepsilon}\left|j_{1}\right|^{s-1 / 2-\varepsilon}\left|j_{2}\right|^{\nu} A(j, l)^{N-(s-1 / 2-\varepsilon)}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| \\
& \leq C| | z| |_{s_{0}} \sum_{\left|j_{1}\right| \geq\left|j_{2}\right|,\left|j_{2}\right|>|l|}|l|^{1 / 2+\varepsilon}\left|j_{1}\right|^{s-1 / 2-\varepsilon}\left|j_{2}\right|^{\nu} \tilde{A}\left(j_{1}, j_{2}, l\right)^{N-(s-1 / 2-\varepsilon)}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right| \\
& \leq C| | z| |_{s_{0}} \sum_{\left|j_{1}\right| \geq\left|j_{2}\right|,\left|j_{2}\right|>|l|}|l|^{s-N}\left|j_{1}\right|^{s-1 / 2-\varepsilon}\left|j_{2}\right|^{\nu+N-(s-1 / 2-\varepsilon)}\left|z_{j_{1} \mid}\right|\left|z_{j_{2}}\right| \\
& \leq C \| z| |_{s_{0}} \frac{1}{|l|^{\frac{1}{2}+\varepsilon}} \sum_{\left|j_{1}\right| \geq\left|j_{2}\right|,\left|j_{2}\right|>|l|}\left|j_{1}\right|^{s-1 / 2-\varepsilon}\left|j_{2}\right|^{\nu+N-(s-1 / 2-\varepsilon)}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right| \\
& \leq C\left\|z| |_{s_{0}} \frac{1}{|l|^{\frac{1}{2}+\varepsilon}}\right\| z| | s| | z \|_{\nu+1+2 \varepsilon},
\end{aligned}
$$

hence $T_{1}^{+}(l)$ is a ℓ^{2} sequence, whose ℓ^{2}-norm is bounded above by $C\|z\|_{s_{0}}^{2}\|z\|_{s}$ if $s_{0}>\nu+1+2 \varepsilon$.

The estimate on T_{2}^{+}will need all factors assigned in the definition of $\mathcal{T}^{\nu,+}$:

$$
\begin{aligned}
T_{2}^{+}(l) & \leq C \sum_{\left|j_{1}\right| \geq\left|j_{2}\right| \geq\left|j_{3}\right|,\left|j_{2}\right| \leq|l|} \frac{\left|j_{1}\right|^{s}\left|j_{2}\right|^{\nu}}{\max \left(j_{1}, l\right)^{\beta}\left(1+\left|\left|j_{1}\right|-|l|\right|\right)} \tilde{A}\left(j_{1}, j_{2}, l\right)^{N-s}\left|z_{j_{1}}\right|\left|z_{j_{2}}\right|\left|z_{j_{3}}\right| \\
& \leq C| | z \|_{s_{0}} \sum_{\left|j_{1}\right| \geq\left|j_{2}\right|,\left|j_{2}\right| \leq|l|}\left(\frac{\sqrt{\left|l j_{2}\right|}}{1+\left|\left|j_{1}\right|-|l|\right|}\right)^{\varepsilon} \frac{1}{|l|^{\beta}\left(1+\left|\left|j_{1}\right|-|l|\right|\right)}\left|j_{1}\right|^{s}\left|z_{j_{1} \mid}\right|\left|j_{2}\right|^{\nu}\left|z_{j_{2} \mid}\right| \\
& \leq\left. C| | z\left|\|_{s_{0}} \frac{1}{|l|^{\beta-\varepsilon / 2}} \sum_{j_{2} \in \overline{\mathbb{Z}}}\right| j_{2}\right|^{\nu+\varepsilon / 2}\left|z_{j_{2}}\right| \sum_{j_{1} \in \overline{\mathbb{Z}}} \frac{\left|j_{1}\right|^{s}\left|z_{j_{1}}\right|}{\left(1+\left|\left|j_{1}\right|-|l|\right|\right)^{1+\varepsilon}} .
\end{aligned}
$$

Once again, the last sum in j_{1} is a convolution product of the ℓ^{2} sequence $\left|j_{1}\right|^{s}\left|z_{j_{1}}\right|$ and the ℓ^{1} sequence $\frac{1}{\left(1+\left|j_{1}\right|\right)^{1+\varepsilon}}$. Choosing $\varepsilon>0$ in such a way that
$\beta-\varepsilon / 2>0$, the sequence $T_{2}^{+}(l)$ is in ℓ^{2}, with a norm bounded by

$$
\left\|T_{2}\right\| \leq C| | z\left\|_{s_{0}}\right\| z\left\|_{\nu+(1+\varepsilon) / 2}\right\| z\left\|_{s} \leq C\right\| z\left\|_{s_{0}}^{2}\right\| z \|_{s}
$$

with $s_{0}>\nu+(1+\varepsilon) / 2$. Collecting the estimates for T_{1}^{+}and T_{2}^{+}, we obtain the announced inequality.
(iv)Let $k+1=2 m$. As in (ii), we obtain

$$
\begin{equation*}
\left\|X_{P}\right\|_{s}^{2} \leq C \sum_{l \in \overline{\mathbb{Z}}}\left(\sum_{j \in \overline{\mathbb{N}}_{>}^{m-1}} l^{s} z_{l} \frac{\mu(j, j, l, l)^{\nu}}{C(j, j, l, l)^{\beta}}\left|z_{j_{1}}\right|\left|z_{-j_{1}}\right| \ldots\left|z_{j_{m-1}}\right|\left|z_{-j_{m-1}}\right|\right)^{2} \tag{2.19}
\end{equation*}
$$

using the same convention for $\mu(j, j, l, l)$ and $C(j, j, l, l)$ as for $\mu(j, l)$ and $C(j, l)$: as an example, $\mu(j, j, l, l)$ is the third biggest integer between $\left|j_{1}\right|,\left|j_{1}\right|, \ldots\left|j_{m-1}\right|,\left|j_{m-1}\right|,|l|$ and $|l|$, that is, if j is ordered, either $\mu(j, j, l, l)=$ $\left|j_{1}\right|$, and in this case $C(j, j, l, l)=|l|$, or $\mu(j, j, l, l)=|l|$ and in this case $C(j, j, l, l)=\left|j_{1}\right|$. Notice that $A(j, j, l, l)=1$ does not help in this case. The sum over j can be decomposed into two parts :

$$
\begin{aligned}
& \quad \sum_{j \in \overline{\mathbb{N}}_{>}^{m-1}, j_{1} \leq l} l^{s} z_{l} \frac{\mu(j, l, l)^{\nu}}{C(j, l, l)^{\beta}}\left|z_{j_{1}}\right|\left|z_{-j_{1}}\right| \ldots\left|z_{j_{m-1}}\right|\left|z_{-j_{m-1}}\right| \\
& \leq \sum_{j \in \overline{\mathbb{N}}_{>}^{m-1}, j_{1} \leq l} l^{s} z_{l} \frac{j_{1}^{\nu}}{l^{\beta}}\left|z_{j_{1}}\right|\left|z_{-j_{1}}\right| \ldots\left|z_{j_{m-1}}\right|\left|z_{-j_{m-1}}\right| \\
& \leq l^{s-\beta} z_{l} \sum_{j_{1}} j_{1}^{\nu}\left|z_{j_{1}}\left\|z_{-j_{1}}| | z\right\|_{0}^{2(m-2)}\right. \\
& \leq l^{s-\beta} z_{l}| | z\left\|_{\nu / 2}^{2}| | z\right\|_{0}^{2(m-2)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad \sum_{j \in \overline{\mathbb{N}}_{>}^{m-1}, j_{1}>l} l^{s} z_{l} \frac{\mu(j, l, l)^{\nu}}{C(j, l, l)^{\beta}}\left|z_{j_{1}}\right|\left|z_{-j_{1}}\right| \ldots\left|z_{j_{m-1}}\right|\left|z_{-j_{m-1}}\right| \\
& \leq l^{s} z_{l} \sum_{j \in \overline{\mathbb{N}}_{>}^{m-1}} j_{1}^{\nu-\beta}\left|z_{j_{1}}\right| z_{-j_{1}}|\ldots| z_{j_{m-1}}| | z_{-j_{m-1}} \mid \\
& \leq l^{s} z_{l}\|z\|_{(\nu-\beta) / 2}^{2}| | z \|_{0}^{2(m-2)}
\end{aligned}
$$

Inserting these two estimates in (2.19) we get (2.13).
The second essential property satisfied by polynomials in \mathcal{T}_{k}^{ν} is captured in the following

Proposition 2.16. - Let $k_{1}, k_{2} \geq 2, \nu_{1}, \nu_{2} \geq 0$ and $\beta>0$ The map $(P, Q) \mapsto\{P, Q\}$ defines a continuous map from $\mathcal{T}_{k_{1}+1}^{\nu_{1}, \beta,+} \times \mathcal{T}_{k_{2}+1}^{\nu_{2}, \beta}$ to $\mathcal{T}_{k_{1}+k_{2}}^{\nu^{\prime}, \beta}$ for $\nu^{\prime}=2\left(\nu_{1}+\nu_{2}\right)+1$.

Proof. - We assume that $P \in \mathcal{T}_{k_{1}+1}^{\nu_{1}, \beta,+}$ and $Q \in \mathcal{T}_{k_{2}+1}^{\nu_{2}, \beta}$ are homogeneous polynomials and we write

$$
P(z)=\sum_{j \in \overline{\mathbb{Z}}^{k_{1}+1}} a_{j} z_{j_{1}} \ldots z_{j_{k_{1}+1}}
$$

and

$$
Q(z)=\sum_{i \in \overline{\mathbb{Z}}^{k_{2}+1}} b_{i} z_{i_{1}} \ldots z_{i_{k_{2}+1}}
$$

In view of the symmetry of the estimate (2.8) with respect to the involved indices, one easily obtains

$$
\{P, Q\}(z)=\sum_{(j, i) \in \overline{\mathbb{Z}}^{k_{1}+k_{2}}} c_{j, i} z_{j_{1}} \ldots z_{j_{k_{1}}} z_{i_{1}} \ldots z_{i_{k_{2}}}
$$

with

$$
\left|c_{j, i}\right| \leq c_{N, N^{\prime}} \sum_{l \in \overline{\mathbb{Z}}} \frac{\mu(j, l)^{\nu_{1}}}{C(j, l)^{\beta}(1+S(j, l))} A(j, l)^{N} \frac{\mu(i, l)^{\nu_{2}}}{C(i, l)^{\beta}} A(i, l)^{N^{\prime}} .
$$

Therefore it remains to prove that, for each $M \geq 1$, there exist $N, N^{\prime} \geq 1$, $C>0$ such that for all $j \in \overline{\mathbb{Z}}^{k_{1}}$ and all $i \in \overline{\mathbb{Z}}^{k_{2}}$,

$$
\begin{equation*}
\sum_{l \in \overline{\mathbb{Z}}} \frac{\mu(j, l)^{\nu_{1}}}{C(j, l)^{\beta}(1+S(j, l))} A(j, l)^{N} \frac{\mu(i, l)^{\nu_{2}}}{C(i, l)^{\beta}} A(i, l)^{N^{\prime}} \leq C \frac{\mu(j, i)^{\nu^{\prime}}}{C(i, j)^{\beta}} A(j, i)^{M} \tag{2.20}
\end{equation*}
$$

with $\nu^{\prime}=2\left(\nu_{1}+\nu_{2}\right)+1$.
In order to simplify the notations, and because it does not change the estimates of (2.20), we will assume $k_{1}=k_{2}=k$. We can also assume by symmetry that

- all the indices are positive: $j_{1}, \ldots, j_{k}, i_{1}, \ldots, i_{k} \geq 1$.
$-j$ and i are ordered: $j_{1} \geq \ldots \geq j_{k}$ and $i_{1} \geq \ldots \geq i_{k}$.
We begin by two technical lemmas whose proofs are postponed at the end of this proof.

