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RELATIVE YAMABE INVARIANT AND C-CONCORDANT
METRICS

EMMANUEL HUMBERT

ABSTRACT. We prove a surgery formula for the relative Yamabe invariant with
several applications. In particular, we study a Yamabe invariant defined on
the set of concordance classes of metrics.
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1. INTRODUCTION

Let M be a compact n-manifold (n > 3) without boundary and a conformal class
of metrics C' on M. The Yamabe constant is defined as

w(M,C) = inf/ Scalgdvg.
M

where the infimum is taken over the metrics g € C such that Volg(M) = 1. For
any metric g on M and any u € C*° (M), let

" uLg(u)dv
Fiyfu) = D tEa0y_

(fM |u|%dv9) "

Here, L, is the conformal Laplacian or Yamabe operator and is defined by

4(n—1)
-2

L, = Ay + Scaly.
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2 EMMANUEL HUMBERT

Then, it is well known that (see [LP87, Au98, He97))

pOLLg) = nt TR ) (1)
The Yamabe constant has been introduced by Yamabe in 1960 while attempting to
find metrics of constant scalar curvature in a conformal class. He was able to show
that the infimum in the definition of p is always attained. Unfortunately, there
was a gap in his proof which was repaired by Triidinger (1968), Aubin (1976) and
Schoen (1984). For a survey on this problem, the so-called Yamabe problem, the
reader may refer to [LP87, Au9g, [He97].

Now, let

o(M) = sup u(M, C)
where the supremum runs over the sets of all conformal classes C' of metrics. Aubin
proved in [Au76] that for all C, u(M,C) < p(S™) = n(n — 1)w§ where S™ denotes
the n-sphere S™ equipped with its standard metric. Its volume is denoted by wy,.
This implies that o(M) < o(S™) = u(S™) and hence, o(M) is well-defined and
depends only on the differentiable manifold M. It is called the Yamabe invariant.

The critical points of the functional g — |  Scalgdvg among the metrics g with
Voly(M) = 1 are Einstein metrics. Besides, one can check that o(M) > 0 if and
only if there exists a metric g on M with positive scalar curvature. Hence, the study
of o(M) is connected to the difficult and still unsolved problems to determine all
manifolds admitting einstein metrics and admitting metrics of positive scalar cur-
vature. This explains why the Yamabe invariant has attracted so much interests in
the last decades. For more informations and references on o, the reader may consult
JADHOY]. The Yamabe invariant turns out to be very difficult to compute explicitly
and the value of o is known only for very few manifolds (see again [ADHO0{]). A
natural way to go further in its study is to use surgery techniques, whose power is
demonstrated in the papers of Gromov-Lawson ] and Schoen-Yau [FY7Y].

We focus here on the following surgery theorem, proved in [[ADHO{], which plays a
central role in the whole paper:

Theorem 1.1. (Ammann-Dahl-Humbert; 2008) Let (M,g) be a compact n-
dimensional (n > 3) Riemannian manifold and let M# be obtained from M by a
surgery of dimension k € {0,--- ,n—3}. Then, there exists constants By > 0 with
Bn.o = +0oo depending only on n and k and metrics (go)g>o on M#* such that

In particular,
U(M#) > min(o (M), 5,)
where 3, = mingeo,... n—3} B k-

Now, let © be a (n + 1)-manifold with boundary M. If g is a metric on €2, we
denote by 0g the metric induced by g on M. If C is a conformal class, then
0C := {0g|g € C}. In particular, if ¢ is a metric on 2, d[g] = [0g]. Let us fix a
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conformal class C' (resp. C) on M (resp. ) such that 9C = C. Again, we can
define

w(Q,C; M, C) = inf/ Scalgdvg
Q

where the infimum is taken over the metrics g € C for which the boundary M is
minimal and for which £ has volume 1. This number is called the relative Yamabe
constant and by Escobar [[Es92]

_ 2
(2, C5 M, C) < p(STH,8") = 275 pu(S"H) = 27 n(n + 1w 3.

