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CORRIGENDUM AND ADDENDUM TO 'LINEARLY RECURRENT SUBSHIFTS HAVE A FINITE NUMBER OF NON-PERIODIC FACTORS'

Introduction and definitions

In this paper we freely use the definitions and the notations of [Du]. Proposition 6 in [Du] is false: There exist primitive S-adic subshifts that are not linearly recurrent (LR). We will give an example. Nevertheless the other part of this proposition is true: If a subshift is LR then it is primitive S-adic.

The author apologizes for the mistake. We correct this proposition with the next one, but before we have to give and to recall some definitions. Let A and B be two finite alphabets.

Let x be an element of A N or A Z . We call occurrence of u ∈ A * in x every integer i such that x [i,i+|u|-1] = x i x i+1 . . . x i+|u|-1 = u. A return word to u ∈ A * in x is a word w such that wu has an occurrence in x, u is a prefix of wu and u has exactly 2 occurrences in wu. We say that x is linearly recurrent (LR) (with constant K ∈ N) if it is uniformly recurrent and if for all u having an occurrence in x and all return words, w, to u in x we have |w| ≤ K|u|.

Let T be the shift transformation defined on A Z . We say the subshift (X, T ) is generated by x if X is the set of the sequences z such that z [i,j] has an occurrence in x for all intervals [i, j] ⊂ Z. The subshift (X, T ) is linearly recurrent if it is minimal and contains a LR sequence. We remark that if x ∈ A Z is linearly recurrent then x and x [0,+∞) generate the same LR subshift.

Let a be a letter of A, S a finite set of morphisms σ from A(σ) ⊂ A to A * and (σ n :

A n+1 → A * n ; n ∈ N) be a sequence of S N such that (σ 0 σ 1 • • • σ n (aa • • • ); n ∈ N) converges in A N to x.
We will say that x is a S-adic sequence on A (generated by (σ i ; i ∈ N) ∈ S N and a). If there exists an integer s 0 such that for all nonnegative integers r and all b ∈ A r and c ∈ A r+s0+1 , the letter b has an occurrence in σ r+1 σ r+2 • • • σ r+s0 (c), then we say that x is a primitive S-adic sequence (with constant s 0 ).

Let σ : A → B * be a morphism. We say σ is proper if there exist two letters r, l ∈ B such that for all a ∈ A the first letter of σ(a) is l and the last letter of σ(a) is r. We say the sequence x ∈ A N is a proper S-adic sequence if it is a S-adic sequence and the morphisms in S are proper. The subshift generated by a proper S-adic sequence is called proper S-adic subshift.

Proposition 1.1. The subshift (X, T ) is LR if and only if it is a primitive and proper S-adic subshift.

2. Counterexample to the Proposition 6 of [Du] In this section we give a counterexample to Proposition 6 in [Du], i.e., a primitive S-adic subshifts that is not LR.

Let A = {a, b, c} be an alphabet, and, σ : A → A * and τ : A → A * be two morphisms defined by

σ(a) = acb , τ (a) = abc , σ(b) = bab , τ (b) = acb , σ(c) = cbc , τ (c) = aac .
We call M the set of all finite composition of elements of S = {σ, τ }. For each element ρ of M there exists a unique n ∈ N such that |ρ(a

)| = |ρ(b)| = |ρ(c)| = 3 n .
We set |ρ| = 3 n . We first give a lemma which proof is left to the reader.

Lemma 2.1. Let z ∈ A N and n ∈ N. The difference between two successive occurrences of the word ca in σ n τ (z) is greater than 3 n+1 .

Let x ∈ A N be the primitive S-adic sequence defined by

x = lim n→+∞ στ σ 2 τ • • • σ n τ (aaa . . . ).
We show x is not LR. Let n be an integer, we set

ρ n = στ σ 2 τ • • • σ n τ and y = lim l→+∞ σ n+2 τ σ n+3 τ • • • σ n+l τ (aaa . . . ). We have x = ρ n σ n+1 τ (y).
Since σ(a) is a prefix of y, τ σ(a) = abcaacacb, σ n+1 (a) = au and σ n+1 (c) = vc, for some u, v ∈ A * , then ca appears in σ n+1 τ (y). Let w be a return word to ca in σ n+1 τ (y). Hence wca (= caw ′ ca for some w ′ ) appears in x. The word ρ n (ca) appears exactly twice in ρ n (caw ′ ca) (the proof of this fact is left to the reader) hence ρ n (w) is a return word to ρ n (ca) in x.