Lemma 2.17. - There is a constant $C>0$ such that for any $j \in \overline{\mathbb{Z}}^{k_{1}}$, $i \in \overline{\mathbb{Z}}^{k_{2}}$ and $l \in \overline{\mathbb{Z}}$ we have

$$
\begin{equation*}
A(j, l)^{2} A(i, l)^{2} \leq C A(i, j) \tag{2.21}
\end{equation*}
$$

Lemma 2.18. - There is a constant $C>0$ such that for any $j \in \overline{\mathbb{Z}}^{k_{1}}$, $i \in \overline{\mathbb{Z}}^{k_{2}}$ and $l \in \overline{\mathbb{Z}}$ we have

$$
\begin{equation*}
\max \left(\mu(j, l) A(i, l)^{2}, \mu(i, l) A(j, l)^{2}\right) \leq C \mu(i, j)^{2} \tag{2.22}
\end{equation*}
$$

Using these lemmas, in order to prove (2.20), it suffices to prove

$$
\sum_{l \in \overline{\mathbb{Z}}} \frac{1}{C(j, l)^{\beta}(1+S(j, l))} \frac{A(i, l)^{2}}{C(i, l)^{\beta}} \leq C \frac{\mu(j, i)}{C(i, j)^{\beta}}
$$

Noticing that $C(i, l) C(j, l) \geq C(i, j) l$, it remains to verify that

$$
\sum_{l \in \overline{\mathbb{Z}}} \frac{A(i, l)^{2}}{(1+S(j, l)) l^{\beta}} \leq C \mu(j, i)
$$

Now we decompose the sum in two parts, $I_{1}=\sum_{l>j_{2}}$ and $I_{2}=\sum_{l \leq j_{2}}$. For the first sum we have

$$
I_{1}=\sum_{l>j_{2}} \frac{A(i, l)^{2}}{(1+S(j, l)) l^{\beta}} \leq \sum_{l \in \overline{\mathbb{Z}}} \frac{1}{\left(1+\left|l-j_{1}\right|\right) l^{\beta}} \leq C
$$

while for the second one

$$
I_{2}=\sum_{l \leq j_{2}} \frac{A(i, l)^{2}}{(1+S(j, l)) l^{\beta}} \leq \sum_{l \leq j_{2}} \frac{A(i, l)^{2}}{l^{\beta}}
$$

In this last sum, if $j_{2}<\mu(i, j)$, then

$$
I_{2} \leq j_{2} \leq \mu(i, j)
$$

On the contrary, if $\mu(i, j) \leq j_{2}$, then we decompose the I_{2} sum in two parts, $I_{2,1}=\sum_{l<2 i_{1}}$ and $I_{2,2}=\sum_{l \geq 2 i_{1}}$. Since $i_{1} \leq \mu(i, j)=\max \left(i_{1}, j_{3}\right)$ we have

$$
I_{2,1}=\sum_{l \leq 2 i_{1}} \frac{A(i, l)^{2}}{l^{\beta}} \leq 2 i_{1} \leq 2 \mu(i, j)
$$

Finally, when $l \geq 2 i_{1}$ we have $S(i, l) \geq l / 2$ and $B(i, l)^{2}=i_{1} i_{2} \leq i_{2} l / 2 \leq$ $\mu(i, j) l / 2$ and thus $A(i, l) \leq \sqrt{2 \mu(i, j)} l^{-1 / 2}$ which leads to

$$
I_{2,2}=\sum_{2 i_{1} \leq l \leq j_{2}} \frac{A(i, l)^{2}}{l^{\beta}} \leq C \mu(i, j) \sum_{l \in \overline{\mathbb{N}}} \frac{1}{l^{1+\beta}} \leq C \mu(i, j)
$$

Proof of lemma 2.17 - The estimate (2.21) being symmetric with respect to i and j, we can assume that $j_{1} \geq i_{1}$. We consider three cases depending of the position of l with respect to i_{1} and j_{1}.
First case $l \geq j_{1}$:

We have $S(i, l)=\left|i_{1}-l\right| \geq\left|i_{1}-j_{1}\right| \geq S(i, j)$ and $B(i, l)=\left(i_{1} i_{2}\right)^{1 / 2} \leq B(i, j)$. Therefore

$$
A(i, l)=\frac{B(i, l)}{B(i, l)+S(i, l)} \leq \frac{B(i, l)}{B(i, l)+S(i, j)} \leq \frac{B(i, j)}{B(i, j)+S(i, j)}=A(i, j)
$$

and using $A(j, l) \leq 1,(2.21)$ is proved.

Second case $l \leq i_{1}$:

Similarly as in the first case, we have $S(j, l) \geq S(i, j)$ and $B(j, l)=$ $\left(j_{2} \max \left(j_{3}, l\right)\right)^{1 / 2} \leq\left(j_{2} \max \left(j_{3}, i_{1}\right)\right)^{1 / 2} \leq B(i, j)$ and thus

$$
A(j, l) \leq A(i, j)
$$

Third case $i_{1}<l<j_{1}$:
That is the most complicated case and we have to distinguish whether $i_{1} \geq j_{2}$ or not.
Subcase 1. $i_{1} \geq j_{2}$:
We have $B(i, l) \leq B(i, j)$ thus if $S(i, l)=\left|i_{1}-l\right| \geq \frac{1}{2}\left|i_{1}-j_{1}\right|=\frac{1}{2} S(i, j)$ we obtain $A(j, l) \leq 2 A(i, j)$ and (2.21) holds true. Now if $S(i, l)<\frac{1}{2} S(i, j)$ then $S(j, l) \geq \frac{1}{2} S(i, j)$ since $S(i, l)+S(j, l) \geq S(i, j)$. Furthermore, if $B(j, l) \leq$ $B(i, j)$ then

$$
A(j, l)=\frac{B(j, l)}{B(j, l)+S(j, l)} \leq 2 \frac{B(j, l)}{B(j, l)+S(i, j)} \leq 2 \frac{B(i, j)}{B(i, j)+S(i, j)}=2 A(i, j)
$$

and (2.21) holds. If $B(j, l)>B(i, j)$, then using
$B(j, l)^{2}=j_{2} l=j_{2} i_{1}+j_{2}\left(l-i_{1}\right) \leq B(i, j)^{2}+j_{2} S(i, l) \leq B(i, j)^{2}+\frac{1}{2} B(i, j) S(i, j)$,
we deduce
$A(j, l)^{2} \leq \frac{B(j, l)^{2}}{\left(B(i, j)+\frac{1}{2} S(i, j)\right)^{2}} \leq 2 \frac{B(i, j)^{2}+B(i, j) S(i, j)}{(B(i, j)+S(i, j))^{2}} \leq 2\left(A(i, j)^{2}+A(i, j)\right)$,
thus (2.21) is also satisfied in this case, since $A(i, j) \leq 1$.
Subcase 2. $\quad i_{1} \leq j_{2}$:
We still have $B(i, l) \leq B(i, j)$ thus if furthermore $S(i, j) \leq 2 S(i, l)$ then $A(i, l) \leq 2 A(i, j)$ and (2.21) is true. So we assume $2 S(i, l)<S(i, j)$ which implies $S(i, j) \leq 2 S(j, l)$ since $S(i, l)+S(j, l) \geq S(i, j)$. If furthermore $l \leq j_{3}$, $B(j, l)=B(j) \leq B(i, j)$ and thus $A(j, l) \leq 2 A(i, j)$ and (2.21) is again true. So we assume $j_{3} \leq l$ and we have

$$
B(j, l)^{2}=l j_{2}=i_{1} j_{2}+j_{2}\left(l-i_{1}\right) \leq B(i, j)^{2}+j_{2} S(i, l)
$$

If $S(i, l) \leq l / 2$ then we deduce $B(j, l)^{2} \leq 2 B(j, l)^{2}$ and (2.21) is satisfied. It remains to consider the case $S(i, l)>l / 2$ which implies $i_{1}<l / 2$ and thus

$$
\begin{equation*}
A(i, l) \leq \frac{i_{1}}{i_{1}+l / 2} \leq 2 \frac{i_{1}}{l} \tag{2.23}
\end{equation*}
$$

Let $n \geq 1$ such that $\frac{l}{2^{n+1}} \leq i_{1} \leq \frac{l}{2^{n}}$ we get from (2.23)

$$
\begin{equation*}
A(i, l) \leq \frac{1}{2^{n-1}} \tag{2.24}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
A(j, l) \leq 2 \frac{\left(l j_{2}\right)^{1 / 2}}{\left(l j_{2}\right)^{1 / 2}+S(i, j)} \leq 2 \frac{\left(l j_{2}\right)^{1 / 2}}{\left(i_{1} j_{2}\right)^{1 / 2}+S(i, j)} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
A(i, j) \geq \frac{\left(i_{1} j_{2}\right)^{1 / 2}}{\left(i_{1} j_{2}\right)^{1 / 2}+S(i, j)} \geq \frac{1}{2^{n+1}} \frac{\left(l j_{2}\right)^{1 / 2}}{\left(i_{1} j_{2}\right)^{1 / 2}+S(i, j)} \tag{2.26}
\end{equation*}
$$

Combining (2.24), (2.25) and (2.26) we conclude

$$
A(i, l) A(j, l) \leq 8 A(i, j)
$$

Proof of lemma 2.18 - The estimate (2.22) being symmetric with respect to i and j, we can assume $j_{1} \geq i_{1}$. If furthermore $i_{1} \geq j_{2}$ then one easily verifies that

$$
\mu(i, l) \leq \mu(i, j) \text { and } \mu(j, l) \leq \mu(i, j)
$$

and estimates (2.22) is satisfied.
In the case $j_{1} \geq j_{2} \geq i_{1}$ we still have $\mu(i, l) \leq \mu(i, j)$ but $\mu(j, l)$ could be larger than $\mu(i, j)$. Actually if $\mu(j, l) \leq 2 \mu(i, j)$, estimates (2.22) is still trivially satisfied. Therefore it remains to consider the case where $\mu(j, l)>2 \mu(i, j)$. Remark that in this case $i_{1} \leq \mu(i, j) \leq \frac{\mu(j, l)}{2} \leq l / 2$ and thus $S(i, l)=\left|i_{1}-l\right| \geq$ $l / 2$ which leads to

$$
A(i, l) \leq \frac{\left(i_{1} i_{2}\right)^{1 / 2}}{S(i, l)} \leq \frac{\left(2 i_{2}\right)^{1 / 2}}{l^{1 / 2}} \leq \frac{(2 \mu(i, j))^{1 / 2}}{l^{1 / 2}}
$$