As in the case of manifolds without boundary, for all metric g on €2 such that dg = h
and all u € C*°(Q), we set

_ fsz uLg(u)dvg + fM Hg“2dvh
- n—1
2(n+1) wFT
(fQ || =T dvg)

where H, is the mean curvature of the boundary M with respect to the metric g.
Then, it is well known that

Ty (u)

. _ 3 n+1
M(Qu [9]7 M7 [h]) - uEC”i?ffl);ugéO JQ,g (U’)

If in addition M is minimal for the metric g, then
Q,[g]; M, [h]) = inf ot 2
:u( ’ [9]7 ’ [ ]) ueCOO(Q)l;I;;JéO;&,uZO Jﬂ,g (u>a ( )

where v is the outer normal unit vector field on M.

Escobar ] studied a Yamabe type problem concerning this conformal invariant.
More precisely, he studied the problem of finding in a conformal class metrics with
constant scalar curvature for which the boundary is minimal. He proved

Theorem 1.2. (Escobar; 1992) Let (Q,g) be a compact (n + 1)-dimensional
manifold for which the boundary M is minimal. Assume that

p(, [g]; M, [9g]) < u(STH,S™).
Then, 1(Q,[g]; M, [0g]) is attained. In other words, there exists a metric g’ con-
formal to g for which Voly (Q2) =1, 9¢' € [9g], M is minimal in (2, ¢") and such
that

w(Q,C; M,C) = [ Scalydv, .

Q
One can verifies that the metric ¢’ of the above theorem has constant scalar cur-
vature. Since it is conformal to g, it has the form ¢’ = uTT g for some positive
smooth function u on 2 that we can normalized by fQ uPdvg = 1 where p := %
Then,
w2, (9l M, [0g]) = T 7 (u).

Writing the Euler equation of u, we obtain:

Lyu=pu(Q,C; M,C)uP~1  on 6
d,u=20 on 00 =M.



4 EMMANUEL HUMBERT

Now, as in the case of manifolds without boundary, one defined the relative Yamabe
invariant by

o(M,C) = sgpu(ﬂ, C'; M, C)

where the supremum runs over all conformal classes of metrics C’ on € for which
OC’ = C. This invariant is related to the topology of the set of metrics with
positive scalar curvature. It was studied for example by Akutagawa and Botvinnik.
In particular, they proved in [ the following result:

Theorem 1.3. (Akutagawa, Botvinnik; 2002) Let Q1, Qo be (n+1)-dimensional
manifolds with respective boundaries My 11 M and M 11T M (My and Ms are possi-

bly empty). Let Cy,Co,C be conformal classes of metrics respectively on My, Ms

and M and let Q0 be the manifold with boundary My II Ms obtained by gluing 1

and Qo along M. Assume that o(Qi; M; UM, C; T C) > 0 for i = 1,2. Then,

o(; My IT My, C 1T Cs) > 0 where by convention, o(;0) = o(M).

This paper aims to obtain a surgery formula for the relative Yamabe invariant sim-
ilar to the one in Theorem for the standard Yamabe invariant. More precisely,
we prove

Theorem 1.4. Let n € N, n > 2 and (2,9) be a compact (n + 1)-dimensional
Riemannian manifold with boundary M. We set h := dg. Let alsok € {0,--- ,n—2}
and M# be obtained from M by a surgery of dimension k. We denote by Q% the
manifold with boundary M7 obtained from Q by attaching the corresponding (k-+1)-
dimensional handle along M. Then, there exist some constants ay, i, > 0 depending
only onn and k and a sequence of metrics (gg)e>o on Q¥ such that, setting hg = Oge

Lim (2, [gols M7, [ho]) = min(u (€, [g]; M, [A]), an,k). 3)

If in addition, n > 3 and k < n — 3, the metrics hy coincide with the metrics given
by Theorem . In other words, there exists a constant (B > 0 depending only
onn and k (the same as in Theorem [1.]) such that

Moreover, for k=0, we can assume that
Qno = Bno = +00. (5)

This theorem is an equivalent of Theorem DI for manifolds with boundary. Adapt-
ing such surgery results on manifolds with boundary has already be done and The-

orem is in the spirit of the results in [Ga87, [Da0] or [An0d]. A first corollary

of our theorem is:

Corollary 1.5. Let n > 2 and let Q be a (n + 1)-dimensional compact manifold
with boundary M and let QF be obtained by adding a (k + 1)-dimensional handle
on M for some k € {0,---,n —2}. Let C be a conformal class on M. We note
M# = 0Q% which is obtained from M by a surgery of dimension k. Then there
exists a conformal class C#* on M# such that

o(Q#; M# ,C*) > min(o(Q; M, ), a,)

where

= min Qn k
ke{0,---n—2}

Qpy
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and where o, s as in Theorem . If in addition, n > 3 and k # n — 2, for all
e >0, we can choose C* so that

p(M#,C#) > min(u(M,C), B,) — €

where

ﬁn =

= min
ke{0,---n—3}

ﬁn,k

and where By, 1 s as in Theorem @

Among immediate consequence of Corollary [L.5, we can observe that since a,, 3, >
0, we obtain a new proof of main Theorem in [Ga87]. Note that there was a gap in
the proof of Gajer which was repaired by Walsh [Wa0§]. Another consequence of
Corollary E is the main result concerning relative Yamabe invariant in Schwartz
[ScOg] which in particular implies that handlebodies have maximal relative Yamabe
invariant among manifolds with boundary.

We now explain a subtler consequence of our results. Let g,¢’ be metrics with
positive scalar curvature on M. We say that that g, g’ are conformally concordant
or 0-concordant if there exists a metric G on M x [0, 1] conformal to a metric with
positive scalar curvature for which dM x [0, 1] is minimal and such that J[G] =
[g]T1[g"]. Tt follows from [AB02d] that “to be concordant” is an equivalence relation.
The set of equivalence classes is denoted by Concg(M).

We now define

o Conco(M) — Joo, a(M)]
' C —  min (sup,ec(u(M, [9])), 5n)

where (3, is as in Corollary [L.5 so that

min(o (M), B,) = sup o’ (C).
CeConco (M)

A hard open question is to know whether ¢ is attained or not. A first step in this
direction could be to study whether the supremum above is attained or not. This

is the main motivation here to introduce ¢”. As an application of Theorem [1.4, we
prove in Section fj

Theorem 1.6. Let M, N be compact n-manifolds such that N is obtained from M
by a finite sequence of surgeries of dimension k € {2,--- ,n —3}. Then

o' (Concy(M)) = ¢”(Concy(N)).

Acknowledgements: The author is very grateful to Bernd Ammann, Mattias
Dahl and Julien Maubon for many helpful discussions and comments.

2. SURGERY

In this section, we prove Theorem @ In this goal, we give some basic facts on
the double of manifolds with boundary which will be used later. We also give the
definitions of surgery and attachment of handles. The last Paragraph E is devoted
to the proof of two lemmas which will be helpful in Section E
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2.1. The double of a manifold with boundary. Let  be a compact (n + 1)-
dimensional manifold with boundary M. The double of M is the compact manifold
without boundary X := Q Ujys  obtained by gluing two copies of 2 along their
common boundary. Let g be a metric on 2 and let h := dg be the induced metric
on the boundary M. Assume that g is a product metric near the boundary M,
i.e. that g has the form g = h + ds?, s being the distance to M. Then g extends
naturally to a smooth metric g := g U g on X. We will need the following basic
results:

Proposition 2.1. Letu € C*°(Q), u > 0 be a non-negative function which satisfies:
Lyu=XuP on (02
d,u=20 on 0Q=M,
for some A € R and some p > 1. The function © = uwUwu is smooth on X.

Proof. Just notice that u € C*(M) and satisfies Lyu = AuP weakly on X. Then,
€ C*(X) by standard elliptic regularity theorems. O

Proposition 2.2. We have
27 (82, [g]; M, [h]) = inf T3 (w)

where the infimum runs over the non-zero functions u € C*°(X) such that d,u =0
on M, v being any normal vector field on M.

The proof easily follows from (f]), (f}) and the fact that the mean curvature H,
vanishes on M.

