
HAL Id: hal-00309688
https://hal.science/hal-00309688v1

Submitted on 7 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Region-Based Memory Management for
Resource-limited Real-Time Embedded Systems.

Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, Sergio Yovine

To cite this version:
Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, Sergio Yovine. Efficient Region-Based Mem-
ory Management for Resource-limited Real-Time Embedded Systems.. Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems, in association with
the 20th ACM ECOOP conference, Jul 2006, Nantes, France. �hal-00309688�

https://hal.science/hal-00309688v1
https://hal.archives-ouvertes.fr


Efficient Region-Based Memory Management for

Resource-limited Real-Time Embedded Systems

Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, Sergio Yovine

Verimag, 2 avenue de Vignate 38610 Gieres France ⋆

salagnac@imag.fr, nakhli@imag.fr, rippert@imag.fr, yovine@imag.fr

Abstract. This paper presents a simple and efficient static analysis al-
gorithm, combined with a region allocation policy for real-time embedded
Java applications. The goal of this work is to provide a static analysis
mechanism efficient enough to be integrated in an assisted-development
environment, and to implement region-based memory management prim-
itives suited for resource-limited platforms such as smart cards.

1 Motivation

Dynamic memory management is a serious challenge for real-time embedded
systems based on Java technology. Contrary to the standard Java paradigm,
garbage collection is rarely used in such real-time environments, since the tem-
poral behavior of dynamic memory collection (e.g. pause times) is usually dif-
ficult to predict and thus significantly complicates the implementation of real-
time scheduling policies. On resource-limited platforms, such as smart cards,
the implementation of efficient garbage collectors (GC) is furthermore hindered
by hardware limitations, and embedded systems manufacturers frequently omit
them completely (see the JavaCard1 platform for instance).

Several GC algorithms have been proposed for real-time applications [1, 2],
but they typically require the programmer to provide a model of the dynamic
memory management behaviour of the application, such as the maximum allo-
cation and mortality rates of objects for instance, a difficult task at best (i.e.
determine the maximum allocation rate is undecidable). A survey and a thorough
comparison of different real-time garbage collectors can be found in [3].

An appealing solution to the dynamic memory collection issue is to allocate
objects in regions [4]. With region-based memory management, objects with
similar lifetimes are allocated in the same memory area, which can be deallocated
as a whole when all the included objects are no longer used. Each object must
then be placed when allocated, but allocation and deallocation of objects can be
performed in a predictable time.

This memory model is advocated by the Real-Time Specification for Java
(RTSJ)[5], which allows the programmer to specify that a given computation

⋆ This work was partially supported by projects DYNAMO (Min. Research, France)
and MADEJA (Rhône-Alpes, France).

1 http://java.sun.com/products/javacard/



must run in the context of a pre-allocated region. However, programming with
RTSJ is usually deemed much more difficult than with standard Java [6], es-
pecially since the sizes of the various memory regions must be known when
developing the application, and since the programmer must decide in which re-
gion to allocate data structures. Moreover, current RTSJ implementations, like
the JamaicaVM2 for instance, require too many resources (in terms of memory
space and processor time) to be used on resource-constrained platforms.

Instead of requiring the programmer to decide where to allocate objects,
static analysis can be performed on the application to resolve object placement
issues. Then, the program can be transparently transformed by replacing new

bytecodes by calls to the allocator of the chosen region. This approach requires
to compute the lifetime of dynamically allocated objects, in order to insert calls
to the deallocator of a region as soon as all the included objects are no longer
used, while guaranteeing that deallocation of a region will not create dangling
references.

This can be done, for example, by instrumenting the code using data obtained
by profiling the execution [7]. However, the results will depend on program in-
puts, leading to potentially unsafe memory operations if the program is executed
with different inputs. A full runtime approach is advocated in [8], where object
connectivity is monitored on-line during the execution. The results are then
used to place objects in the different memory zones of a generational GC. This
mechanism is safe, but it suffers from GC pause times.

