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CORRIGENDUM AND ADDENDUM TO ‘LINEARLY

RECURRENT SUBSHIFTS HAVE A FINITE NUMBER OF

NON-PERIODIC FACTORS’

FABIEN DURAND

Abstract. We prove that a subshift (X, T ) is linearly recurrent if and only if
it is a primitive and proper S-adic subshift. This corrects Proposition 6 in F.
Durand (Ergod. Th. & Dynam. Sys. 20 (2000), 1061–1078).

1. Introduction and definitions

In this paper we freely use the definitions and the notations of [Du]. Proposition 6
in [Du] is false: There exist primitive S-adic subshifts that are not linearly recurrent
(LR). We will give an example. Nevertheless the other part of this proposition is
true: If a subshift is LR then it is primitive S-adic.

The author apologizes for the mistake. We correct this proposition with the next
one, but before we have to give and to recall some definitions. Let A and B be two
finite alphabets.

Let x be an element of AN or AZ. We call occurrence of u ∈ A∗ in x every integer
i such that x[i,i+|u|−1] = xixi+1 . . . xi+|u|−1 = u. A return word to u ∈ A∗ in x is a
word w such that wu has an occurrence in x, u is a prefix of wu and u has exactly 2
occurrences in wu. We say that x is linearly recurrent (LR) (with constant K ∈ N)
if it is uniformly recurrent and if for all u having an occurrence in x and all return
words, w, to u in x we have |w| ≤ K|u|.

Let T be the shift transformation defined on AZ. We say the subshift (X, T ) is
generated by x if X is the set of the sequences z such that z[i,j] has an occurrence in
x for all intervals [i, j] ⊂ Z. The subshift (X, T ) is linearly recurrent if it is minimal
and contains a LR sequence. We remark that if x ∈ AZ is linearly recurrent then x
and x[0,+∞) generate the same LR subshift.

Let a be a letter of A, S a finite set of morphisms σ from A(σ) ⊂ A to A∗ and
(σn : An+1 → A∗

n; n ∈ N) be a sequence of SN such that (σ0σ1 · · ·σn(aa · · · ); n ∈ N)
converges in AN to x. We will say that x is a S-adic sequence on A (generated
by (σi; i ∈ N) ∈ SN and a). If there exists an integer s0 such that for all non-
negative integers r and all b ∈ Ar and c ∈ Ar+s0+1, the letter b has an occurrence
in σr+1σr+2 · · ·σr+s0

(c), then we say that x is a primitive S-adic sequence (with
constant s0).

Let σ : A → B∗ be a morphism. We say σ is proper if there exist two letters
r, l ∈ B such that for all a ∈ A the first letter of σ(a) is l and the last letter of
σ(a) is r. We say the sequence x ∈ AN is a proper S-adic sequence if it is a S-adic
sequence and the morphisms in S are proper. The subshift generated by a proper
S-adic sequence is called proper S-adic subshift.
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Proposition 1.1. The subshift (X, T ) is LR if and only if it is a primitive and
proper S-adic subshift.

2. Counterexample to the Proposition 6 of [Du]

In this section we give a counterexample to Proposition 6 in [Du], i.e., a primitive
S-adic subshifts that is not LR.

Let A = {a, b, c} be an alphabet, and, σ : A → A∗ and τ : A → A∗ be two
morphisms defined by

σ(a) = acb , τ(a) = abc ,
σ(b) = bab , τ(b) = acb ,
σ(c) = cbc , τ(c) = aac .

We call M the set of all finite composition of elements of S = {σ, τ}. For each
element ρ of M there exists a unique n ∈ N such that |ρ(a)| = |ρ(b)| = |ρ(c)| = 3n.
We set |ρ| = 3n. We first give a lemma which proof is left to the reader.

Lemma 2.1. Let z ∈ AN and n ∈ N. The difference between two successive
occurrences of the word ca in σnτ(z) is greater than 3n+1.

Let x ∈ AN be the primitive S-adic sequence defined by

x = lim
n→+∞

στσ2τ · · ·σnτ(aaa . . . ).

We show x is not LR. Let n be an integer, we set ρn = στσ2τ · · ·σnτ and y =
liml→+∞ σn+2τσn+3τ · · ·σn+lτ(aaa . . . ). We have x = ρnσn+1τ(y).

Since σ(a) is a prefix of y, τσ(a) = abcaacacb, σn+1(a) = au and σn+1(c) = vc,
for some u, v ∈ A∗, then ca appears in σn+1τ(y). Let w be a return word to ca
in σn+1τ(y). Hence wca (= caw′ca for some w′) appears in x. The word ρn(ca)
appears exactly twice in ρn(caw′ca) (the proof of this fact is left to the reader)
hence ρn(w) is a return word to ρn(ca) in x.

