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Non-Linear Modal Analysis for Bladed Disks

with Friction Contact Interfaces

Denis Laxalde∗†‡, Löıc Salles †‡, Laurent Blanc† and Fabrice Thouverez†

Abstract

A method for non-linear modal analysis of mechan-
ical systems with contact and friction interfaces is
proposed. It is based on a frequency domain formula-
tion of the dynamical system’s equations of motion.
The dissipative aspects of these non-linearities result
in complex eigensolutions and the modal parameters
(natural frequency and modal damping) can be ob-
tained without any assumptions on the external exci-
tation. The generality of this approach makes it pos-
sible to address any kind of periodic regimes, in free
and forced response. In particular, stability analysis
in flutter applications can be performed.

Applications for the design of friction ring dampers
for blisks and for the dynamical simulation of bladed
disk with dovetail attachment are proposed. Finally,
we propose a study of dynamical behaviour coupling
with the calculation of fretting-wear at the interfaces
based on non-linear modal characterization.

1 Introduction

Turbomachinery bladed disks often feature contact
and friction interfaces. In traditional blade-disk as-
semblies, joints in blade attachments bring an impor-
tant source of non-linear behaviour as well as some
damping due to friction [1]. Also, friction damp-
ing is probably the most popular source dissipation
in turbomachinery applications and the technologies
used by manufacturers are numerous. These can be
under-platform dampers for blade-disk assemblies or
shrouds as in LP turbines for example [2]. Integrally
bladed disks (or blisks) lack of connections and joints
at which energy dissipation by friction could occur.
As a consequence, these single-piece structures are
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very weakly damped and can experience high levels
of vibration leading to HCF or failure risks. A major
issue for these technologies is then to control their
vibratory levels. A damping strategy for these struc-
tures has been proposed [3] which involves the use of
friction ring dampers.

The modelling of contact and friction interfaces,
independently from the technology, and their dynam-
ical simulation is a complex issue which has to been
undertaken for the design of modern turbomachinery
components. It is a non-linear problem with several
uncertainties. For the simulation of the non-linear
dynamics, several approaches are described in the lit-
erature and the most popular ones are the harmonic
balance based methods [4–9, 3]. Most of these meth-
ods are based on forced response calculations and this
brings several limitations. First, the damping per-
formances cannot be obtained straightforward with
such methods. The distribution of forces and their
level are often not exactly known and this yield a
certain amount of uncertainties in the simulation pro-
cess. Assumptions on the excitation forces then have
to be made. Also, forced response might not always
be the most critical issue and, in particular, flutter,
among other aeroelastic stability issues, cannot be
handled straightforward with such approaches.

Here, a new approach for the dynamical simula-
tion of mechanical systems with friction contact in-
terfaces is proposed. Based on a frequency domain
formulation of the dynamical system’s equations of
motion, it aims at calculating the non-linear modal
solutions. These solutions are denoted “complex
non-linear modes” by analogy with the classical def-
inition of complex modes in linear non-conservative
systems. This approach features several advantages
among which the possibility of a direct assessment
of modal characteristics associated with the vibra-
tion amplitude is the most important. In particular,
assumptions on the excitation characteristics are no
longer needed. Also, forced response as well as flutter
problems can be addressed.
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This approach appears particularly adapted to the
study friction and contact interfaces. Several numer-
ical applications are then proposed showing the rele-
vance of this approach in industrial applications. In
particular an investigation of the damping properties
of a blisk using friction rings is presented.
A second example presents the dynamical simula-