Moreover from Lemma 2.1 we have |w| ≥ 3 n+2 . It implies x is not LR because

|ρ n (w)| |ρ n (ca)| = |w||ρ n | 2|ρ n | ≥ 3 n+2 2 .
Let z ∈ B N where B is a finite alphabet. We denote by L(z) the set of all words having an occurrence in z. For all n ∈ N we define p z (n) to be the number of distinct words of length n in L(z). In [Du] it is proved that if z is LR with constant K then p z (n) ≤ Kn for all n ∈ N. Even if x is not LR, there exists a constant C such that p n (x) ≤ Cn for all n ∈ N. This is a consequence of the following proposition.

Proposition 2.1. Let A be a finite alphabet, a be a letter of A and (σ n :

A n+1 → A + n ; n ∈ N) be a sequence of morphisms such that A n ⊂ A for all n ∈ N, a ∈ ∩ n∈N A n and y = lim n→+∞ σ 0 σ 1 • • • σ n (aaa . . . ). Suppose moreover inf c∈An+1 |σ 0 σ 1 • • • σ n (c)| tends to +∞ and there exists a constant D such that |σ 0 σ 1 • • • σ n+1 (b)| ≤ D|σ 0 σ 1 • • • σ n (c)| for all b ∈ A n+2 and c ∈ A n+1 , and all n ∈ N. Then p y (n) ≤ D(Card(A)) 2 n.
Proof. This proof follows the lines of the proof of Proposition V.19 in [Qu].

Let n ≥ 1. The sequence (inf

c∈A k+1 |σ 0 σ 1 • • • σ k (c)|)
k∈N is non-decreasing and tends to +∞, hence there exists p ∈ N such that

inf c∈Ap |σ 0 σ 1 • • • σ p-1 (c)| ≤ n ≤ inf c∈Ap+1 |σ 0 σ 1 • • • σ p (c)|.
From that, every word w ∈ L(y) of length n has an occurrence i in some σ 0 σ 1 • • • σ p (bc), where b and c are two letters of A,

with i ≤ |σ 0 σ 1 • • • σ p (b)| -1. Consequently p y (n) ≤ (Card(A)) 2 sup c∈Ap+1 |σ 0 σ 1 • • • σ p (c)| ≤ (Card(A)) 2 D inf c∈Ap |σ 0 σ 1 • • • σ p-1 (c)| ≤ D(Card(A)) 2 n.
This ends the proof.

Corollary 2.1. Let A be a finite alphabet, a be a letter of A, l be a positive integer and (σ n : A → A * ; n ∈ N) be a sequence of morphisms of constant length l and

y = lim n→+∞ σ 0 σ 1 • • • σ n (aaa . . . ).
Then p y (n) ≤ l(Card(A)) 2 n.

3.

A sufficient condition for a primitive S-adic sequence to be LR This sufficient condition is given in the following lemma and will be used in the sequel.

Lemma 3.1. Let S be a finite set of morphisms. Let x be a primitive S-adic sequence generated by (σ i : A i+1 -→ A * i ; i ∈ N) and a (with constant s 0 ). For all n ∈ N suppose lim l→+∞ σ n σ n+1 • • • σ l (aaa . . . ) exists and call it x (n) . Let D n be the largest difference between two consecutive occurrences of a word of length 2 in x (n) .

If (k0+1) ) such that u has an occurrence in S k0 (bc). The largest difference between two successive occurrences of bc in x (k0+1) is bounded by D = max n∈N D n (which does not depend on k 0 ), hence we have

(D n ; n ∈ N) is bounded then x is LR. Proof. Let x = lim n→+∞ σ 0 σ 1 • • • σ n (
|v| ≤ D max{|S k0 (d)|; d ∈ A k0+1 } ≤ DK min{|S k0 (d)|; d ∈ A k0+1 } ≤ DK max{|S k0-1 (d)|; d ∈ A k0 } min{|σ k0 (d)|; d ∈ A k0+1 } ≤ DK 2 min{|S k0-1 (d)|; d ∈ A k0 } min{|σ k0 (d)|; d ∈ A k0+1 } ≤ DK 2 min{|σ k0 (d)|; d ∈ A k0+1 }|u|,
where K is the constant given by Lemma 8 of [Du], i.e., K is such that for all integers r, s with s -r ≥ s 0 + 1 and all b, c of 

A s+1 we have |σ r • • • σ s (b)| ≤ K|σ r • • • σ s (c)|. We set M = DK 2 max{|σ i (d)|; i ∈ N, d ∈ A i+1 }.

A necessary and sufficient condition to be LR

In the original proof of Proposition 6 in [Du] we use the notion of return word. In the proof of Proposition 1.1 we will do the same but we will use an extension of this notion which was defined in [DHS]. We will take a sequence x belonging to X and, using these "new" return words, we will show that x + = x [0,+∞) is a primitive and proper S-adic sequence. The subshift (X, T ) being minimal we see that it is generated by x + and, consequently, (X, T ) is a primitive and proper S-adic subshift.