On the other hand, escape analysis techniques conservatively determine at
compile time whether the lifetime of an object exceedes its allocating method.
If not, the heap allocation can be replaced by stack allocation, and the object
destroyed together with the stack frame of the method. Many escape analysis
algorithms have been proposed for Java (e.g. [9–11]), but they typically fail to
produce results complete enough to suppress the need for a GC.

This failure highlights the limitations of automatic analysis tools and ad-
vocates the use of semi-automatic mechanisms that provide hints to the pro-
grammer on where to place object allocations in the application. Providing a
guided-development environment that can determine whether a given dynamic
object creation can easily be replaced by region-based allocation/deallocation
permits non-expert programmers to write their applications without needing to
know precisely how memory management is implemented. This requires a fast
analysis algorithm so as to be able to provide hints to the programmer at imple-
mentation time, without slowing down software development. For instance, [12]
presents a static analysis algorithm which permits to allocate most objects into
regions and which limits the use of the fail-safe GC. However, this algorithm is
context-sensitive, which is unlikely to scale up for complex real-life appllications.

1.1 Our approach

This paper presents a simple and efficient static analysis algorithm, combined
with a region allocation policy for real-time embedded Java applications. The

2 http://www.aicas.com/jamaica.html



goal of this work is to provide a static analysis mechanism efficient enough to
be integrated in an assisted-development environment, and to implement region-
based memory management primitives suited for resource-limited platforms such
as smart cards.

Our approach relies on the weak generational hypothesis [13], which states
that there is an inverse relationship between the age of objects and their mortal-
ity. Accordingly, we proposes to make the program automatically put each data
structure (i.e., a set of connected objects) in a distinct region. The idea is that
most objects are either short-lived, and so they should be placed in a short-lived
region, or long-lived, because they are integrated in a large lasting structure,
and they should be placed together with the rest of the structure. Bookkeeping
is thus very easy for the runtime system, since there is no more need for a GC
to track pointers between objects, and regions can be destroyed as soon as they
have no more direct incoming pointers from the program roots.

For this reason, the analysis presented here is not designed to determine
absolute lifetimes (like escape analysis), but rather relationships between objects
lifetimes, so as to predict which objects belong to the same data structure.

2 Pointer interference analysis

For each method m, the analysis builds a partition ∼m of its local variables,
such that two related variables v∼mv’ will be guaranteed to point to objects in
the same region.

The algorithm, called pointer interference analysis, works in two phases. Dur-
ing a first intra-procedural pass, it looks for all variables which syntactically

interfere, and marks them as part of the same equivalence class: v=u, v=u.f or
v.f=u imply v∼mu. We assume that complex expressions have been decomposed
earlier by the Java compiler when generating the bytecode, and that the only
pointer-related statements are these ones.

During a second phase, inter-procedural pointer interference is modelled,
using the static call graph, as follows: wherever a method m() may call a method
m’() with arguments ...p1←v1,..., p2←v2... the algorithm ensures that p1∼m′p2

in m’() implies v1∼mv2 in m().
The algorithm can be summarized as is shown on Fig 1, as the computation

of the least fixed point of the given constraint system.

Example. An example program is given on Fig 2 to illustrate the analyis. The
program first creates a list, and then allocates two objects o1, which will be
added to the list, and o2. The call to the constructor is explicited, like in the
.class bytecode. First, the intra-procedural phase of the algorithm will compute
this ∼<init> tmp and this ∼add o. Then, the inter-procedural phase, mapping
list to this and o1 to o, will deduce list ∼main o1. The point is that o1 and
o2 will never be connected, and thus can be allocated in different regions, while
list and o1 will belong to the same data structure.