tion of a bladed disk with dovetail attachment, tak-
ing into account the friction damping at the inter-
faces. On this example, we also point out that fric-
tion at interfaces can produce wear. Fretting-wear,
among other phenomena (buckling, fatigue, fretting-
fatigue,. . . ), appends to be a significant cause of
failure of blades and has became a major issue for
turbomachinery manufacturers. Despite some tech-
nological answers were found to prevent these phe-
nomena, wear at blade root cannot, in most sit-
uations, be avoided due to relative displacements
and high contact strength. This phenomenon was
studied experimentally [10] and numerically [11] for
quasi-static situations, which corresponds to displace-
ments of blade root due to centrifugal forces. How-
ever, these studies cannot explain all wear phenom-
ena observed in turbomachinery. This motivates the
present investigation which deals with the role of vi-
brations and dynamics in wearing blade roots. Qin
et al. [12] have studied fundamental frequencies of
turbine blades with geometry mismatch in fir-tree
attachments, which can be caused by wearing out
during service. They haven’t explored coupling be-
tween vibration and wear at the contact interfaces.
Wear is a very complex multiphysics phenomenon be-
cause hardness, plasticity, grain structure, tempera-
ture among others can change wear debris creation.
We will simplify wear modelling using a discretised
version of Archard’s law [13]. Non-linear modal anal-
ysis coupled with fretting-wear seems to be a fairly
adapted method to interpret easily results and more-
over it appears to be faster than forced response cal-
culation.

2 Non-linear modal analysis

The concept of non-linear modes has been initially
proposed by Rosenberg [14] and then developed and
extended by many authors [15–17]. As for non-
autonomous systems, the periodic solutions of non-
linear autonomous systems can be studied using ap-
proximate methods. Here, a generalization of Har-
monic Balance methods [18] is proposed with the
view of dealing with free vibrations of dissipative au-

tonomous dynamical systems. This class of methods
have, among others, the advantage of being applica-
ble to large size systems with strong non-linearities.

2.1 The concept of non-linear complex

modes

By analogy with the complex modes of a linear sys-
tem, a complex non-linear mode is defined as an oscil-
lation of the autonomous system with (potentially) a
phase difference between its degrees of freedom. This
phase difference is the main distinction between com-
plex and normal non-linear modes since the concept
of unison does not appear anymore. Moreover, tra-
jectories are no longer lines or curves normal to iso-
energy curves but closed curves. Lastly, and still by
analogy with linear complex modes, the eigenvalues
of the characteristic equation are a priori complex
and can be written as:

λ = −β + iω (1)

with,

• ω = ω0

√

1− ζ2, the damped natural angular fre-
quency,

• ω0, the natural angular frequency,

• ζ = β/ω0, the modal damping ratio.

To illustrate this, let us consider now the example
of a strongly non-linear and dissipative system made
of two oscillators and an elementary friction damper
(as shown in figure 1).

m1 m2

k1 k2
µN

Figure 1. Oscillator with two degrees of freedom, includ-
ing a friction damper

The equations of motion for this system are:

m1ẍ1 + c1ẋ1 + k1x1 + k2(x1 − x2) = 0 (2a)

m2ẍ2 + c2ẋ2 + k2(x2 − x1) + µN tanh
ẋ2

ǫ
= 0 (2b)

in which the restoring friction force is modelled by
means of an hyperbolic tangent to approximate the
sign function of the Coulomb friction model. In this
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model, µ and N respectively refer to the coefficient of
friction and normal load and ǫ controls the “slope” of
the hyperbolic tangent; the smaller ǫ will be the larger
the slope will be and the better the approximation of
the sign function will be.
Figure 2 shows the trajectories of the system for

fixed values of these friction parameters. These re-
sponses are calculated with the method described be-
neath. They represent the steady-state response for
different vibration amplitudes and are independent
of the initial conditions. At low levels, the trajec-
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Figure 2. Trajectories of the complex non-linear modes
for different amplitudes of vibration

tory looks like a straight line due to sticking con-
tact at the mass m2 (its equation is x2 = 0) and
the system is almost linear. When the energy level
increases, non-linear effects appear. Their effect is,
on the one hand, a curvature of the trajectories and,
on the other hand, their “opening” (because of the
non-linear dissipation), then a phase difference ap-
pears among degrees-of-freedom. This second effect
cannot be taken into account through the analysis of
the conservative system.
Following this definition of non-linear complex

modes, we will now propose an associated formalism
of the Harmonic Balance method in the frequency
domain.