Let A be a finite alphabet, x ∈ A Z , and, u and v two words of A * . We say w ∈ A * is a return word to u.v in x if there exist two consecutive occurrences j, k of uv in x such that w = x [j+|u|,k+|u|) . It is immediate to check that a word w ∈ A + is a return word to u.v in x if and only if:

1) uwv has an occurrence in x, and 2) v is a prefix of wv and u is a suffix of uw, and 3) the word uwv contains exactly two occurrences of the word uv.

We denote by R x,u.v the set of return words to u.v in x. If u is the empty word ǫ then the return words to u.v are the return words to v defined in [Du] and we set R x,u.v = R x,v . The return words to u.v are different from the return words to ǫ.uv but we have #R x,u.v = #R x,ǫ.uv = #R x,uv .

We suppose now that x is a uniformly recurrent sequence. It is easy to see that for all u, v ∈ L(x) the set R x,u.v is finite. It will be convenient to label the return words. We enumerate the elements w of R x,u.v in the order of the first appearance of uwv in x [-|u|,+∞) . This defines a bijective map Θ

x,u.v : R x,u.v → R x,u.v ⊂ A + where R x,u.v = {1, . . . , #R x,u.v }: uΘ x,u.v (k)v is the k-th word of the type uwv, w ∈ R x,u.v , appearing in x [-|u|,+∞) .
We consider R x,u.v as an alphabet. The map Θ x,u.v defines a morphism from R x,u.v to A * and the set Θ x,u.v (R *

x,u.v ) consists of all concatenations of return words to u.v.

The following proposition is important in the proof of Proposition 1.1.

Proposition 4.1 ([DHS]

). The map Θ x,u.v : R + x,u.v → A + is one to one. Proof of Proposition 1.1. Let S be a finite set of proper morphisms and suppose (X, T ) is a primitive S-adic subshift generated by (σ i :

A i+1 → A * i ; i ∈ N) ∈ S N and a (with constant s 0 ). Let x = lim n→+∞ σ 0 σ 1 • • • σ n (aaa...).
We prove that x is LR and consequently that the subshift it generates is LR.

As the morphisms are proper the limit lim l→+∞ σ n σ n+1 • • • σ l (aaa . . . ) exists for all n ∈ N. We call it x (n) and we define D n as in Lemma 3.1.

The composition of two proper morphism is again proper. Consequently, from the primitivity, we can suppose that s 0 = 0 and that for all n ∈ N, all a ∈ A n+1 and all b ∈ A n the letter b appears in σ n (a).

Let n ∈ N and set τ = σ n σ n+1 . It is a proper substitution. Let l and r be respectively the first and the last letter of the images of σ n . Let y be a onesided sequence of A N n+2 and z = σ n σ n+1 (y). The words of length 2 having an occurrence in z are exactly the words of length 2 having an occurrence in some σ n (e), e ∈ A n+1 , and the word rl. On the other hand the letters of σ n+1 (y) appear with gaps bounded by K n = 2 max{|σ n+1 (e)|; e ∈ A n+2 }. Consequently the words of length 2 of z appear with gaps bounded by K n max{|σ n (e)|; e ∈ A n+1 } and, a fortiori, D n ≤ K n max{|σ n (e)|; e ∈ A n+1 } for all n ∈ N. Moreover S being finite the sequence (D n ; n ∈ N) is bounded. Lemma 3.1 implies (X, T ) is LR.

We suppose now that (X, T ) is LR. The periodic case is trivial hence we suppose that (X, T ) is not periodic. From Proposition 5 in [Du] 

there exists K ≥ 2 such that (∀u ∈ L(X))(∀w ∈ R u ) (|u|/K ≤ |w| ≤ K|u|) ,
We set α = K 2 (K + 1). Let x = (x n ; n ∈ Z) be an element of X. It suffices to prove that x [0,+∞) is a primitive and proper S-adic sequence.