Using this last estimates one gets

$$
\mu(j, l) A(i, l)^{2} \leq l A(i, l)^{2} \leq 2 \mu(i, j)^{2}
$$

We end this section with a corollary concerning Lie transforms associated to polynomials in $\mathcal{T}^{\delta, \beta,+}$.
Corollary 2.19. - Let χ be a real homogeneous polynomial in $\mathcal{T}_{l}^{\delta, \beta,+}$ with $\delta \geq 0, \beta>0, l \geq 3$ and take $s>s_{1}:=\delta+3 / 2$. We denote by ϕ the Lie transform associated with χ.
(i) ϕ is an analytic canonical transformation from an open ball B_{ϵ} of center 0 and radius ϵ in \mathcal{P}_{s} into the open ball $B_{2 \epsilon}$ in \mathcal{P}_{s} satisfying

$$
\begin{equation*}
\|\phi(z)-z\|_{s} \leq C_{s}\|z\|_{s}^{2} \text { for any } z \in B_{\varepsilon} \tag{2.27}
\end{equation*}
$$

In particular if $F \in \mathcal{H}^{s}$ with $s>s_{1}$ then $F \circ \phi \in \mathcal{H}^{s}$. Furthermore, if F is real then $F \circ \phi$ is real too.
(ii) Let $P \in \mathcal{T}_{n}^{\nu, \beta} \cap \mathcal{H}^{s}, \nu \geq 0, n \geq 3$ and fix $r \geq n$ an integer. Then

$$
P \circ \phi=Q_{r}+R_{r}
$$

where:

- Q_{r} is a polynomial of degree r belonging to $\mathcal{T}^{\nu^{\prime}, \beta} \cap \mathcal{H}^{s}$ with $\nu^{\prime}=\nu+(r-n)(\beta+1)+2$,
- R_{r} is a real Hamiltonian in $\mathcal{T}^{\nu^{\prime \prime}, \beta} \cap \mathcal{H}^{s}$ with $\nu^{\prime \prime}=\nu+(r-n+1)(\beta+1)+2$, having a zero of order $r+1$ at the origin.

Proof. - (i) Since $\chi \in \mathcal{T}_{l}^{\delta, \beta,+}$, by proposition 2.12 assertion (iii), $X_{\chi} \in \mathcal{H}^{s}$ for $s>s_{1}=\delta+3 / 2$. In particular, for $s>s_{1}$, the flow Φ_{χ}^{t} generated by the vector field X_{χ} transports an open neighborhood of the origin in \mathcal{P}_{s} into an open neighborhood of the origin in \mathcal{P}_{s}. Notice that since χ is real, Φ_{χ}^{t} transports the "real line" of $\mathcal{P}_{s},\left\{(\xi, \bar{\xi}) \in \mathcal{P}_{s}\right\}$, into the "real line". Furthermore one has for $z \in \mathcal{P}_{s}$ small enough

$$
\Phi_{\chi}^{t}(z)-z=\int_{0}^{t} X_{\chi}\left(\Phi_{\chi}^{t^{\prime}}(z)\right) d t^{\prime}
$$

and since χ has a zero of order 3 one get by proposition 2.12 assertion (iii),

$$
\left\|\Phi_{\chi}^{t}(z)-z\right\|_{s} \leq C_{s} \int_{0}^{t}\left\|\Phi_{\chi}^{t^{\prime}}(z)\right\|_{s}^{2} d t^{\prime}
$$

Therefore by a classical continuity argument, there exists $\epsilon>0$ such that the flow $B_{\varepsilon} \ni z \mapsto \Phi_{\chi}^{t}(z) \in B_{2 \varepsilon}$ is well defined and smooth for $0 \leq t \leq 1$. Furthermore, the Lie transform $\phi=\Phi^{1}$ satisfies (2.27).
On the other hand, in view of the formula

$$
X_{F \circ \phi}(q, p)=(D \phi(q, p))^{-1} X_{F}(\phi(q, p))
$$

we deduce that if $F \in \mathcal{H}^{s}$ with $s>s_{1}$ then $F \circ \phi \in \mathcal{H}^{s}$.
(ii) By a direct calculus one has

$$
\left.\frac{d^{k}}{d t^{k}} P \circ \phi^{t}(z)\right|_{t=0}=P^{(k)}(z)
$$

where $P^{(k+1)}=\left\{P^{(k)}, \chi\right\}$ and $P^{(0)}=P$. Therefore applying the Taylor's formula to $P \circ \phi^{t}(z)$ between $t=0$ and $t=1$ we deduce

$$
\begin{equation*}
P \circ \phi(z)=\sum_{k=0}^{r-n} \frac{1}{n!} P^{(k)}(z)+\frac{1}{(r-n)!} \int_{0}^{1}(1-t)^{r} P^{(r-n+1)}\left(\Phi^{t}(z)\right) d t \tag{2.28}
\end{equation*}
$$

Notice that $P^{(k)}(z)$ is a homogeneous polynomial of degree $n+k(l-2)$ and, by proposition 2.16, $P^{(k)}(z) \in \mathcal{T}^{\nu+k \delta+k+2, \beta} \cap \mathcal{H}^{s}$. Therefore (2.28) decomposes in the sum of a polynomial of degree r in $\mathcal{T}_{r}^{\nu^{\prime}, \beta}$ and a function in \mathcal{H}^{s} having a zero of degree $r+1$ at the origin.

2.3. The Birkhoff normal form theorem. -

Theorem 2.20. - Assume that P is a real Hamiltonian belonging to \mathcal{H}^{s} for all s large enough and to the class $\mathcal{T}^{\nu, \beta}$ for some $\nu \geq 0$ and $\beta>0$. Assume that ω is strongly non resonant (cf. definition 2.4) and satisfies (2.1) for some $\bar{d} \geq 0$. Then for any $r \geq 3$ there exists s_{0} and for any $s \geq s_{0}$ there exists $\mathcal{U}_{s}, \mathcal{V}_{s}$ neighborhoods of the origin in \mathcal{P}_{s} and $\tau_{s}: \mathcal{V}_{s} \rightarrow \mathcal{U}_{s}$ a real analytic canonical transformation which is the restriction to \mathcal{V}_{s} of $\tau:=\tau_{s_{0}}$ and which puts $H=H_{0}+P$ in normal form up to order r i.e.

$$
H \circ \tau=H_{0}+Z+R
$$

with
(a) Z is a real continuous polynomial of degree r with a regular vector field (i.e. $Z \in \mathcal{H}^{s}$) which only depends on the actions: $Z=Z(I)$.
(b) $R \in \mathcal{H}^{s}$ is real and $\left\|X_{R}(z)\right\|_{s} \leq C_{s}\|z\|_{s}^{r}$ for all $z \in \mathcal{V}_{s}$.
(c) τ is close to the identity: $\|\tau(z)-z\|_{s} \leq C_{s}\|z\|_{s}^{2}$ for all $z \in \mathcal{V}_{s}$.

Proof. - The proof is close to the proof of Birkhoff normal form theorem stated in [Gré07] or [Bam07], but we have to check the \mathcal{H}^{s} regularity of the Hamiltonian function iteratively constructed independently of the fact they belong to \mathcal{T}^{ν} (here $P \in \mathcal{T}^{\nu}$ does not imply $P \in \mathcal{H}^{s}$).
Having fixed some $r \geq 3$, the idea is to construct iteratively for $k=2, \ldots, r$, a neighborhood \mathcal{V}_{k} of 0 in \mathcal{P}_{s} (s large enough depending on r), a canonical transformation τ_{k}, defined on \mathcal{V}_{k}, an increasing sequence $\left(\nu_{k}\right)_{k=2, \ldots, r}$ of positive numbers and real Hamiltonians $Z_{k}, P_{k+1}, Q_{k+2}, R_{k}$ such that

$$
\begin{equation*}
H_{k}:=H \circ \tau_{k}=H_{0}+Z_{k}+P_{k+1}+Q_{k+2}+R_{k} \tag{2.29}
\end{equation*}
$$

satisfying the following properties
(i) Z_{k} is a polynomial of degree k in $\mathcal{T}^{\nu_{k}, \beta} \cap \mathcal{H}^{s}$ having a zero of order 3 at the origin and Z_{k} depends only on the (new) actions: $\left\{Z_{k}, I_{j}\right\}=0$ for all $j \geq 1$.
(ii) P_{k+1} is a homogeneous polynomial of degree $k+1$ in $\mathcal{T}_{k+1}^{\nu_{k}, \beta} \cap \mathcal{H}^{s}$.
(iii) Q_{k+2} is a polynomial of degree $r+1$ in $\mathcal{T}^{\nu_{k}, \beta} \cap \mathcal{H}^{s}$ having a zero of order $k+2$ at the origin.
(iv) R_{k} is a regular Hamiltonian belonging to \mathcal{H}^{s} and having a zero of order $r+2$ at the origin.
First we fix $s>\nu_{r}+3 / 2$ to be sure to be able to apply Proposition 2.12 at each step (ν_{r} will be defined later on independently of s). Then we notice that (2.29) at order r proves Theorem 2.20 with $Z=Z_{r}$ and $R=P_{r+1}+R_{r}$ (notice that $Q_{r+2}=0$). Actually, since $R=P_{r+1}+R_{r}$ belongs to \mathcal{H}^{s} and has a zero of order $r+1$ at the origin, we can apply Lemma 2.2 to obtain

$$
\begin{equation*}
\left\|X_{R}(z)\right\|_{s} \leq C_{s}\|(z)\|_{s}^{r} \tag{2.30}
\end{equation*}
$$

on $\mathcal{V} \subset \mathcal{V}_{r}$ a neighborhood of 0 in \mathcal{P}_{s}.
The Hamiltonian $H=H_{0}+P$ has the form (2.29) for $k=2$ with $\tau_{2}=I$, $\nu_{2}=\nu, Z_{2}=0, P_{3}$ being the Taylor's polynomial of P of degree $3, Q_{4}$ being the Taylor's polynomial of P of degree $r+1$ minus P_{3} and $R_{2}=P-P_{3}-Q_{4}$. We show now how to pass from step k to step $k+1$.