2.2 Frequency-domain formulation of

the complex eigenvalue problem

Let us consider the discrete autonomous dynamical
system described by the following second order dif-

ferential equation:

Mẍ+Cẋ+Kx+ f(x, ẋ) = 0 (3)

Besides conservative terms, this problem includes po-
tentially dissipative terms represented by the linear
damping and/or by the inner non-linear force f(x, ẋ).
The purpose is to calculate the modes of this non-
linear and non-conservative system. In terms of Ritz-
Galerkin methods, we postulate the form of the so-
lution of this free vibrations problem, that is the fol-
lowing Fourier series,

x(t) = Q0 +

Nh
∑

n=1

e−nβt (Qn,c cosnωt+Qn,s sinnωt) ,

(4)
whose fundamental (angular) frequency, λ = −β+iω,
is complex and represents the eigenvalue of the mode
(see Eq. (1)).

The Fourier coefficients,

Q =
[

Q0,Q1,c, . . . ,Qn,c,Qn,s, . . . ,QNh,s
]T

(5)

represent the eigenvector of the complex mode in the
frequency domain.

The next step consists in formulating the algebraic
complex eigenvalue problem associated with this def-
inition according to equation (3). Velocities and ac-
celerations are the derivatives of (4) and can be ex-
pressed through the following differential operator:

∇ = diag
(

0,∇1, . . . ,∇Nh

)

with ∇n = n

[

−β ω
−ω −β

]

(6)

which makes it possible to define the dynamic stiff-
ness associated with the linear terms of equation (3)
in the frequency domain:

Z (λ) = K⊗ I2Nh+1 +C⊗ I2Nh+1∇

+M⊗ I2Nh+1∇
2 (7)

The non-linear terms, f(x, ẋ), which depend on dis-
placement and velocity are determined through an al-
ternating frequency/time-domain (AFT) method (to-
gether with a Newton-like solver).

1. Given the vector Q of the frequency-domain co-
ordinates of displacements and the eigenvalue λ,
the expression of velocity in the frequency do-
main is ∇(λ)Q;
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2. These displacements and velocities are converted
into the time domain through an inverse Fourier
Transform:

x̃ = Q0+

Nh
∑

n=1

(Qn,c cosnωt+Qn,s sinnωt) ; (8)

3. The expression f̃(x, ẋ) of the non-linear force in
the time domain can be obtained either explicitly
or by means of a time integration in the case of
a system with contact interfaces;

4. The vector F of the frequency-domain coordi-
nates of the non-linear force are given at last by
a direct Fourier Transform:

F0 =
1

T

∫ T/2

−T/2

f̃(x, ẋ)dt (9a)

Fn,c =
2

T

∫ T/2

−T/2

f̃(x, ẋ) cosnωtdt (9b)

Fn,s =
2

T

∫ T/2

−T/2

f̃(x, ẋ) sinnωtdt (9c)

Let us remark the absence of logarithmic decrease
e−nβt in the solution (4) for this AFT formulation.
Therefore, in the time domain step of the calcula-
tion of the frequency-domain components of the non-
linear forces, the displacements x̃ and the velocities
ṽ as well as the non-linear forces f̃ are periodic. To
justify this assumption one could remember that this
step of the calculation concerns only one period of
the motion: at such a scale the maximum decrease
of the amplitudes (evolving as e−βT ) remains gen-
erally weak. This also implies that the decrease of
non-linear forces is the same as the decrease of other
variables, this appears to be sane.
Finally, the eigenvalue equation is:

Z (λ)Q+ F (Q, λ) = 0 (10)

with the pairs {Q, λ} of eigenvectors and eigenvalues
as unknowns.

2.3 Modes normalization

In order the complex eigen-problem (10) to be solved,
one needs to define a normalization of the modes.
Several approaches are possible such as a normaliza-
tion with respect to the mass matrix or with respect
to a chosen degree of freedom; an other solution,

which is sometime used in the non-linear modes the-
ory is to normalize the eigenmodes with respect to
the energy.
In the present study, the modes are normalized

with respect to a chosen degree of freedom. The am-
plitude of this degree of freedom thus defines the so-
called modal amplitude:

q =
[

qc, qs
]

(11)

It has two components cosine and sine since the mode
is complex. With this normalization, the eigenvectors
can be expressed as:

Qc = Φcqc and Qs = Φsqs (12)

The complex eigen-problem (10) can then be solved
with a continuation process on the modal amplitude
q.