2.1 Experimental results

This static analysis was implemented using the Soot framework [14]. The first
phase needs only to handle each statement once; moreover, if the call graph does



v1 := v2 ∨ v1.f := v2 ∨ v1 := v2.f

v1 ∼m v2

v1 ∼m v2

v2 ∼m v1

v1 ∼m v2 v2 ∼m v3

v1 ∼m v3

m






y

v1 7−→ p1

v2 7−→ p2

m′

p1 ∼m′ p2

v1 ∼m v2

Fig. 1. The Pointer Interference Algorithm

class ArrayList
{

main()
{

ArrayList list=new ArrayList;
list.<init>(10);

Object o1=new Object;
Object o2=new Object;

list.add(o1);
}

Object[] data;
int size;
ArrayList(int capacity)
{

this.size = 0;
tmp = new Object[capacity];
this.data = tmp;

}

void add(Object o)
{

this.data[this.size] = o;
this.size ++;

}
}

Fig. 2. An example program

not contain cycles (i.e. if the program is not recursive), the inter-procedural
phase is a simple backward propagation along call edges, which can be done in
one pass. In most Java programs, recursions only involve one method in practice
[15], which implies that the fixed point is not expensive to compute even in the
presence of recursion.

The analysis times are presented on Fig 3. The second column gives the size
of the application, the third column gives he number of methods in the static call
graph of the application, including classpath methods. On all but one (Voronoi)
programs of the JOlden benchmark suite3, our algorithm is faster than [12].

JOlden benchmarks are not real-time applications, but they are interesting
because they contain typical java programming patterns (polymorphism, recur-
sion, heavy use of dynamic memory) which must be supported in a full-Java
embedded real-time environment. We also used other larger benchmark pro-
grams to evaluate the scalability of the algorithm: DEOS is a Java model of an
operating system kernel [16], K9 is a Java version of the K9 rover control pro-
gram[17], nanoXML is a lightweight XML parser4, and ECTest is the elliptic curve
test that comes with the Bouncy Castle crypto API5. The results obtained on
these examples suggest that our algorithm scales well, because it is far simpler
by design but also because [12] is context-sensitive. This makes their algorithm
exponential while ours is almost linear.

3 http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
4 http://nanoxml.sourceforge.net
5 http://www.bouncycastle.org



Application Methods Time (sec)
Program Size Analyzed Total vs.

(kB) Analysis

bh 32 862 23.2 1.84
bisort 8 804 22.8 1.62
em3d 16 811 23.7 1.87
health 20 818 23.5 1.65
mst 14 825 22.2 1.79
perimeter 24 839 21.5 1.68
power 18 821 23.2 1.67
treeadd 6 801 22.7 1.63
tsp 10 806 21.9 2.17
voronoi 26 1515 25.8 6.12

DEOS 52 927 22.9 3.35
K9 rover 1142 2206 22.9 3.35
nanoXML 26 1582 48.1 3.52
ECTest 642 1787 49.3 7.21

Fig. 3. Analysis times

Implementation issues. Our prototype uses an SSA [18] version of the program,
and a too coarse algorithm to compute the static call graph. An optimized imple-
mentation of the algorithm would certainly show better performances because
of its (almost) linear complexity.

3 Allocation Policy

The execution platforms targetted by our approach have only restrained re-
sources, and memory management must not cause too much overhead on the
execution. Thus, the allocation policy associated with the analysis is also quite
simple: at runtime, for each allocation v=new C in method m(), look in the stack
frame for other local variables u of m() related to v, and place the new object in
the same region as u; if there is no such variable, then create a new region. This
ensures that each data structure is contained in its own region, because each two
connected objects will be placed together.

The allocator can then create and destroy regions according to local variables
that point to objects contained in them: if a region has no local variable pointing
directly into it, it can be destroyed. This policy can be implemented using a
reference count, or simply by attaching regions to stack frames.

It is indeed sufficient for the allocator to look only at allocation sites and
formal parameters: if the variable v (in a statement of the form v = new C)
is related by ∼m to a parameter p of m(), then the new object is allocated
in the region of p. This is convenient for implementing the policy, because the
executed Java bytecode uses stack-based statements, and does not contain all
the intermediate variables.