We look for τ_{k+1} of the form $\tau_{k} \circ \phi_{k+1}, \phi_{k+1}$ being a Lie transform associated to χ_{k+1} a homogeneous polynomial of degree $k+1$.
We decompose $H_{k} \circ \phi_{k+1}$ as follows

$$
\begin{align*}
H_{k} \circ \phi_{k+1} & =H_{0}+Z_{k}+\left\{H_{0}, \chi_{k+1}\right\}+P_{k+1} \\
& +H_{0} \circ \phi_{k+1}-H_{0}-\left\{H_{0}, \chi_{k+1}\right\} \tag{2.31}\\
& +Z_{k} \circ \phi_{k+1}-Z_{k} \tag{2.32}\\
& +P_{k+1} \circ \phi_{k+1}-P_{k+1} \tag{2.33}\\
& +Q_{k+2} \circ \phi_{k+1} \tag{2.34}\\
& +R_{k} \circ \phi_{k+1} . \tag{2.35}
\end{align*}
$$

Using the lemma 2.21 above, we choose χ_{k+1} in $\mathcal{T}_{k+1}^{\nu_{k}^{\prime}, \beta,+}$ in such way that

$$
\begin{equation*}
Z_{k+1}:=Z_{k}+\left\{H_{0}, \chi_{k+1}\right\}+P_{k+1} \tag{2.36}
\end{equation*}
$$

satisfies (i). By corollary 2.19, the Lie transform associated to χ_{k+1} is well defined and smooth on a neighborhood $\mathcal{V}_{k+1} \subset \mathcal{V}_{k}$ and satisfies for $z \in \mathcal{V}_{k+1}$

$$
\left\|\phi_{k+1}(z)-z\right\|_{s} \leq C\|z\|_{s}^{2}
$$

Then from Proposition 2.16, Corollary 2.19 and formula (2.28), we get that (2.32), (2.33), (2.34) and (2.35) are regular Hamiltonians having a zero of order $k+2$ at the origin. For instance concerning (2.32), one has by Taylor formula for any $z \in \mathcal{V}_{k+1}$
$Z_{k} \circ \phi_{k+1}(z)-Z_{k}(z)=\left\{Z_{k}, \chi_{k+1}\right\}(z)+\int_{0}^{1}(1-t)\left\{\left\{Z_{k}, \chi_{k+1}\right\}, \chi_{k+1}\right\}\left(\Phi_{\chi_{k+1}}^{t}(z)\right) d t$ and $\left\{Z_{k}, \chi_{k+1}\right\}$ is a polynomial having a zero of order $3+\operatorname{degree}\left(\chi_{k+1}\right)-2=$ $k+2$ while the integral term is a regular Hamiltonian having a zero of order $2 k+1$. So if $2 k+1 \geq r+2$ this last term contributes to R_{k+1} and if not, we have to use a Taylor formula at a larger order.
Therefore the sum of (2.32), (2.33), (2.34) and (2.35) decomposes in $\tilde{P}_{k+2}+$ $\tilde{Q}_{k+3}+\tilde{R}_{k+1}$ with $\tilde{P}_{k+2}, \tilde{Q}_{k+3}$ and \tilde{R}_{k+1} satisfying respectively the properties (ii), (iii) and (iv) at rank $k+1$ (with $\nu_{k+1}=k \nu_{k}^{\prime}+\nu_{k}+k+2$).

Concerning the term (2.31), one has to proceed differently since H_{0} does not belongs to the \mathcal{H}^{s}.
First notice that by the homological equation (2.36) one has $\left\{H_{0}, \chi_{k+1}\right\}=$ $Z_{k+1}-Z_{k}-P_{k+1}$. By construction Z_{k} and P_{k+1} belong to \mathcal{H}^{s}. On the other hand, by lemma 2.21, $Z_{k+1} \in \mathcal{T}_{k+1}^{\nu_{k}^{\prime}, \beta}$ and is in normal form (i.e. depends only on the actions). Thus by Proposition 2.12 assertion (iv) one concludes that $Z_{k+1} \in \mathcal{H}^{s}$. Therefore we have prove that $\left\{H_{0}, \chi_{k+1}\right\} \in \mathcal{H}^{s}$.
Now we use the Taylor formula at order one to get

$$
H_{0} \circ \phi_{k+1}(z)-H_{0}(z)=\int_{0}^{1}\left\{H_{0}, \chi_{k+1}\right\}\left(\Phi_{\chi_{k+1}}^{t}(z)\right) d t .
$$

But we know from the proof of Corollary 2.19 that $\Phi_{\chi_{k+1}}^{t}: \mathcal{V}_{k+1} \rightarrow \mathcal{P}_{s}$ for all $t \in[0,1]$. Therefore $H_{0} \circ \phi_{k+1}-H_{0} \in \mathcal{H}^{s}$ and thus (2.31) defines a regular Hamiltonian.
Finally we use again the Taylor formula and the Homological equation to write

$$
\begin{aligned}
H_{0} \circ \phi_{k+1}(z)-H_{0}(z)- & \left\{H_{0}, \chi_{k+1}\right\}(z)= \\
& \int_{0}^{1}(1-t)\left\{Z_{k+1}-Z_{k}-P_{k+1}, \chi_{k+1}\right\}\left(\Phi_{\chi_{k+1}}^{t}(z)\right) d t
\end{aligned}
$$

and , since $Z_{k+1}-Z_{k}-P_{k+1}$ belongs to $\mathcal{T}_{k+1}^{\nu_{k}^{\prime}, \beta}$ and $\chi_{k+1} \in \mathcal{T}_{k+1}^{\nu_{k}^{\prime}, \beta,+}$ we conclude by Proposition 2.16 that $H_{0} \circ \phi_{k+1}-H_{0}-\left\{H_{0}, \chi_{k+1}\right\} \in \mathcal{T}^{\nu_{k+1}, \beta}$. Then we use Corollary 2.19 to decompose it in $\hat{P}_{k+2}+\hat{Q}_{k+3}+\hat{R}_{k+1}$ with $\hat{P}_{k+2}, \hat{Q}_{k+3}$ and \hat{R}_{k+1} satisfying respectively the properties (ii), (iii) and (iv) at rank $k+1$. The proof is achieved defining $P_{k+2}=\hat{P}_{k+2}+\tilde{P}_{k+2}, Q_{k+3}=\hat{Q}_{k+3}+\tilde{Q}_{k+3}$ and $R_{k+1}=\hat{R}_{k+1}+\tilde{R}_{k+1}$.

Lemma 2.21. - Let $\nu \in[0,+\infty)$ and assume that the frequencies vector of H_{0} is strongly non resonant. Let Q be a homogeneous real polynomial of degree k in $\mathcal{T}_{k}^{\nu, \beta}$, there exist $\nu^{\prime}>\nu$, homogeneous real polynomials Z and χ of degree k respectively in $\mathcal{T}_{k}^{\nu^{\prime}}$ and $\mathcal{T}_{k}^{\nu^{\prime}, \beta,+}$ and satisfying

$$
\begin{equation*}
\left\{H_{0}, \chi\right\}+Q=Z \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{Z, I_{j}\right\}=0 \quad \forall j \geq 1 \tag{2.38}
\end{equation*}
$$

Furthermore Z and χ both belong to \mathcal{H}^{s} for $s>\nu^{\prime}+1$.
Proof. - For $j \in \overline{\mathbb{N}}^{k_{1}}$ and $l \in \overline{\mathbb{N}}^{k_{2}}$ with $k_{1}+k_{2}=k$ we denote

$$
\xi^{(j)} \eta^{(l)}=\xi_{j_{1}} \ldots \xi_{j_{k_{1}}} \eta_{l_{1}} \ldots \eta_{l_{k_{2}}}
$$

One has

$$
\left\{H_{0}, \xi^{(j)} \eta^{(l)}\right\}=-i \Omega(j, l) \xi^{(j)} \eta^{(l)}
$$

with

$$
\Omega(j, l):=\omega_{j_{1}}+\ldots+\omega_{j_{k_{1}}}-\omega_{l_{1}}-\ldots-\omega_{l_{k_{2}}}
$$

Let $Q \in \mathcal{T}_{k}^{\infty, \nu}$

$$
Q=\sum_{(j, l) \in \overline{\mathbb{N}}^{k}} a_{j l} \xi^{(j)} \eta^{(l)}
$$

where $(j, l) \in \overline{\mathbb{N}}^{k}$ means that $j \in \overline{\mathbb{N}}^{k_{1}}$ and $l \in \overline{\mathbb{N}}^{k_{2}}$ with $k_{1}+k_{2}=k$. Let us define
(2.39) $\quad b_{j l}=i \Omega(j, l)^{-1} a_{i j}, \quad c_{j l}=0 \quad$ when $\left\{j_{1}, \ldots, j_{k_{1}}\right\} \neq\left\{l_{1}, \ldots, l_{k_{2}}\right\}$
and

$$
\begin{equation*}
c_{j l}=a_{i j}, \quad b_{j l}=0 \quad \text { when }\left\{j_{1}, \ldots, j_{k_{1}}\right\}=\left\{l_{1}, \ldots, l_{k_{2}}\right\} \tag{2.40}
\end{equation*}
$$

As ω is strongly non resonant, there exist γ and α such that

$$
|\Omega(j, l)| \geq \gamma \frac{1+S(j, l)}{\mu(j, l)^{\alpha}}
$$

for all $(j, l) \in \overline{\mathbb{N}}^{k}$ with $\left\{j_{1}, \ldots, j_{k_{1}}\right\} \neq\left\{l_{1}, \ldots, l_{k_{2}}\right\}$. Thus, in view of Definitions 2.5 and 2.6 , the polynomial

$$
\chi=\sum_{(j, l) \in \overline{\mathbb{N}}^{k}} b_{j, l} \xi^{(j)} \eta^{(l)}
$$

belongs to $\mathcal{T}_{k}^{\nu^{\prime},+}$ while the polynomial

$$
Z=\sum_{(j, l) \in \overline{\mathbb{N}}^{k}} c_{j, l} \xi^{(j)} \eta^{(l)}
$$

belongs to $\mathcal{T}_{k}^{\nu^{\prime}}$ with $\nu^{\prime}=\nu+\alpha$. Notice that in this non resonant case, Z contains only monomials of degree even and thus has valuation at least 4 . Furthermore by construction they satisfy (2.37) and (2.38). Note that the reality of Q
is equivalent to the symmetry relation: $\bar{a}_{j l}=a_{l j}$. Taking into acount that $\Omega_{l j}=-\Omega_{j l}$, this symmetry remains satisfied for the polynomials χ and Z. Finally, χ and \mathbb{Z} belong to \mathcal{H}^{s} as a consequence of proposition 2.12 (iii) and (iv) respectively.

3. Dynamical consequences

3.1. Nonlinear harmonic oscillator in one dimension. - The quantum harmonic oscillator $T=-\frac{d^{2}}{d x^{2}}+x^{2}$ is diagonalized in the Hermite basis $\left(\phi_{j}\right)_{j \in \overline{\mathbb{N}}}$:

$$
\begin{aligned}
T \phi_{j} & =(2 j-1) \phi_{j}, \quad j \in \overline{\mathbb{N}} \\
\phi_{n+1} & =\frac{H_{n}(x)}{\sqrt{2^{n} n!}} e^{-x^{2} / 2}, \quad n \in \mathbb{N}
\end{aligned}
$$

where $H_{n}(x)$ is the $n^{\text {th }}$ Hermite polynomial relative to the weight $e^{-x^{2}}$:

$$
\int_{\mathbb{R}} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=2^{n} n!\sqrt{\pi} \delta_{n m} .
$$

In this basis the Hermite multiplier is given by

$$
\begin{equation*}
M \phi_{j}=m_{j} \phi_{j} \tag{3.1}
\end{equation*}
$$

where $\left(m_{j}\right)_{j \in \overline{\mathbb{N}}}$ is a bounded sequence of real number. For any $k \geq 1$, we define the class

$$
\begin{equation*}
\mathcal{W}_{k}=\left\{\left(m_{j}\right)_{j \in \overline{\mathbb{N}}} \mid \text { for each } j, m_{j}=\frac{\tilde{m}_{j}}{j^{k}} \text { with } \tilde{m}_{j} \in[-1 / 2,1 / 2]\right\} \tag{3.2}
\end{equation*}
$$

that we endow with the product probability measure. In this context the frequencies, i.e. the eigenvalues of $T+M=-d^{2} / d x^{2}+x^{2}+M$ are given by

$$
\omega_{j}=2 j-1+m_{j}=2 j-1+\frac{\tilde{m}_{j}}{j^{k}}, \quad j \in \overline{\mathbb{N}}
$$

and we denote for $(\xi, \eta) \in \mathcal{P}_{s}(s>1 / 2)$,

$$
H_{0}=\sum_{j=1}^{\infty} \omega_{j} \xi_{j} \eta_{j} .
$$

Proposition 3.1. - There exists a set $F_{k} \subset \mathcal{W}_{k}$ whose measure equals 1 such that if $m=\left(m_{j}\right)_{j \in \overline{\mathbb{N}}} \in F_{k}$ then the frequencies vector $\left(\omega_{j}\right)_{j \geq 1}$ is strongly non resonant (cf. definition 2.4).