2.4 Application and validation of the

proposed method

In the following, the proposed method is illustrated
using the example of the oscillator shown in fig-
ure 1 and mathematically described by equations (2).
In a second step, a comparison with a direct time-
integration will be proposed to validate the method.
All the frequency-domain analyses shown beneath
have been computed with a sufficient number of har-
monics. Because of the rather strong non-linearity,
this number is quite high (between 10 and 20).
Figure 3 shows the evolution of the eigenfrequency

and the modal damping in function of the level of
displacement of mass m1 for the first mode of the
system. The asymptotic states with stuck friction
damper (x2 = 0) and without a friction damper
(fNL = 0) are shown as dashed and dash-dotted lines.
As the modal amplitude increases, the transition be-
tween stick and slip provokes a decrease of the eigen-
frequency. In the intermediate slip-area (amplitude
between 0.15 and 0.2), the modal damping reaches its
maximum value. This last result is typical for fric-
tion systems whose maximal efficiency (in terms of
damping) is reached in partial slip areas.
Figures 4 represents the phase planes for each de-

gree of freedom and the hysteresis loops for different
levels of modal amplitudes. For small vibration am-
plitudes the figures show a motion in the first degree
of freedom and sticking behaviour in the degree of
freedom that is associated to the friction damper. Af-
ter an increase of the vibration amplitude the second
degree of freedom comes into motion and the enclosed
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Figure 3. Eigenfrequency and modal damping as func-
tions of the modal amplitude

hysteresis area increases. The diagrams show a clear
non-linearity in the second degree of freedom.

Analysis of the stability

Next, lets us consider the effect of linear damp-
ing (of viscous-type here) on the non-linear modal
analysis results. More specifically, when a negative
destabilizing damping is introduced, the results of
the proposed analysis make it possible to estimate
the global stability of a mode. For example figures 5
show how the eigenfrequency and the modal damping
evolve in the presence of a 2% negative damping. It
is noticeable that for low or high modal amplitudes
(corresponding to asymptotic configurations of slip,
stick or total slip) the mode is unstable. Conversely,
in the intermediate zone of modal amplitude (and
partial slip), the modal damping is positive, which
means that the mode is stable.
With the view on confirming these predictions of

stability, a comparison has been made between the
results of a direct integration of the free system un-
der various initial displacement conditions and the
results given by non-linear modal analysis in terms
of limit cycles. This comparison validates the pro-
posed method for the calculation of free responses.
Figure 6 gathers these results:

1. Low level initial condition: non-linear modal
analysis predicts instability as well as direct in-
tegration does. Indeed, the vibratory level in-
creases from the initial value and becomes sta-
ble on a limit cycle close to the one given by
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Figure 4. Limit cycles for different modal amplitudes
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Figure 5. Case of a negative structural damping (2%):
eigenfrequency and modal damping as functions of the
modal amplitude

the reference for a zero value of modal damping
(attractor marks the point in figure 5).

2. Intermediate level initial condition: modal anal-
ysis predicts a stable solution. Indeed, modal
damping is positive in this range of amplitudes
and direct integration shows that the level de-
creases from the initial condition and becomes
stable on the limit cycle given by the non-linear
modes.

3. High level initial condition: non-linear modal
analysis predicts no stable solution. This is con-
firmed by time-integration since the system di-
verges.

Remark: the stability prediction for a system with
positive or negative linear damping can, in this ex-
ample, be performed by the inclusion of damping a
posteriori. Indeed, modal damping evolves the same
way with or without negative damping: damping pro-
duces only a shift of the modal damping curves to-
ward negative values.

Correlation between forced responses

Lastly, a comparison is made between the re-
sults of non-linear modal analyses and frequency re-
sponse functions for harmonic excitation of mass m1.
Frequency responses are calculated by the Multi-
Harmonic Balance method and results are validated
by time-integration. Figure 7 gathers the frequency
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line, backbone curve predicted by the non-linear modes; ◦,
stabilized points obtained by time-integration for a given
level of excitation.

response results for different levels of excitation. The
main conclusion is that the frequency / amplitude
curve (backbone curve) obtained by non-linear modal
analysis meets all the resonance peaks. This con-
firms the validity of the proposed method in the case
of forced excitation.