For each non-negative integer n we set

u n = x -α n • • • x -2 x -1 , v n = x 0 x 1 • • • x α n -1 , R n = R x,un.vn , R n = R x,
un.vn and Θ n = Θ x,un.vn . Let n be a positive integer and w be a return word to u n .v n . The word w is a concatenation of return words to u n-1 .v n-1 . The map Θ n-1 being one to one (Proposition 4.1), this induces a map

λ n from R n to R * n-1 defined by Θ n-1 λ n = Θ n . We set λ 0 = Θ 0 . For each letter b of R n we have |Θ n-1 λ n (b)| ≤ K|u n v n | = 2Kα n . Moreover each element of R n-1 is greater than (2α n-1 )/K hence |λ n (b)| ≤ K 2 α n α n-1 = αK 2 . By Proposition 5 of [Du] we have #R n = #R x,unvn ≤ K(K + 1) 2 , consequently the set M = {λ n ; n ∈ N} is finite. The definition of R n implies that Θ n (1)x 0 x 1 • • • x α n -1 is a prefix of x [0,+∞) for all n ∈ N and λ 0 λ 1 • • • λ n (1) = Θ n (1)
. Proposition 4 of [Du] implies that the length of Θ n (1) tends to infinity with n and

x = lim n→+∞ λ 0 λ 1 • • • λ n (11 • • • ).
Let n be an integer greater than 1. Each word of length 2Kα n has an occurrence in each word of length 2K(K + 1)α n (Proposition 5 of [Du]). Hence each element of R n has an occurrence in each word of length 2K(K + 1)α n . Let w be an element of R n+1 , we have |w| ≥ 2α n+1 /K = 2K(K + 1)α n . Therefore each element of R n has an occurrence in each element of R n+1 . It means that if b belongs to R n+1 then each letter of R n has an occurrence in λ n+1 (b). Hence x is a primitive S-adic sequence.

It remains to show each λ n is proper. Let w be a return word of R n . The word wv n-1 is a concatenation of return words to v n-1 . Let p ∈ R n-1 be such that pv n-1 is a prefix of wv n-1 and consequently of wv n . We know v n is also a prefix of wv n and

|v n | = α n = α n-1 (K 3 + K 2 ) ≥ (2K + 1)α n-1 ≥ |p| + |v n-1 |. Consequently pv n-1 is a prefix of v n . Let l ∈ R n-1 be such that Θ n-1 (l) = p. Then l is the first letter of λ n (c) for all c ∈ R n .
In the same way there exists s ∈ R n-1 and r ∈ R n-1 such that Θ n-1 (r) = s and u n-1 s is a suffix of u n . Hence r is the last letter of λ n (c) for all c ∈ R n and λ n is proper.

LR sturmian sequences

We give a correct proof of the next proposition (which is stated in [Du]) because the original proof used Proposition 6 in [Du].

Proposition 5.1. A sturmian subshift (Ω α , T ) is LR if and only if the coefficients of the continued fraction of α are bounded.

Proof. Let 0 < α < 1 be an irrational real number and [0 : i 1 + 1, i 2 , i 3 , . . . ] be its continued fraction. From Proposition 9 in [Du] we know that Ω α = Ω(x) where

x = lim k→+∞ τ i1 σ i2 τ i3 σ i4 • • • τ i 2k-1 σ i 2k (00 • • • ),
τ (0) = 0, τ (1) = 10, σ(0) = 01 and σ(1) = 1. We just have to prove that if the coefficients of the continued fraction of α are bounded then the sequence x is LR. The other part of the proof is in [Du] and do not use Proposition 6 in [Du].

Let i, j and k be in N * . We have τ i • σ j • τ k (0) = 0(10 i ) j and τ i • σ j • τ k (1) = 10 i (0(10 i ) j ) k .

Consequently if x belongs to {0, 1} N then the set of the words of length 2 having an occurrence in y = τ i • σ j • τ k (x) is {00, 01, 10}. Moreover the difference of two successive occurrences of 01 (resp. 10) in y is less than i + 2 (resp. i + 2), and, the difference between two successive occurrences of 00 in y is less than 2j + 3 if i = 1 and less than 3 if i ≥ 2. Consequently the difference between two successive occurrences of a word of length 2 in y is bounded by 2 max{i, j, k} + 3. The same bound can be found for σ i • τ j • σ k . For all n ∈ N, let x (n) and D n be defined as in Lemma 3.1. Hence, if the sequence (i n ; n ∈ N) is bounded by K, then D n is bounded by 2K + 3 for all n ∈ N. Lemma 3.1 ends the proof.

  aaa . . . ). It follows from Lemma 7 of[Du] that x is uniformly recurrent. We set S k = σ 0 • • • σ k for all k ∈ N. Let u be a non-empty word of L(x) such that |u| ≥ max{|S s0 (b)|; b ∈ A s0+1 }, and v be a return word to u. We denote by k 0 the smallest positive integer k such that |u| < min{|S k (b)|; b ∈ A k+1 }; we remark that k 0 ≥ s 0 + 1. There exists a word of length 2, bc, of L(x

  For all u of L(x) greater than max{|S s0 (b)|; b ∈ A s0+1 } and all v in R u we have |v| ≤ M |u|. Hence x is LR.
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