Proof. - First remark that it suffices to prove that the frequencies vector $\left(\omega_{j}\right)_{j \geq 1}$ is non resonant in the sense of definition 2.3. Actually if we prove that (2.3) is satisfied for given constants δ^{\prime} and γ^{\prime} then if $S(j)<r \mu(j)$

$$
\left|\omega_{j_{1}}+\cdots+\omega_{j_{i}}-\omega_{j_{i+1}}-\cdots-\omega_{j_{r}}\right| \geq \frac{\gamma^{\prime}}{\mu(j)^{\delta^{\prime}}} \geq \frac{\gamma^{\prime}}{r+1} \frac{1+S(j)}{\mu(j)^{\delta^{\prime}+1}}
$$

and thus (2.4) is satisfied with $\delta=\delta^{\prime}+1$ and $\gamma=\frac{\gamma^{\prime}}{r+1}$. Now if $S(j) \geq r \mu(j)$ then use

$$
\begin{equation*}
\left|\omega_{j_{1}}+\cdots+\omega_{j_{i}}-\omega_{j_{i+1}}-\cdots-\omega_{j_{r}}\right| \geq S(j)-(r-2) \mu(j), \tag{3.3}
\end{equation*}
$$

to conclude that

$$
\left|\omega_{j_{1}}+\cdots+\omega_{j_{i}}-\omega_{j_{i+1}}-\cdots-\omega_{j_{r}}\right| \geq \frac{2}{r} S(j) \geq \frac{\gamma^{\prime}}{r+1} \quad \frac{1+S(j)}{\mu(j)^{\delta^{\prime}+1}}
$$

providing γ^{\prime} is small enough.
The prove that there exists a set $F_{k} \subset \mathcal{W}_{k}$ whose measure equals 1 such that if $m=\left(m_{j}\right)_{j \in \overline{\mathbb{N}}} \in F_{k}$ then the frequencies vector $\left(\omega_{j}\right)_{j \geq 1}$ is non resonant is exactly the same than the proof of Theorem 5.7 in [Gré07], we do not repeat it (see also [BG06]).

In equation (1.1) with $d=1$, the Hamiltonian perturbation reads

$$
\begin{equation*}
P(\xi, \eta)=\int_{\mathbb{R}} g(\xi(x), \eta(x)) d x \tag{3.4}
\end{equation*}
$$

where $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right), \xi(x)=\sum_{j \geq 1} \xi_{j} \phi_{j}(x), \eta(x)=\sum_{j \geq 1} \eta_{j} \phi_{j}(x)$ and $\left(\left(\xi_{j}\right)_{j \geq 1},\left(\eta_{j}\right)_{j \geq 1}\right) \in \mathcal{P}_{s}$. We first check that P belongs to \mathcal{H}^{s} for s large enough.

Lemma 3.2. - Let P given by (3.4) with $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right)$ real i.e. $g(z, \bar{z}) \in \mathbb{R}$ and having a zero of order at least 3 at the origin. Then $P \in \mathcal{H}^{s}$ for all $s>1 / 2$.

Proof. - One computes

$$
\frac{\partial P}{\partial \xi_{j}}(\xi, \eta)=\int_{\mathbb{R}} \partial_{1} g(\xi(x), \eta(x)) \phi_{j}(x) d x
$$

and

$$
\frac{\partial P}{\partial \eta_{j}}(\xi, \eta)=\int_{\mathbb{R}} \partial_{2} g(\xi(x), \eta(x)) \phi_{j}(x) d x
$$

thus we get

$$
\begin{aligned}
\left\|X_{P}(\xi, \eta)\right\|_{s}^{2} & =\sum_{j \geq 1}|j|^{2 s}\left|\int_{\mathbb{R}} \partial_{1} g(\xi(x), \eta(x)) \phi_{j}(x) d x\right|^{2} \\
& +\sum_{j \geq 1}|j|^{2 s}\left|\int_{\mathbb{R}} \partial_{2} g(\xi(x), \eta(x)) \phi_{j}(x) d x\right|^{2}
\end{aligned}
$$

Therfore, to verify that $z \mapsto X_{P}(z)$ is a regular function from a neighborhood of the origin in \mathcal{P}_{s} into \mathcal{P}_{s}, it suffices to check that the functions $x \mapsto \partial_{1} g(\xi(x), \eta(x))$ and $x \mapsto \partial_{2} g(\xi(x), \eta(x))$ are in \tilde{H}^{s} when $\xi(x)$ and $\eta(x)$ are in \tilde{H}^{s}. So it remains to prove that functions of the type $x \mapsto|x|^{i} \partial_{1}^{l+1} \partial_{2}^{m} g(\xi(x), \eta(x))\left(\xi^{\left(l_{1}\right)}(x)\right)^{\alpha_{1}} \cdot\left(\xi^{\left(l_{k_{1}}\right)}(x)\right)^{\alpha_{k_{1}}}\left(\eta^{\left(m_{1}\right)}(x)\right)^{\beta_{1}} \cdots\left(\eta^{\left(m_{k_{2}}\right)}(x)\right)^{\beta_{k_{2}}}$ are in $L^{2}(\mathbb{R})$ for all $0 \leq i+l+m \leq s, 0 \leq i+l_{j} \leq s, 0 \leq i+m_{j} \leq s$. But this is true because
$-g$ is a C^{∞} function, ξ and η are bounded functions and thus $x \mapsto$ $\partial_{1}^{l+1} \partial_{2}^{m} g(\xi(x), \eta(x))$ is bounded
$-\tilde{H}^{s}$ is an algebra for $s>1 / 2$ and thus $x \mapsto|x|^{k} \xi^{(l)}(x) \eta^{(m)}(x) \in L^{2}(\mathbb{R})$ for all $0 \leq k+l+m \leq s$.

- $\left|\partial_{1} g(\xi(x), \eta(x))\right|,\left|\partial_{2} g(\xi(x), \eta(x))\right| \leq C(|\xi(x)|+|\eta(x)|)^{2}$ for some uniform constant $C>0$ and thus $x \mapsto|x|^{k} \partial_{1} g(\xi(x), \eta(x)) \in L^{2}(\mathbb{R})$ for all $0 \leq k \leq s$.

That P belongs to the class $\mathcal{T}^{\nu, \beta}$ is directly in relation with the distribution of the ϕ_{j} 's. Actually we have

Proposition 3.3. - Let $\nu>1 / 8$ and $0 \leq \beta \leq \frac{1}{24}$. For each $k \geq 1$ and for each $N \geq 0$ there exists $c_{N}>0$ such that for all $j \in \overline{\mathbb{N}}^{k}$

$$
\begin{equation*}
\left|\int_{\mathbb{R}} \phi_{j_{1}} \ldots \phi_{j_{k}} d x\right| \leq c_{N} \frac{\mu(j)^{\nu}}{C(j)^{\beta}} A(j)^{N} \tag{3.5}
\end{equation*}
$$

As a consequence, any P of the general form (3.4) is in the class \mathcal{T}^{ν}.
The proof will be done in the multidimensional case in the next section (cf. Proposition 3.6).

We can now apply our Theorem 2.20 to obtain
Theorem 3.4. - Assume that $M \in F_{m}$ defined in Proposition 3.1 and that $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right)$ is real i.e. $g(z, \bar{z}) \in \mathbb{R}$ and has a zero of order at least 3 at the
origin. For any $r \geq 3$ there exists $s_{0}(r)$ an integer such that for any $s \geq s_{0}(r)$, there exist $\varepsilon_{0}>0$ and $C>0$ such that if $\left\|\psi_{0}\right\|_{\tilde{H}^{s}}=\varepsilon<\varepsilon_{0}$ the equation

$$
\begin{equation*}
i \psi_{t}=\left(-\Delta+x^{2}+M\right) \psi+\partial_{3} g(\psi, \bar{\psi}), \quad x \in \mathbb{R}, t \in \mathbb{R} \tag{3.6}
\end{equation*}
$$ with Cauchy data ψ_{0} has a unique solution $\psi \in C^{1}\left(\left(-T_{\epsilon}, T_{\epsilon}\right), \tilde{H}^{s}\right)$ with

$$
\begin{equation*}
T_{\epsilon} \geq C \epsilon^{-r} \tag{3.7}
\end{equation*}
$$

Moreover
(i) $\|\psi(t, \cdot)\|_{\tilde{H}^{s}} \leq 2 \epsilon$ for any $t \in\left(-T_{\epsilon}, T_{\epsilon}\right)$.
(ii) $\left.\sum_{j \geq 1} j^{2 s}| | \xi_{j}(t)\right|^{2}-\left|\xi_{j}(0)\right|^{2} \mid \leq \varepsilon^{3}$ for any $t \in\left(-T_{\epsilon}, T_{\epsilon}\right)$ where $\left|\xi_{j}(t)\right|^{2}, j \geq 1$ are the actions of $\psi(t, \cdot)=\sum \xi_{j}(t) \phi_{j}$.
(iii) there exists a torus $\mathcal{T}_{0} \subset H^{s}$ such that,

$$
\operatorname{dist}_{s}\left(\psi(t, \cdot), \mathcal{T}_{0}\right) \leq C \varepsilon^{r_{1} / 2} \quad \text { for }|t| \leq \epsilon^{-r_{2}}
$$

where $r_{1}+2 r_{2}=r+3$ and dists denotes the distance on H^{s} associated with the norm $\|\cdot\|_{s}$.