3 Application for the design

of friction ring dampers for

blisks

The presented modal analysis method was applied to
a single-piece bladed disk (blisk) of a HP compres-
sor demonstrator with 36 blades fitted with a friction
ring damper. The second bending mode, which mode
shape is represented in figure 8 in form of a contour
plot on the finite element model, is addressed.

The results of the non-linear modal analysis on this
target mode are shown in figure 9. The behaviour
is quite similar to that in the previous examples in
terms of change of the natural frequency (figure 9a)
and in the rate of modal damping (figure 9b) de-
pending on the level of modal amplitude. For low
vibration amplitudes, there is very little slip and the
natural frequency remains constant while the modal
damping rate is almost zero; which corresponds to the

(a) (b)

Figure 8. HP compressor blisk; (a) finite element mesh
of a sector, (b) mode shape of the second bending mode
at 4 nodal diameters.
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Figure 9. Results of non-linear modal analysis; change
in the natural frequency (a) and in modal damping (b)
depending on the level of vibration.
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asymptotic state for an adhering ring. In an interme-
diary amplitude range and from a certain threshold
(amplitude of 0.4), the natural frequency diminishes
abruptly while the damping rate increases to its max-
imum level (amplitude of 0.6); it is in this interme-
diary zone of sliding that friction damping is most
effective. Lastly, it was observed that when the vi-
bratory amplitude increases the damping rate gradu-
ally diminishes while the natural frequency increases
once again with a trend towards an asymptotic state
of a sliding ring.

One of the advantages of the non-linear modal anal-
ysis method proposed here is that the efficiency of a
damping technology (such as friction rings) can be
obtained nearly straightforward and whatsoever the
excitation configuration or any other variable param-
eter.

As an example, we can study the sensitivity of fric-
tion ring damping with respect to the friction coeffi-
cient. On the same example, in figure 10 we show the
change in modal data (natural frequency and modal
damping) for several friction coefficient values. First,
it can be seen that the lower the friction coefficient is,
the lower the sliding threshold will be. Second, the
difference between the limit values of this threshold is
quite large (amplitude of 0.01 to 0.25), which shows
that this type of friction damping device is highly
sensitive to changes in the contact parameter. How-
ever, it can also be seen that maximum damping rate
remains practically constant.

Such parametric studies, which are necessary in the
design process of friction dampers, are quite easy to
undertake and the results are also easy to interpret
with the presented approach since the level of uncer-
tainty is reduced to a minimum. In particular, the
proposed modal approach makes it possible to eval-
uate the sensitivity of the damping properties with
respect to any design (or environment) parameters
without any assumptions on the excitation.

4 Fretting-wear at blade-root

interfaces

This last section concerns a study of fretting-wear
at blade-root interfaces. A calculation of wear is in-
troduced in the non-linear modal analysis method;
wear can then be considered as a new modal param-
eter. The case study is a compressor blade which
FE mesh is shown in figure 11. This model is re-
duced to contact nodes of blade root (2×24 nodes)
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Figure 10. Non-linear modal analysis: influence of the
friction coefficient; change in the natural frequency (a)
and in modal damping (b) depending on the level of vi-
bration.

Figure 11. Finite element Model of blade with retained
nodes
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and observation node at the trailing edge by means
of a Craig & Bampton method; 10 modal degrees-of-
freedom were also retained. The first bending mode
is studied and the normal contact load due to cen-
trifugal forces is approximated by an uniformly dis-
tributed force in each contact node.
In figure 12, the modal parameters (natural fre-

quency and modal damping) without wear are rep-
resented in function of the modal amplitude. The
behaviour is similar to previous examples (blisk with
friction ring, or simple 2-DOF model) although the
maximum damping appears to be higher than in the
previous case.
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Figure 12. Result of non-linear modal analysis; change
in the natural frequency and in modal damping depending
on the level of vibration.