We have proven that this scheme is safe, i.e., it does not create dangling
pointers. This can be done by working with a formal semantics of the language,
like in [15]. We formalized our allocation policy, and proved than it preserves
the following invariants:

1. if two objects are connected, then they are in the same region.



2. if two variables v1 and v2 of a method m satisfy v1 ∼m v2, then the pointed
objects are in the same region

The main argument is that each “connecting statement” v1.f := v2 involves
only variables related by ∼m, which assures (by induction on the length on the
execution trace) that objects o1 and o2 pointed by v1 and v2 have been previously
allocated in the same region.

The correctness of the allocation policy is a corollary of the above lemmas:
any two connected objects will be in the same region, so if a region has no local
variable pointing into it, then all objects in the region are unreachable, and can
be safely freed.

3.1 Experimental results

After having statically analysed the program, the obtained results must be used
at runtime to carry out the proposed allocation policy. We chose to conduct the
experiments presented here using the JITS architecture [19]. JITS is a software
framework dedicated to assist the customized generation and deployment of
low-footprint embedded Java operating systems and applications. JITS provides
a J2SE compliant Java API and virtual machine, and tools designed to help
the developer build a fully-customized and low-footprint embedded operating
system.

We implemented the region allocator in the memory management subsystem
of JITS, replacing its stop-the-world mark and sweep GC. The class loader was
also modified to take into account the metadata computed by the static analysis.
This was done without changing the bytecode itself, so that other components
of the JVM, like the bytecode verifier, had not to be modified. Other approaches
like [12] that require to add new bytecodes are less portable, and more difficult
to implement in an existing virtual machine ([12] uses the KaffeVM, which is
not appropriate for embedded systems).

The memory occupancy obtained during two executions, the first one with
the GC and the second one with regions, were compared in order to evaluate the
impact of the regions on the behavior of the programs.

On several benchmarks (e.g. Power, BiSort, etc.), most regions appear to have
very short lifetimes, enabling the application to run in a nearly constant memory
space. There are two kinds of memory regions: very long-lived regions, that
contain large data structures that mutate throughout the execution, and very
short-lived regions, that receive temporary objects allocated by the computation.
This is illustrated on Fig. 4 for Bisort: the GC only version of the program (the
dotted lines) frequently exhausts memory, and requires several collections of the
heap. With regions (the solid line), the program deallocates unused memory
immediately, and thus does not require any collection, which is what we want to
achieve. In this example, there are typically 15 to 18 active regions on average,
with a maximum of 21.

We do not provide a comparison with memory usage statistics, as presented
in [12], because our approach does not aim primarily at reducing memory usage
of the program, but rather at avoiding the need for a GC. Moreover, the figures



given in [12] are high watermark memory usage statistics, which in our opinion
are not very relevant when the program is executed with a GC, or with no
memory management at all. The maximum memory usage allowed by a GC is
dependent upon the parameters of the GC, as is illustrated on Fig 4: a lower GC
threshold saves memory but triggers collections more often, increasing execution
overhead: for 600k (not reprensented on the figure), the overall execution time
is increased by 20%; for 550k, it is multiplied by 3. In a memory-restrained
environment, this limit is imposed by the platform, and the implied GC overhead
costs not only time, but also energy, as discussed in [20].

0 1x107 2x107 3x107 4x107 5x107

VMTime (cycles)

400000

500000

600000

700000

800000

900000

1x106

H
e
a
p
 S

iz
e
 (

b
y
te

s
)

Garbage Collector (1M treshold)

Garbage collector (800k treshold)

Regions

Fig. 4. Memory occupancy for the benchmark program BiSort

On some other benchmarks (e.g. Em3d, MST, etc.), the computation uses
only the main data structures, alive throughout most of the execution, and
there is nearly no garbage generated, so both versions of the program behave in
a similar way. Regions then do not lead to memory gains, but they do not harm
the program performances either.