Proof. - Let $\psi_{0}=\sum \xi_{j}(0) \phi_{j}$ and denote $z_{0}=(\xi(0), \bar{\xi}(0))$. Denote by $z(t)$ the solution of the Cauchy problem $\dot{z}=X_{H}(z), z(0)=z_{0}$, where $H=H_{0}+P$ is the Hamiltonian function associated to the equation (3.6) written in the Hermite decomposition $\psi(t)=\sum \xi_{j}(t) \phi_{j}, z(t)=(\xi(t), \bar{\xi}(t))$. We note that, since P is real, z remains a real point of \mathcal{P}_{s} for all t.
Then we denote by $z^{\prime}=\tau^{-1}(z)$ where $\tau: \mathcal{V}_{s} \rightarrow \mathcal{U}_{s}$ is the transformation given by Theorem 2.20 (so that z^{\prime} denotes the normalized coordinates) associated to the order $r+2$ and $s \geq s_{0}(r+2)$ given by the same Theorem. We note that, since the transformation τ is generated by a real Hamiltonian, $z^{\prime}(t)$ is still a real point.
Let $\varepsilon_{0}>0$ such that $B_{2 \varepsilon_{0}} \subset \mathcal{V}_{s}$ and take $0<\varepsilon<\varepsilon_{0}$. We assume that $\|z(0)\|_{s}=\left\|\psi_{0}\right\|_{\tilde{H}^{s}}=\varepsilon$
For $z=(\xi, \eta) \in \mathcal{P}_{s}$ we define

$$
N(z):=2 \sum_{j=1}^{\infty} j^{2 s} I_{j}(\xi, \eta)
$$

where we recall that $I_{j}(\xi, \eta)=\xi_{j} \eta_{j}$. We notice that for a real point $z=$ $(\xi, \bar{\xi}) \in \mathcal{P}_{s}$,

$$
N(z)=\|z\|_{s}^{2}
$$

Thus in particular we have ${ }^{(4)}$

$$
N(z(t))=\|z(t)\|_{s}^{2} \quad \text { and } N\left(z^{\prime}(t)\right)=\left\|z^{\prime}(t)\right\|_{s}^{2}
$$

Using that Z depends only on the normalized actions, we have

$$
\begin{equation*}
\dot{N}\left(z^{\prime}\right)=\{N, H \circ \tau\} \circ \tau^{-1}(z)=\{N, R\}\left(z^{\prime}\right) \tag{3.8}
\end{equation*}
$$

Therefore as far as $\|z(t)\|_{s} \leq 2 \varepsilon$, and thus $z(t) \in \mathcal{V}_{s}$, by assertion (c) of Theorem 2.20, $\left\|z^{\prime}(t)\right\|_{s} \leq C \varepsilon$ and using (3.8) and assertion (b) of Theorem 2.20 (at order $r+2$) we get

$$
\left|N\left(z^{\prime}(t)\right)-N\left(z^{\prime}(0)\right)\right| \leq\left|\int_{0}^{t}\{N, R\}\left(z^{\prime}\left(t^{\prime}\right)\right) d t^{\prime}\right| \leq C t\left\|z^{\prime}(t)\right\|_{s}^{r+3} \leq C t \varepsilon^{r+3}
$$

In particular, as far as $\|z(t)\|_{s} \leq 2 \varepsilon$ and $|t| \leq C \varepsilon^{-r}$

$$
\left|N\left(z^{\prime}(t)\right)-N\left(z^{\prime}(0)\right)\right| \leq C \varepsilon^{3}
$$

Therefore using again assertion (c) of Theorem 2.20, we obtain

$$
|N(z(t))-N(z(0))| \leq C \varepsilon^{3}
$$

which, choosing ε_{0} small enough, leads to $\|z(t)\|_{s} \leq 3 / 2 \varepsilon$ as far as $\|z(t)\|_{s} \leq 2 \varepsilon$ and $|t| \leq C \varepsilon^{-r}$. Thus (3.7) and assertions (i) follow by a continuity argument.

To prove assertion (ii) we recall the notation $I_{j}(z)=I_{j}(\xi, \eta)=\xi_{j} \eta_{j}$ for the actions associated to $z=(\xi, \eta)$. Using that Z depends only on the actions, we have

$$
\left\{I_{j} \circ \tau^{-1}, H\right\}(z)=\left\{I_{j}, H \circ \tau\right\} \circ \tau^{-1}(z)=\left\{I_{j}, R\right\}\left(z^{\prime}\right)
$$

Therefore, we get in the normalized coordinates

$$
\frac{d}{d t} I_{j}\left(\xi^{\prime}, \eta^{\prime}\right)=-i \xi_{j}^{\prime} \frac{\partial R}{\partial \eta_{j}}+i \eta_{j}^{\prime} \frac{\partial R}{\partial \xi_{j}}
$$

and thus

$$
\begin{aligned}
\sum_{j} j^{2 s}\left|\frac{d}{d t} I_{j}\left(\xi^{\prime}, \bar{\xi}^{\prime}\right)\right| & =\sum_{j} j^{2 s}\left|-\xi_{j}^{\prime} \frac{\partial R}{\partial \eta_{j}}+\bar{\xi}_{j}^{\prime} \frac{\partial R}{\partial \xi_{j}}\right| \\
& \leq\left(\sum_{j} j^{2 s}\left(\left|\xi_{j}^{\prime}\right|^{2}+\left|\xi_{j}^{\prime}\right|^{2}\right)\right)^{1 / 2}\left(\sum_{j} j^{2 s}\left(\left|\frac{\partial R}{\partial \eta_{j}}\right|^{2}+\left|\frac{\partial R}{\partial \xi_{j}}\right|^{2}\right)\right)^{1 / 2}
\end{aligned}
$$

[^3]which leads to
\[

$$
\begin{equation*}
\sum_{j} j^{2 s}\left|\frac{d}{d t} I_{j}\left(z^{\prime}\right)\right| \leq\left\|z^{\prime}\right\|_{s}\left\|X_{R}\left(z^{\prime}\right)\right\|_{s} \leq\left\|z^{\prime}\right\|_{s}^{r+3} \tag{3.9}
\end{equation*}
$$

\]

Thus, recalling that $I_{j}\left(\xi^{\prime}, \bar{\xi}^{\prime}\right)=\left|\xi_{j}^{\prime}\right|^{2}$ we get

$$
\begin{equation*}
\left.\sum_{j \geq 1} j^{2 s}| | \xi_{j}^{\prime}(t)\right|^{2}-\left|\xi_{j}^{\prime}(0)\right|^{2} \mid \leq \varepsilon^{3} \text { for any }|t| \leq C \varepsilon^{-r} \tag{3.10}
\end{equation*}
$$

On the other hand, one has using (i) and assertion (c) of theorem 2.20 that for any $|t| \leq C \varepsilon^{-r}$,

$$
\left.\left.\sum_{j \geq 1} j^{2 s}| | \xi_{j}(t)\right|^{2}\right)-\left|\xi_{j}^{\prime}(t)\right|^{2}\left|\leq \sum_{j \geq 1} j^{2 s}\left(\left|\xi_{j}(t)\right|+\left|\xi_{j}^{\prime}(t)\right|\right)\right| \xi_{j}(t)-\xi_{j}^{\prime}(t) \mid \leq C \varepsilon^{3}
$$

Combining this last relation with (3.10) assertion (ii) follows.
To prove (iii), let $\bar{I}_{j}=I_{j}^{\prime}(0)$ be the initial actions in the normalized coordinates and define the smooth torus

$$
\Pi_{0}:=\left\{z \in \mathcal{P}_{s}: I_{j}(z)=\bar{I}_{j}, j \geq 1\right\}
$$

and its image in H^{s}

$$
\mathcal{T}_{0}=\left\{u \in H^{s}: u=\sum \xi_{j} \phi_{j} \text { with } \tau(\xi, \bar{\xi}) \in \Pi_{0}\right\} .
$$

We have

$$
\begin{equation*}
d_{s}\left(z(t), \mathcal{T}_{0}\right) \leq\left[\sum_{j} j^{2 s}\left|\sqrt{I_{j}^{\prime}(t)}-\sqrt{\bar{I}_{j}}\right|^{2}\right]^{1 / 2} \tag{3.11}
\end{equation*}
$$

Notice that for $a, b \geq 0$,

$$
|\sqrt{a}-\sqrt{b}| \leq \sqrt{|a-b|} .
$$

Thus, using (3.9), we get

$$
\begin{aligned}
{\left[d_{s}\left(z(t), \mathcal{T}_{0}\right)\right]^{2} } & \leq \sum_{j} j^{2 s}\left|I_{j}^{\prime}(t)-I_{j}^{\prime}(0)\right| \\
& \leq|t| \sum_{j} j^{2 s}\left|\dot{I}_{j}^{\prime}(t)\right| \\
& \leq \frac{1}{\epsilon^{r_{1}}}\left\|z^{\prime}\right\|_{s}\left\|X_{R}\left(z^{\prime}\right)\right\|_{s} \\
& \leq C \frac{1}{\epsilon^{r_{1}}} \epsilon^{r+3} \leq C \epsilon^{r+3-r_{1}} .
\end{aligned}
$$

which gives (ii).

3.2. Multidimensional nonlinear harmonic oscillator. -

3.2.1. model. - The spectrum of the d-dimensional harmonic oscillator T is \mathbb{N}_{d} with

$$
\mathbb{N}_{d}=\left\{\begin{array}{c}
2 \mathbb{N} \backslash\{0,2, \cdots, d-2\} \text { if } \mathrm{d} \text { is even } \tag{3.12}\\
2 \mathbb{N}+1 \backslash\{1,3, \cdots, d-2\} \text { if } \mathrm{d} \text { is odd }
\end{array}\right.
$$

For $j \in \mathbb{N}_{d}$ we denote the associated eigenspace E_{j} which dimension is

$$
d_{j}=\sharp\left\{\left(i_{1}, \cdots, i_{d}\right) \in(2 \mathbb{N}+1)^{d} \mid i_{1}+\cdots+i_{d}=j\right\} .
$$

Finally we denote $\Phi_{j, l}, l=1, \cdots, d_{j}$, the eigenfunctions associated the eigenvalue j. Note that $\Phi_{j, l}$ is of the form $\Phi_{j, l}=\phi_{i_{1}} \otimes \cdots \phi_{i_{d}}$.

The Hermite multiplier M is defined on the basis $\left(\Phi_{j, l}\right)_{j \in \mathbb{N}_{d}, l=1, \cdots, d_{j}}$ of $L^{2}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
M \Phi_{j, l}=m_{j, l} \Phi_{j, l} \tag{3.13}
\end{equation*}
$$

where $\left(m_{j, l}\right)_{j \in \mathbb{N}_{d}, l=1, \cdots, d_{j}}$ is a bounded sequence of real numbers.
The linear part of (1.1) reads

$$
H_{0}=-\Delta+x^{2}+M
$$

H_{0} is still diagonalized by $\left(\Phi_{j, l}\right)_{j \in \mathbb{N}_{d}, l=1, \cdots, d_{j}}$ and thus the spectrum of H_{0} is

$$
\begin{equation*}
\sigma\left(H_{0}\right)=\left\{j+m_{j, l} \mid j \in \mathbb{N}_{d}, l=1, \cdots, d_{j}\right\} \tag{3.14}
\end{equation*}
$$

For simplicity, we will focus on the case $m_{j, l}=m_{j}$ for all $l=1, \cdots, d_{j}$. In this case we have $\sigma\left(H_{0}\right)=\left\{j+m_{j} \mid j \in \mathbb{N}_{d}\right\}$ and, as a consequence of proposition 3.1,