As mentioned in the introduction, we are now in-
terested in studying the effects of fretting-wear of
the contact interface which occur as relative displace-
ments take place. Among other phenomena, fretting-
wear can be responsible for crack nucleation which
can in turn produce blade failure. Here, fretting-wear
is studied in the scope of dynamics and the Archard’s
law [13] is used to model this phenomenon. This law
links wear volume to the product of the normal force
and the sliding displacement. Archard’s law is de-
fined for volume that is why it must be adapted to
finite element discretization. Thus, for each contact
node M , we have,

ẇM =
kw
IM

∣

∣PM
N

∣

∣

∥

∥

∥
U̇M

T

∥

∥

∥
, (13)

where, PM
N is normal nodal force, U̇M

T is the vector of
relative tangential velocity, kw is a wear constant and
IM a weighting factor. The parameter kw must be de-

terminated experimentally. McColl et al. [19] deter-
mine an averaged wear coefficient from the measured
wear profile for a cylinder/flat contact. He integrates
this averaged coefficient in the discretized Archard’s
law and simulates wear evolution in a “wear box”
(FEM). In our case evaluation of averaged wear coef-
ficient is performed for a punch/flat contact.
In general cases, wear changes material properties

at the interfaces and their geometries. In this study,
the change of Coulomb’s coefficient of friction was
neglected. It was then kept constant (µ = 0.5 corre-
sponds to contact between blade and disk in titanium
without hard-coating). Modification of geometry is
taken into account using Stromberg’s method [20].
In the penalty formulation of the contact problem
with friction, wear was introduced as an initial gap
on each period of the vibratory motion. This pro-
duces a reduction of the normal load at worn nodes.
More details can be found in a subsequent paper [21].
The coupling of the modal analysis method with

the calculation of wear is done assuming wear is a
very slow phenomenon compared to non-linear vibra-
tion. Two time scales (τ, η) are introduced, respec-
tively fast and slow and the coefficients of Fourier
series (4) as well as modal parameters are functions
of η. Equation (10) then becomes,

Z(λ(η))Q(η) + F(Q(η), λ(η), η) = 0. (14)

In this study, η represents a multiply of numbers of
fretting cycles. This new (slow) time scale leads to
an additional dimension in modal analysis. Conse-
quently, modal curves change into surfaces.
An example of modal parameters evolution with

wear is shown in figure 13. It appears that damping
increases with wear to a certain value and then de-
creases. Wear causes a decrease of the normal force,
which allows interfaces nodes to be more often in slip
situation. When the interface becomes too worn the
dissipated energy decreases and damping decreases.
Figures 14 show total nodal wear on blade-root sur-
faces. These figures show that surfaces don’t wear
in the same way. On one surface wear rate tends
to zero when the number of fretting cycles increase.
The second surface wears more and more as the vi-
bration amplitude and fretting cycles increase. First,
the evolution of wear follows modal damping curve
of figure 12. To illustrate nodal wear, the wear evo-
lution curve is drawn for an imposed vibration am-
plitude. Figure 15 shows different curves for different
wear situations. There are nodes at which wear stops
after certain number cycles, nodes which don’t wear
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Figure 13. Result of non-linear modal analysis; change
in the natural frequency (a) and in modal damping (b)
depending on the level of vibration and fretting-wear cy-
cle.
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Figure 14. Result of non-linear modal analysis; Total
nodal wear for one surface oof blade root(a) and for op-
posite surface (b) depending on the level of vibration and
fretting-wear cycle.

10



0 5 10 15 20 25 30 35 40
0

0.5

1

1.5
x 10

−3

normalized fretting−wear cycles

no
da

l w
ea

r 
de

pt
h

 

 

Node 25

Node 29 (*100)

Node 37

Node 47

Node 23

Figure 15. Nodal wear evolution at different contact
node

and nodes which have complex wear kinematics. For
an imposed vibration amplitude, the wear profile of
each surface after 40 normalized cycles of modal wear
is represented in figure 16.
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Figure 16. Nodal wear profile for each surface in contact

These calculations show coupling between wear
and vibrations. In particular, wear rate isn’t constant
with the number of fretting cycles and can drastically
changes when considering a larger number of fretting
cycles. Thus, a single calculation of wear rate after
one period of vibration isn’t relevant to predict wear
profile of blade roots. Also, it appears that modal
damping may significantly change during blade’s life.
This approach provides a valuable tool for the

design and optimisation of blade-root profiles tak-
ing into account dynamical fretting-wear. The main
point of using the modal approach, which makes no
assumption on the excitation, in combination with
the fretting-wear analysis is probably that it makes
it possible to rank several designs of blade root with
respect to their wear sensitivity.