There are other programs, including Voronoi, on which our algorithm fails
to reclaim memory as fast as it is allocated, thus generating a memory leak
which can lead to a memory shortage. This is due to a lack of precision of
the pointer interference mechanism which wrongly places garbage generated by
long-lived objects in the same region, thus preventing its early deallocation. In
fact, the approach presented in [12] suffers of the same problem (at the cost of
more expensive analysis than ours) as revealed by the experimental results: the
Voronoi program also causes a memory leak when executed with regions.

4 Conclusions and future work

In this paper, we have presented a scheme for dynamic memory allocation in
real-time embedded systems dedicated to run on resource-limited platforms. The
static analysis algorithm we proposed is efficient enough to be integrated in an
interactive assisted-development environment.

However, for certain programs, region allocation leads to memory leaks. Our
objective is to detect automatically these situations at compile time, using the
analysis results. Then, human intervention on the program could help the tool to
understand it better. For that, we will propose a semi-automatic tool, interacting
with the application programer to build a satisfying memory management system



for the application. We are currently working on an algorithm which uses the
computed equivalence classes and the inter-procedural mappings between them
to find out which allocation sites will be potentially problematic.

References

1. Bacon, D.F., Cheng, P., Rajan, V.T.: A real-time garbage collector with low
overhead and consistent utilization. In: POPL’03, ACM Press (2003)

2. Siebert, F.: Hard real-time garbage-collection in the jamaica virtual machine. In:
RTCSA’99. (1999) 96–102

3. Detlefs, D.: A hard look at hard real-time garbage collection. In: ISORC’04, IEEE
Computer Society (2004)

4. Tofte, M., Talpin, J.P.: Region-based memory management. Information and
Computation (1997)

5. Bollella, G.: The real-time specification for Java. Java series. Addison-Wesley,
Reading, MA, USA (2000)

6. Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-time java scoped memory: Design
patterns and semantics. In: ISORC’04, IEEE Computer Society (2004)

7. Deters, M., Cytron, R.: Automated discovery of scoped memory regions for real-
time Java. In: ISMM’02, ACM Press (2002) 25–35

8. Hirzel, M., Diwan, A., Hertz, M.: Connectivity-based garbage collection. In: OOP-
SLA’03. (2003)

9. Blanchet, B.: Escape analysis for JavaTM : Theory and practice. ACM Trans. on
Programming Languages and Systems 25(6) (2003)

10. Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis
for Java. In: OOPSLA’99. (1999) 1–19

11. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: OOPSLA’99. (1999) 187–206

12. Cherem, S., Rugina, R.: Region analysis and transformation for Java programs.
In: ISMM’04, ACM Press (2004)

13. Jones, R.E.: Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Wiley, Chichester (1996)

14. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java optimization framework. In: CASCON’99. (1999) 125–135

15. Salcianu, A.: Pointer analysis and its applications for Java programs. Master’s
thesis, MIT (2001)

16. Cofer, D.D., Rangarajan, M.: Formal modeling and analysis of advanced scheduling
features in an avionics rtos. In: EMSOFT ’02, LNCS 2491, Springer-Verlag (2002)
138–152

17. Bensalem, S., Bozga, M., Krichen, M., Tripakis, S.: Testing conformance of real-
time applications by automatic generation of observers. Electr. Notes Theor. Com-
put. Sci. 113 (2005) 23–43

18. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4) (1991) 451–490

19. Rippert, C., Deville, D.: On-The-Fly Metadata Stripping For Embedded Java
Operating Systems. In: CARDIS’04. (2004)

20. Chen, G., Shetty, R., Kandemir, M.T., Vijaykrishnan, N., Irwin, M.J., Wolczko,
M.: Tuning garbage collection in an embedded java environment. In: HPCA. (2002)
92–