Proposition 3.5. - There exists a set $F_{k} \subset \mathcal{W}_{k}$ whose measure equals 1 such that if $m=\left(m_{j}\right)_{j \in \overline{\mathbb{N}}} \in F_{k}$ then the frequencies vector $\left(\omega_{j, i}\right)_{j \in \mathbb{N}_{d}, i=1, \cdots, d_{j}}$ satisfies:
for any $r \in \overline{\mathbb{N}}$, there are $\gamma>0$ and $\delta>0$ such that for any $j \in \mathbb{N}_{d}{ }^{r}$, any $l \in\left\{1, \cdots, d_{j_{1}}\right\} \times \cdots \times\left\{1, \cdots, d_{j_{r}}\right\}$ and any $1 \leq i \leq r$, one has

$$
\begin{equation*}
\left|\omega_{j_{1}, l_{1}}+\cdots+\omega_{j_{i}, l_{i}}-\omega_{j_{i+1}, l_{i+1}}-\cdots-\omega_{j_{r}, l_{r}}\right| \geq \gamma \frac{1+S(j)}{\mu(j)^{\delta}} \tag{3.15}
\end{equation*}
$$

except if $\left\{j_{1}, \ldots, j_{i}\right\}=\left\{j_{i+1}, \ldots, j_{r}\right\}$.
Concerning the product of eigenfunctions we have,

Proposition 3.6. - Let $\nu>d / 8$. For any $k \geq 1$ and any $N \geq 1$ there exists $c_{N}>0$ such that for any $j \in \mathbb{N}_{d}{ }^{k}$, any $l \in\left\{1, \cdots, d_{j_{1}}\right\} \times \cdots \times\left\{1, \cdots, d_{j_{k}}\right\}$

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{d}} \Phi_{j_{1}, l_{1}} \ldots \Phi_{j_{k}, l_{k}} d x\right| \leq c_{N} \frac{\mu(j)^{\nu}}{C(j)^{\frac{1}{24}}} A(j)^{N} . \tag{3.16}
\end{equation*}
$$

We use the approach developed by Dario Bambusi in [Bam07] section 6.2. The basic idea lies in the following commutator lemma: Let A be a linear operator which maps $D\left(T^{k}\right)$ into itself and define the sequence of operators

$$
A_{N}:=\left[T, A_{N-1}\right], \quad A_{0}:=A
$$

then ([Bam07] lemma 7) for any $j_{1} \neq j_{2}$ in \mathbb{N}_{d}, any $0 \leq l_{1} \leq d_{1}, 0 \leq l_{2} \leq d_{2}$ and any $N \geq 0$

$$
\left|\left\langle A \Phi_{j_{2}, l_{2}}, \Phi_{j_{1}, l_{1}}\right\rangle\right| \leq \frac{1}{\left|j_{1}-j_{2}\right|^{N}}\left|\left\langle A_{N} \Phi_{j_{2}, l_{2}}, \Phi_{j_{1}, l_{1}}\right\rangle\right| .
$$

Let A be the multiplication operator by the function $\Phi=\Phi_{j_{3}, l_{3}} \cdots \Phi_{j_{k}, l_{k}}$ then by an induction argument

$$
A_{N}=\sum_{0 \leq|\alpha| \leq N} C_{\alpha, N} D^{\alpha}
$$

where

$$
C_{\alpha, N}=\sum_{0 \leq|\beta| \leq 2 N-|\alpha|} V_{\alpha, \beta, N}(x) D^{\beta} \phi
$$

and $V_{\alpha, \beta, N}$ are polynomials of degree less than $2 N$. Therefore one gets

$$
\begin{align*}
\left|\int_{\mathbb{R}^{d}} \Phi_{j_{1}, l_{1}} \ldots \Phi_{j_{k}, l_{k}} d x\right| & \leq \frac{1}{\left|j_{1}-j_{2}\right|^{N}}\left\|A_{N} \Phi_{j_{2}, l_{2}}\right\|_{L^{2}} \tag{3.17}\\
& \leq C \frac{1}{\left|j_{1}-j_{2}\right|^{N}} \sum_{0 \leq|\alpha| \leq N} \sum_{0 \leq|\beta| \leq 2 N-|\alpha|}\left\|V_{\alpha, \beta, N} D^{\beta} \phi D^{\alpha} \Phi_{j_{2}, l_{2}}\right\|_{L^{2}} \\
& \leq C \frac{1}{\left|j_{1}-j_{2}\right|^{N}} \sum_{0 \leq|\alpha| \leq N} \sum_{0 \leq|\beta| \leq 2 N-|\alpha|}\left\|\Phi_{j_{2}, l_{2}}\right\|_{|\alpha|}\|\Phi\|_{\nu_{0}+|\beta|}
\end{align*}
$$

where we used in the last estimate

$$
\forall \nu_{0}>d / 2 \quad\|f g\|_{L^{2}} \leq C_{\nu_{0}}\|f\|_{\nu_{0}}\|g\|_{L^{2}}
$$

We now estimate $||\Phi||_{\nu_{0}+|\beta|}$.
First notice that, since $T \Phi_{j, l}=j \Phi_{j, l}$, one has for all $s \geq 0$

$$
\begin{equation*}
\left\|\Phi_{j, l}\right\|_{s} \leq C j^{s / 2} \tag{3.18}
\end{equation*}
$$

Then we recall that the Hermite eigenfunctions are uniformly bounded, and actually (see [Sze75] or [KT05])

$$
\begin{equation*}
\left\|\phi_{j}\right\|_{L^{\infty}} \leq C j^{-1 / 12} \tag{3.19}
\end{equation*}
$$

and thus, since $\Phi_{j, l}=\phi_{i_{1}} \otimes \cdots \phi_{i_{d}}$ with $i_{1}+\cdots+i_{d}=j$, we deduce

$$
\begin{equation*}
\left\|\Phi_{j, l}\right\|_{L^{\infty}} \leq C_{d} j^{-1 / 12} \tag{3.20}
\end{equation*}
$$

with $C_{d}=C d^{1 / 12}$. Thus using the tame estimate (see for instance [Tay91])

$$
\|u v\|_{s} \leq C\left(\|u\|_{s}\|v\|_{L^{\infty}}+\|v\|_{s}\|u\|_{L^{\infty}}\right)
$$

combined with (3.18) and (3.20), we get for $j_{3} \geq \cdots \geq j_{k}$,

$$
\begin{equation*}
\|\Phi\|_{s} \leq C j_{3}^{s / 2} \tag{3.21}
\end{equation*}
$$

Inserting (3.18) and (3.21) in (3.17) we get

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{d}} \Phi_{j_{1}, l_{1}} \ldots \Phi_{j_{k}, l_{k}} d x\right| & \leq C \frac{1}{\left|j_{1}-j_{2}\right|^{N}} \sum_{0 \leq|\alpha| \leq N} \sum_{0 \leq|\beta| \leq 2 N-|\alpha|} j_{2}^{|\alpha| / 2} j_{3}^{\left.\left(\nu_{0}+|\beta|\right) / 2\right)} \\
& \leq C \frac{1}{\left|j_{1}-j_{2}\right|^{N}} \sum_{0 \leq|\alpha| \leq N} j_{2}^{|\alpha| / 2} j_{3}^{\nu_{0} / 2+N-|\alpha| / 2} \\
& \leq C \frac{1}{\left|j_{1}-j_{2}\right|^{N}} j_{3}^{N+\nu_{0} / 2}\left(\frac{j_{2}}{j_{3}}\right)^{N / 2} \\
& =C \frac{1}{\left|j_{1}-j_{2}\right|^{N}} j_{3}^{\nu_{0} / 2}\left(j_{2} j_{3}\right)^{N / 2}
\end{aligned}
$$

Now remark that if $\sqrt{j_{2} j_{3}} \leq\left|j_{1}-j_{2}\right|$ then the last estimate implies (3.22)

$$
\left|\int_{\mathbb{R}^{d}} \Phi_{j_{1}, l_{1}} \ldots \Phi_{j_{k}, l_{k}} d x\right| \leq C j_{3}^{\nu_{0} / 2} \frac{\left(j_{2} j_{3}\right)^{N / 2}}{\left(\sqrt{j_{2} j_{3}}+\left|j_{1}-j_{2}\right|\right)^{N}}=C \mu(j)^{\nu / 2} A(j)^{N}
$$

while if $\sqrt{j_{2} j_{3}}>\left|j_{1}-j_{2}\right|$ then $A(j) \geq 1 / 2$ and thus (3.22) is trivially true.
On the other hand, using (3.20) one has

$$
\left|\int_{\mathbb{R}^{d}} \Phi_{j_{1}, l_{1}} \ldots \Phi_{j_{k}, l_{k}} d x\right| \leq C j_{1}^{-1 / 12}
$$

Combining this estimate with (3.22) one gets for all $N \geq 1$

$$
\left|\int_{\mathbb{R}^{d}} \Phi_{j_{1}, l_{1}} \ldots \Phi_{j_{k}, l_{k}} d x\right| \leq c_{N} \frac{\mu(j)^{\nu}}{C(j)^{\frac{1}{24}}} A(j)^{N}
$$

with $\nu=\frac{\nu_{0}}{4}$.
3.2.2. Result. - We follow the presentation of section 2 and only focus on the new feature.

We consider the phase space $\mathcal{Q}_{s}=\mathcal{L}_{s} \times \mathcal{L}_{s}$ with

$$
\mathcal{L}_{s}=\left\{\left.\left(a_{j, l}\right)_{j \in \mathbb{N}_{d}, 1 \leq l \leq d_{j}}\left|\sum_{j \in \mathbb{N}_{d}}\right| j\right|^{2 s} \sum_{l=1}^{d_{j}}\left|a_{j, l}\right|^{2}<\infty\right\}
$$

that we endow with the standart norm and the standart symplectic structure as for \mathcal{P}_{s} in section 2.1. Writing $\psi=\sum \xi_{j, l} \Phi_{j, l}, \bar{\psi}=\sum \eta_{j, l} \Phi_{j, l}$ with $(\xi, \eta) \in \mathcal{Q}_{s}$, the linear part of the multidimensional version of the linear part of (1.1) reads

$$
H_{0}(\xi, \eta)=\frac{1}{2} \sum_{j \in \mathbb{N}_{d}} \sum_{l=1}^{d_{j}} \omega_{j, l} \xi_{j, l} \eta_{j, l}
$$

For $j \geq 1$, we define

$$
J_{j}(\xi, \eta)=\sum_{l=1}^{d_{j}} \xi_{j, l} \eta_{j, l}
$$

Using notations of section 2.1, we define the class \mathbb{T}_{k}^{ν} of polynomials of degree k on \mathcal{Q}_{s}

$$
Q(\xi, \eta) \equiv Q(z)=\sum_{m=0}^{k} \sum_{j \in \mathbb{N}_{d} m} \sum_{l_{1}=1}^{d_{j_{1}}} \ldots \sum_{l_{m}=1}^{d_{j_{m}}} a_{j, l} z_{j_{1}, l_{1}} \ldots z_{j_{m}, l_{m}}
$$

such that for each $N \geq 1$, there exists a constant $C>0$ such that for all j, l

$$
\left|a_{j, l}\right| \leq C \frac{\mu(j)^{\nu}}{C(j)^{1 / 24}} A(j)^{N}
$$

Then following definition 2.10 we define a corresponding class \mathbb{T}^{ν} of C^{∞} Hamiltonians on \mathcal{Q}_{s} having their Taylor's polynomials in \mathbb{T}_{k}^{ν}. Similarly, following definition 2.1, we also define \mathcal{H}_{d}^{s} the class of real Hamiltonians P satisfying $P \in C^{\infty}\left(\mathcal{U}_{s}, \mathbb{C}\right)$ and $X_{P} \in C^{\infty}\left(\mathcal{U}_{s}, \mathcal{Q}_{s}\right)$ for some $\mathcal{U}_{s} \subset \mathcal{Q}_{s}$ a neighborhood of the origin.
Adapting slightly the proof of theorem 2.20 we get
Theorem 3.7. - Let P be a real Hamiltonian belonging in $\mathbb{T}^{\nu} \cap \mathcal{H}_{d}^{s}$ for some $\nu \geq 0$ and for all s sufficiently large and let ω be a weakly non resonant frequencies vector in the sense of (3.15). Then for any $r \geq 3$ there exists s_{0} and for any $s \geq s_{0}$ there exists \mathcal{U}, \mathcal{V} neighborhoods of the origin in \mathcal{Q}_{s} and $\tau: \mathcal{V} \rightarrow \mathcal{U}$ a real analytic canonical transformation which puts $H=H_{0}+P$ in normal form up to order r i.e.

$$
H \circ \tau=H_{0}+Z+R
$$

with
(i) Z is a real continuous polynomial of degree r which commutes with all $J_{j}, j \geq 1$, i.e. $\left\{Z, J_{j}\right\}=0$ for all $j \geq 1$.
(ii) R is real and belongs to \mathcal{H}_{d}^{s}, furthermore $\left\|X_{R}(z)\right\|_{s} \leq C_{s}\|z\|_{s}^{r}$ for all $z \in \mathcal{V}_{s}$.
(iii) τ is close to the identity: $\|\tau(z)-z\|_{s} \leq C_{s}\|z\|_{s}^{2}$ for all $z \in \mathcal{V}_{s}$.