Conclusions

A non-linear modal analysis method has been pro-
posed; it is based on the concept of non-linear
complex modes and on a frequency domain for-
mulation of non-conservative autonomous dynami-
cal problems. Thus, beyond frequencies and eigen-
modes, this method supplies modal damping rates
which, as other modal quantities, depend on the en-
ergy (or on the modal amplitude) of the system. This
approach appears particularly relevant for the design
of friction dampers as it has been shown on an in-
dustrial case-study involving a blisk equipped with a
friction ring.

The second example shows a coupling of this non-
linear modal analysis method with wear calculation.
Interesting results and information were obtained; in
particular concerning the evolution of modal damping
during turbomachinery’s life. Calculation of modal
wear is fast and gives useful information for blade-
root design.

5 Acknowledgments

Thanks go to Snecma for its technical and financial
support. This work takes place in the framework of
the MAIA mechanical research and technology pro-
gram sponsored by CNRS, ONERA and SAFRAN
Group.

References

[1] D. Charleux, C. Gibert, F. Thouverez, and
J. Dupeux. Numerical and experimental
study of friction damping in blade attach-
ments of rotating bladed disks. Interna-
tional Journal of Rotating Machinery, 2006.
doi:10.1155/IJRM/2006/71302. Article ID
71302, 13 pages.

[2] J. H. Griffin. A review of friction damping of

11

http://dx.doi.org/10.1155/IJRM/2006/71302


turbine blade vibration. International Journal
of Turbo and Jet Engines, 7:297–307, 1990.

[3] D. Laxalde, F. Thouverez, and J.-P. Lom-
bard. Forced response analysis of integrally
bladed disks with friction ring dampers.
Journal of Vibration and Acoustics, 132
(1):011013, 2010. doi:10.1115/1.4000763.
oai:hal.archives-ouvertes.fr:hal-00453467.

[4] J. H. Wang and W. K. Chen. Investiga-
tion of the vibration of a blade with friction
damper by hbm. Journal of Engineering for
Gas Turbines and Power, 115:294–299, 1993.
doi:10.1115/1.2906708.

[5] M. Berthillier, C. Dupont, R. Mondal, and
J. J. Barrau. Blades forced response anal-
ysis with friction dampers. Journal of Vi-
bration and Acoustics, 120:468–474, 1998.
doi:10.1115/1.2893853.

[6] A. A. Ferri and B. S. Heck. Vibration analysis
of dry friction damped turbine blades using sin-
gular perturbation theory. Journal of Vibration
and Acoustics, 120(2):588–595, 1998.

[7] J. Guillen and C. Pierre. An efficient, hy-
brid, frequency-time domain method for the dy-
namics of large-scale dry-friction damped struc-
tural systems. In IUTAM Symposium on Uni-
lateral Multibody Contacts, Dordrecht, Nether-
lands, 1999.

[8] E. P. Petrov. Analytical formulation of fric-
tion interface elements for analysis of nonlin-
ear multi-harmonic vibrations of bladed disks.
Journal of Turbomachinery, 125(2):364, 2003.
doi:10.1115/1.1539868.

[9] S. Nacivet, C. Pierre, F. Thouverez,
and L. Jézéquel. A dynamic lagrangian
frequency-time method for the vibration of
dry-friction-damped systems. Journal of
Sound and Vibration, 265:201–219, 2003.
doi:10.1016/S0022-460X(02)01447-5.

[10] C. Paulin, S. Fouvry, and S. Deyber. Wear ki-
netics of ti–6al–4v under constant and variable
fretting sliding conditions. Wear, 259(1-6):292–
299, 2005. doi:10.1016/j.wear.2005.01.034.
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