Moreover from Lemma 2.1 we have |w| ≥ 3n+2. It implies x is not LR because

|ρn(w)|

|ρn(ca)|
=

|w||ρn|

2|ρn|
≥

3n+2

2
.

Let z ∈ BN where B is a finite alphabet. We denote by L(z) the set of all words
having an occurrence in z. For all n ∈ N we define pz(n) to be the number of
distinct words of length n in L(z). In [Du] it is proved that if z is LR with constant
K then pz(n) ≤ Kn for all n ∈ N. Even if x is not LR, there exists a constant
C such that pn(x) ≤ Cn for all n ∈ N. This is a consequence of the following
proposition.

Proposition 2.1. Let A be a finite alphabet, a be a letter of A and (σn : An+1 →
A+

n ; n ∈ N) be a sequence of morphisms such that An ⊂ A for all n ∈ N, a ∈ ∩n∈NAn

and

y = lim
n→+∞

σ0σ1 · · ·σn(aaa . . . ).

Suppose moreover infc∈An+1
|σ0σ1 · · ·σn(c)| tends to +∞ and there exists a constant

D such that

|σ0σ1 · · ·σn+1(b)| ≤ D|σ0σ1 · · ·σn(c)|

for all b ∈ An+2 and c ∈ An+1, and all n ∈ N. Then py(n) ≤ D(Card(A))2n.
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Proof. This proof follows the lines of the proof of Proposition V.19 in [Qu].
Let n ≥ 1. The sequence (infc∈Ak+1

|σ0σ1 · · ·σk(c)|)k∈N is non-decreasing and
tends to +∞, hence there exists p ∈ N such that

inf
c∈Ap

|σ0σ1 · · ·σp−1(c)| ≤ n ≤ inf
c∈Ap+1

|σ0σ1 · · ·σp(c)|.

From that, every word w ∈ L(y) of length n has an occurrence i in some σ0σ1 · · ·σp(bc),
where b and c are two letters of A, with i ≤ |σ0σ1 · · ·σp(b)| − 1. Consequently

py(n) ≤ (Card(A))2 sup
c∈Ap+1

|σ0σ1 · · ·σp(c)|

≤ (Card(A))2D inf
c∈Ap

|σ0σ1 · · ·σp−1(c)| ≤ D(Card(A))2n.

This ends the proof. �

Corollary 2.1. Let A be a finite alphabet, a be a letter of A, l be a positive integer
and (σn : A → A∗; n ∈ N) be a sequence of morphisms of constant length l and

y = lim
n→+∞

σ0σ1 · · ·σn(aaa . . . ).

Then py(n) ≤ l(Card(A))2n.

3. A sufficient condition for a primitive S-adic sequence to be LR

This sufficient condition is given in the following lemma and will be used in the
sequel.

Lemma 3.1. Let S be a finite set of morphisms. Let x be a primitive S-adic
sequence generated by (σi : Ai+1 −→ A∗

i ; i ∈ N) and a (with constant s0). For all

n ∈ N suppose liml→+∞ σnσn+1 · · ·σl(aaa . . . ) exists and call it x(n). Let Dn be the
largest difference between two consecutive occurrences of a word of length 2 in x(n).

If (Dn; n ∈ N) is bounded then x is LR.

Proof. Let x = limn→+∞ σ0σ1 · · ·σn(aaa . . . ). It follows from Lemma 7 of [Du]
that x is uniformly recurrent. We set Sk = σ0 · · ·σk for all k ∈ N. Let u be a
non-empty word of L(x) such that |u| ≥ max{|Ss0

(b)|; b ∈ As0+1}, and v be a
return word to u. We denote by k0 the smallest positive integer k such that |u| <
min{|Sk(b)|; b ∈ Ak+1}; we remark that k0 ≥ s0 + 1. There exists a word of length
2, bc, of L(x(k0+1)) such that u has an occurrence in Sk0

(bc). The largest difference
between two successive occurrences of bc in x(k0+1) is bounded by D = maxn∈N Dn

(which does not depend on k0), hence we have

|v| ≤ D max{|Sk0
(d)|; d ∈ Ak0+1} ≤ DK min{|Sk0

(d)|; d ∈ Ak0+1}

≤ DK max{|Sk0−1(d)|; d ∈ Ak0
}min{|σk0

(d)|; d ∈ Ak0+1}

≤ DK2 min{|Sk0−1(d)|; d ∈ Ak0
}min{|σk0

(d)|; d ∈ Ak0+1}

≤ DK2 min{|σk0
(d)|; d ∈ Ak0+1}|u|,

where K is the constant given by Lemma 8 of [Du], i.e., K is such that for all integers
r, s with s − r ≥ s0 + 1 and all b, c of As+1 we have |σr · · ·σs(b)| ≤ K|σr · · ·σs(c)|.
We set M = DK2 max{|σi(d)|; i ∈ N, d ∈ Ai+1}. For all u of L(x) greater than
max{|Ss0