Proof. - The only new point when comparing with theorem 2.20 , is that in assertion (ii) we obtain $\left\{Z, J_{j}\right\}=0$ for all $j \geq 1$ instead of $\left\{Z, I_{j}\right\}=0$ for all $j \geq 1$. This is a consequence of a new definition of polynomial in normal form adapted to this multidimensional case. Actually instead of definition 2.11, we use

Definition 3.8. - Let $k=2 m$ be an even integer, a formal polynomial Z homogeneous of degree k on \mathcal{Q}_{s} is in normal form if it reads

$$
Z(\xi, \eta)=\sum_{j \in \mathbb{N}_{d} k} \sum_{l_{1}, l_{1}^{\prime}=1}^{d_{j_{1}}} \ldots \sum_{l_{k}, l_{k}^{\prime}=1}^{d_{j_{k}}} a_{j, l, l^{\prime}} \xi_{j_{1}, l_{1}} \eta_{j_{1}, l_{1}^{\prime}} \ldots \xi_{j_{k}, l_{k}} \eta_{j_{k}, l_{k}^{\prime}}
$$

for all $(\xi, \eta) \in \mathcal{Q}_{s}$.
One easily verifies that if Z is in normal form then Z commutes with each $J_{j}=\sum_{l=1}^{d_{j}} \xi_{j, l} \eta_{j, l}$ since for instance

$$
\left\{\xi_{j_{1}, l_{1}} \eta_{j_{1}, l_{1}^{\prime}}, \xi_{j_{1}, l_{1}} \eta_{j_{1}, l_{1}}+\xi_{j_{1}, l_{1}^{\prime}} \eta_{j_{1}, l_{1}^{\prime}}\right\}=0
$$

On the other hand, we also verify following the lines of the proof of assertion (iv) of proposition 2.12, that a homogeneous polynomial of degree $k+1 Z \in \mathcal{T}^{\nu}$ which is in normal form satisfies $\left\|X_{Z}(z)\right\|_{s} \leq C\|z\|_{s}^{k}$ for all z in a neighborhood of the origin. In particular, if $Z \in \mathcal{T}^{\nu}$ is in normal form, it automatically belongs to \mathcal{H}_{d}^{s} (this point was crucial in the proof of theorem 2.20).
Then, in view of (3.15), we adapt lemma 2.21 where, and in particular (2.39) and (2.40), in such a way $\chi \in \mathcal{T}^{\nu,+}$ and Z is in normal form in the sense of definition 3.8.

Notice that the normal form $H_{0}+Z$ is no more, in general, integrable. The dynamical consequences are the same as in Theorem 3.4 (i) and (ii) but we have to replace I_{j} by J_{j} in the second assertion. Actually the J_{j} play the rule of almost actions: they are almost conserved quantities.

In equation (1.1), the Hamiltonian perturbation reads

$$
\begin{equation*}
P(\xi, \eta)=\int_{\mathbb{R}} g(\xi(x), \eta(x)) d x \tag{3.23}
\end{equation*}
$$

where $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right), \xi(x)=\sum_{j \geq 1} \xi_{j} \phi_{j}(x), \eta(x)=\sum_{j \geq 1} \eta_{j} \phi_{j}(x)$ and $\left(\left(\xi_{j}\right)_{j \geq 1},\left(\eta_{j}\right)_{j \geq 1}\right) \in \mathcal{P}_{s}$. As in the one dimensional case (cf. Lemma 3.2), P belongs to \mathcal{H}_{d}^{s} for s large enough $(s>d / 2)$ and using Proposition 3.6, P belongs to the class \mathbb{T}^{ν}. So one has

Lemma 3.9. - Let P given by (3.23) with $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right)$ real i.e. $g(z, \bar{z}) \in$ \mathbb{R} and having a zero of order at least 3 at the origin.. Then $P \in \mathcal{H}^{s} \cap \mathbb{T}^{\nu}$ for all $s>d / 2$ and for $\nu>d / 8$.

Thus one can apply Theorem 3.7 to obtain
Theorem 3.10. - Assume that $m \in F_{k}$ defined in proposition 3.5 and that $g \in C^{\infty}\left(\mathbb{C}^{2}, \mathbb{C}\right)$ is real i.e. $g(z, \bar{z}) \in \mathbb{R}$ and vanishing at least at order 3 at the origin. For each $r \geq 3$ and $s \geq s_{0}(r)$, there exists $\varepsilon_{0}>0$ and $c>0$ such that for any ψ_{0} in \tilde{H}^{s}, any $\epsilon \in\left(0, \epsilon_{0}\right)$, the equation

$$
i \psi_{t}=\left(-\Delta+x^{2}+M\right) \psi+\partial_{2} g(\psi, \bar{\psi}), \quad x \in \mathbb{R}^{d}, t \in \mathbb{R}
$$

with Cauchy data ψ_{0} has a unique solution $\psi \in C^{1}\left(\left(-T_{\epsilon}, T_{\epsilon}\right), \tilde{H}^{s}\right)$ with

$$
T_{\epsilon} \geq c \epsilon^{-r}
$$

Moreover for any $t \in\left(-T_{\epsilon}, T_{\epsilon}\right)$, one has

$$
\|\psi(t, \cdot)\|_{\tilde{H}^{s}} \leq 2 \epsilon
$$

and

$$
\sum_{j \geq 1} j^{2 s}\left|J_{j}(t)-J_{j}(0)\right| \leq \varepsilon^{3}
$$

where $J_{j}(t)=\sum_{l=1}^{d_{j}}\left|\xi_{j, l}\right|^{2}, j \geq 1$ are the "pseudo-actions" of $\psi(t, \cdot)=$ $\sum_{j, l} \xi_{j, l}(t) \Phi_{j, l}(\cdot)$.
Proof. - Just remark that as in the proof of theorem 3.4, defining $N(z):=$ $2 \sum_{j \in \mathbb{N}_{d}} j^{2 s} J_{j}(\xi, \eta)=2 \sum_{j \in \mathbb{N}_{d}} j^{2 s} \sum_{l=1}^{d_{j}} \xi_{j, l} \eta_{j, l}$ one has $N(z)=\|z\|_{s}^{2}$ for all real point $z=(\xi, \bar{\xi})$. On the other hand, using that Z commutes with J_{j}, we have

$$
\left\{N \circ \tau^{-1}, H\right\}(z)=\{N, H \circ \tau\} \circ \tau^{-1}(z)=\{N, R\}\left(z^{\prime}\right)
$$

Therefore, we get in the normalized variables $|\dot{N}| \leq C N^{(r+1) / 2}$ and the theorem follows as in the proof of Theorem 3.4.

References

[Bam03] D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Physics 234 (2003), 253-283.
[Bam07] \qquad , A birkhoff normal form theorem for some semilinear pdes, Hamiltonian Dynamical Systems and Applications, Springer, 2007, pp. 213-247.
[BDGS07] D. Bambusi, J.-M. Delort, B. Grébert, and J. Szeftel, Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60 (2007), no. 11, 1665-1690.
[BG06] D. Bambusi and B. Grébert, Birkhoff normal form for PDEs with tame modulus, Duke Math. J. 135 (2006), 507-567.
[Bou96] J. Bourgain, Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations, Geometric and Functional Analysis 6 (1996), 201-230.
[Bou05] J. Bourgain, Green's function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, NJ, 2005.
[Cra00] W. Craig, Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthéses, no. 9, Société Mathématique de France, 2000.
[DS04] J. M. Delort and J. Szeftel, Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Internat. Math. Res. Notices 37 (2004), 1897-1966.
[Gré07] Benoît Grébert, Birkhoff normal form and Hamiltonian PDEs, Partial differential equations and applications, Sémin. Congr., vol. 15, Soc. Math. France, Paris, 2007, pp. 1-46.
[KP03] T. Kappeler and J. Pöschel, $K A M$ \& $K d V$, Springer, 2003.
[KT05] Herbert Koch and Daniel Tataru, L^{p} eigenfunction bounds for the Hermite operator, Duke Math. J. 128 (2005), no. 2, 369-392.
[Kuk00] S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000.
[Sze75] Gábor Szegő, Orthogonal polynomials, fourth ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII.
[Tay91] Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, vol. 100, Birkhäuser Boston Inc., Boston, MA, 1991.
[Wan08] W.-M. Wang, Pure point spectrum of the floquet hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Comm. Math. Physics 277 (2008), 459-496.

Benoît Grébert, Rafik Imekraz, Éric Paturel
Laboratoire de Mathématiques Jean Leray UMR 6629,
Université de Nantes,
2, rue de la Houssinière,

44322 Nantes Cedex 3, France
benoit.grebert@univ-nantes.fr
E-mail: rafik.imekraz@univ-nantes.fr
eric.paturel@univ-nantes.fr

7th August 2008
Benoît Grébert, Rafik Imekraz, Eric Paturel

[^0]:

[^1]: ${ }^{(2)}$ Actually in section 2.2 , instead of \mathcal{T}^{ν} and $\mathcal{T}^{\nu,+}$, we consider more general classes $\mathcal{T}^{\nu, \beta}$ and $\mathcal{T}^{\nu, \beta,+}$ where the parameter β plays the rule of the exponent $1 / 24$ in (1.6) and (1.7)

[^2]: ${ }^{(3)}$ actually in all the cases where the frequencies vector is non resonant as in definition 2.3 and satisfies the asymptotic: $\omega_{l} \sim l^{n}$ with $n \geq 1$.

[^3]: ${ }^{(4)}$ That is precisely at this point that we need to work with real Hamiltonians. The Birkhoff normal form theorem is essentially algebraic and do hold for complex Hamiltonians.