(b)|; b ∈ As0+1} and all v in Ru we have |v| ≤ M |u|. Hence x is LR. �
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4. A necessary and sufficient condition to be LR

In the original proof of Proposition 6 in [Du] we use the notion of return word.
In the proof of Proposition 1.1 we will do the same but we will use an extension
of this notion which was defined in [DHS]. We will take a sequence x belonging
to X and, using these “new” return words, we will show that x+ = x[0,+∞) is a
primitive and proper S-adic sequence. The subshift (X, T ) being minimal we see
that it is generated by x+ and, consequently, (X, T ) is a primitive and proper S-adic
subshift.

Let A be a finite alphabet, x ∈ AZ, and, u and v two words of A∗. We say
w ∈ A∗ is a return word to u.v in x if there exist two consecutive occurrences j, k of
uv in x such that w = x[j+|u|,k+|u|). It is immediate to check that a word w ∈ A+

is a return word to u.v in x if and only if:

1) uwv has an occurrence in x, and
2) v is a prefix of wv and u is a suffix of uw, and
3) the word uwv contains exactly two occurrences of the word uv.

We denote by Rx,u.v the set of return words to u.v in x. If u is the empty word
ǫ then the return words to u.v are the return words to v defined in [Du] and we set
Rx,u.v = Rx,v. The return words to u.v are different from the return words to ǫ.uv
but we have #Rx,u.v = #Rx,ǫ.uv = #Rx,uv.

We suppose now that x is a uniformly recurrent sequence. It is easy to see that
for all u, v ∈ L(x) the set Rx,u.v is finite. It will be convenient to label the return
words. We enumerate the elements w of Rx,u.v in the order of the first appearance
of uwv in x[−|u|,+∞). This defines a bijective map Θx,u.v : Rx,u.v → Rx,u.v ⊂ A+

where Rx,u.v = {1, . . . , #Rx,u.v}: uΘx,u.v(k)v is the k-th word of the type uwv,
w ∈ Rx,u.v, appearing in x[−|u|,+∞).

We consider Rx,u.v as an alphabet. The map Θx,u.v defines a morphism from
Rx,u.v to A∗ and the set Θx,u.v(R

∗
x,u.v) consists of all concatenations of return words

to u.v.
The following proposition is important in the proof of Proposition 1.1.

Proposition 4.1 ([DHS]). The map Θx,u.v : R+
x,u.v → A+ is one to one.

Proof of Proposition 1.1. Let S be a finite set of proper morphisms and suppose
(X, T ) is a primitive S-adic subshift generated by (σi : Ai+1 → A∗

i ; i ∈ N) ∈ SN

and a (with constant s0). Let

x = lim
n→+∞

σ0σ1 · · ·σn(aaa...).

We prove that x is LR and consequently that the subshift it generates is LR.
As the morphisms are proper the limit liml→+∞ σnσn+1 · · ·σl(aaa . . . ) exists for

all n ∈ N. We call it x(n) and we define Dn as in Lemma 3.1.
The composition of two proper morphism is again proper. Consequently, from

the primitivity, we can suppose that s0 = 0 and that for all n ∈ N, all a ∈ An+1

and all b ∈ An the letter b appears in σn(a).
Let n ∈ N and set τ = σnσn+1. It is a proper substitution. Let l and r be

respectively the first and the last letter of the images of σn. Let y be a one-
sided sequence of AN

n+2 and z = σnσn+1(y). The words of length 2 having an
occurrence in z are exactly the words of length 2 having an occurrence in some
σn(e), e ∈ An+1, and the word rl. On the other hand the letters of σn+1(y) appear
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with gaps bounded by Kn = 2 max{|σn+1(e)|; e ∈ An+2}. Consequently the words
of length 2 of z appear with gaps bounded by Kn max{|σn(e)|; e ∈ An+1} and, a
fortiori, Dn ≤ Kn max{|σn(e)|; e ∈ An+1} for all n ∈ N. Moreover S being finite
the sequence (Dn; n ∈ N) is bounded. Lemma 3.1 implies (X, T ) is LR.

We suppose now that (X, T ) is LR. The periodic case is trivial hence we suppose
that (X, T ) is not periodic. From Proposition 5 in [Du] there exists K ≥ 2 such
that

(∀u ∈ L(X))(∀w ∈ Ru) (|u|/K ≤ |w| ≤ K|u|) ,

We set α = K2(K + 1). Let x = (xn; n ∈ Z) be an element of X . It suffices to
prove that x[0,+∞) is a primitive and proper S-adic sequence.

For each non-negative integer n we set un = x−αn · · ·x−2x−1, vn = x0x1 · · ·xαn−1,
Rn = Rx,un.vn

, Rn = Rx,un.vn
and Θn = Θx,un.vn

. Let n be a positive integer and
w be a return word to un.vn. The word w is a concatenation of return words to
un−1.vn−1. The map Θn−1 being one to one (Proposition 4.1), this induces a map
λn from Rn to R∗

n−1 defined by Θn−1λn = Θn. We set λ0 = Θ0. For each letter b
of Rn we have |Θn−1λn(b)| ≤ K|unvn| = 2Kαn. Moreover each element of Rn−1 is
greater than (2αn−1)/K hence

|λn(b)| ≤
K2αn

αn−1
= αK2.

By Proposition 5 of [Du] we have #Rn = #Rx,unvn
≤ K(K +1)2, consequently the

set M = {λn; n ∈ N} is finite. The definition of Rn implies that Θn(1)x0x1 · · ·xαn−1

is a prefix of x[0,+∞) for all n ∈ N and λ0λ1 · · ·λn(1) = Θn(1). Proposition 4 of
[Du] implies that the length of Θn(1) tends to infinity with n and

x = lim
n→+∞

λ0λ1 · · ·λn(11 · · · ).

Let n be an integer greater than 1. Each word of length 2Kαn has an occurrence
in each word of length 2K(K + 1)αn (Proposition 5 of [Du]). Hence each element
of Rn has an occurrence in each word of length 2K(K +1)αn. Let w be an element
of Rn+1, we have |w| ≥ 2αn+1/K = 2K(K + 1)αn. Therefore each element of Rn

has an occurrence in each element of Rn+1. It means that if b belongs to Rn+1

then each letter of Rn has an occurrence in λn+1(b). Hence x is a primitive S-adic
sequence.

It remains to show each λn is proper. Let w be a return word of Rn. The word
wvn−1 is a concatenation of return words to vn−1. Let p ∈ Rn−1 be such that
pvn−1 is a prefix of wvn−1 and consequently of wvn. We know vn is also a prefix
of wvn and

|vn| = αn = αn−1(K3 + K2) ≥ (2K + 1)αn−1 ≥ |p| + |vn−1|.

Consequently pvn−1 is a prefix of vn. Let l ∈ Rn−1 be such that Θn−1(l) = p. Then
l is the first letter of λn(c) for all c ∈ Rn.

In the same way there exists s ∈ Rn−1 and r ∈ Rn−1 such that Θn−1(r) = s
and un−1s is a suffix of un. Hence r is the last letter of λn(c) for all c ∈ Rn and
λn is proper. �

5. LR sturmian sequences

We give a correct proof of the next proposition (which is stated in [Du]) because
the original proof used Proposition 6 in [Du].
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Proposition 5.1. A sturmian subshift (Ωα, T ) is LR if and only if the coefficients
of the continued fraction of α are bounded.

Proof. Let 0 < α < 1 be an irrational real number and [0 : i1 + 1, i2, i3, . . . ] be its
continued fraction. From Proposition 9 in [Du] we know that Ωα = Ω(x) where

x = lim
k→+∞

τ i1σi2τ i3σi4 · · · τ i2k−1σi2k (00 · · · ),

τ(0) = 0, τ(1) = 10, σ(0) = 01 and σ(1) = 1. We just have to prove that if the
coefficients of the continued fraction of α are bounded then the sequence x is LR.
The other part of the proof is in [Du] and do not use Proposition 6 in [Du].

Let i, j and k be in N
∗. We have

τ i ◦ σj ◦ τk(0) = 0(10i)j and τ i ◦ σj ◦ τk(1) = 10i(0(10i)j)k.

Consequently if x belongs to {0, 1}N then the set of the words of length 2 having
an occurrence in y = τ i ◦ σj ◦ τk(x) is {00, 01, 10}. Moreover the difference of two
successive occurrences of 01 (resp. 10) in y is less than i + 2 (resp. i + 2), and,
the difference between two successive occurrences of 00 in y is less than 2j + 3 if
i = 1 and less than 3 if i ≥ 2. Consequently the difference between two successive
occurrences of a word of length 2 in y is bounded by 2 max{i, j, k} + 3.

The same bound can be found for σi ◦ τ j ◦ σk.
For all n ∈ N, let x(n) and Dn be defined as in Lemma 3.1. Hence, if the sequence

(in; n ∈ N) is bounded by K, then Dn is bounded by 2K + 3 for all n ∈ N. Lemma
3.1 ends the proof. �
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