2.2. Surgeries and attachments of handles. Let M be a n-dimensional mani-
fold and let k£ be an integer such that 0 < k < n—1. We assume that an embedding
f:SkxBnk —>]\O4 is given. Then, M\ f(S* x B"~*) is a manifold whose boundary
is diffeomophic to S*¥ x S”~#~1. We then construct

M;# = (M \ f(Sk X Bn_k) Uf(SkXSnfk—l) (BkJrl X Sn_k_l).

We say that MJ# is obtained from M by a surgery of dimension k along f(S* x

B"~k). If M has a boundary, we say that M}# is obtained from M by an interior
surgery of dimension k to emphasise the fact that nothing happens on the boundary.

Remark 2.3. Observe that
M =M\ (B x "1 Upgiygnr1) F(SF x BnF).

In particular, M is obtained from M }# by a (n — 1 — k)-surgery that we will call
the dual surgery of the surgery given by f.

Now, let © be a (n + 1)-dimensional differentiable manifold whose boundary is M
and attach the disk D**! := Bk+1 x Bn—Fk along f(S* x B~ %) ¢ M using f.
Smoothing the corners, we get a new manifold

QFf :=Quy (BFT x Bnk)

with 89}% = M;# We say that Qj? 1s obtained from by attachment of a handle
of dimension k + 1. The handle corresponding to the dual surgery of the one given
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by f will be called the the dual handle of D*+!

Assume that near the boundary M of {2 we have some trivialisation Q ~ (M x] —
2,0]). In other words, M = 0 is identified to M x {0}. We define the half-balls
and the half-spheres

B™ (resp. BT = {(y1,-+ ymy1) € BT CR™ gy <O(resp. > 0)}
S™ (vesp. ST) = {(y1,- s Ym+1) € S™ CR™ [ ypniq <O(resp. > 0)}.
and we set
Sk x Brri=k - Mx]—2,0]

(LL', (y17 T 7yn+1—/€)) = (f(xay/)vyn-i-l—k)

where v/ = (y1, -+ ,yn_r) € B"*. Clearly, F is a smooth embedding in © such
that Fgk « pn—r = f where Bk is seen as a subset of B"T1 7 writing that B % =
{1, yns1-k) € B2 Fynpa = 0}

Set now

Qp = (Q\ F(S* x B*' k) U (BF+L x §77F),

where ~ means that we glue the boundaries. It is straightforward to see that Qr
is diffeomorphic to Q?& In this way, attaching a handle is view as a “half-surgery”
on . This was also the viewpoint adopted by Ole Andersonn ] in his thesis.

2.3. Connected sum along a submanifold of manifolds with boundary. As-
sume first that (M7, h1) and (Ma, ha) are Riemannian manifolds without boundary
of dimension n and that W is a compact manifold of dimension k. Let embeddings
W — M; and W — M, be given. We assume further that the normal bundles of
these embeddings are trivial. Removing tubular neighborhoods of the images of W
in M7 and Ms, and gluing together these manifolds along their common boundary,
we get a new compact manifold M# := M; Uy My, called the connected sum of
My and Ms along W. Notice that M# depends on the trivialisation of the normal
bundles. Surgery as explained in last paragraph @ is a special case of this con-
struction: if My = S™, W = S* and if S* — S™ is the standard embedding, then
M# is obtained from M; from a k-dimensional surgery along S* < M;. For more
informations on this construction, see [ADHOY].

In this paper, we need to adapt this construction to the case of manifolds with
boundary. Let (Q1,91), (2, g2) be (n+ 1)-dimensional Riemannian manifolds with
respective boundaries My and M. We denote by h; (i = 1,2) the trace of g; on M;

i.e. dg; = h;. Let W be a compact manifold of dimension k. If W embedds in §021

and (022, then we can proceed exactly as in the case of manifolds without boundary
explained above and we obtain a new manifold Q# := Q; Uy Qs called again the
connected sum of €y and {23 along W. Obviously, O0# = M, 11 M,. In the case
where Qy = S™, W = S* and if S¥ < 8™ is the standard embedding, then Q# is
obtained from €27 by an interior k-dimensional surgery.

Now, assume that W embedds into the boundaries M; of €2;. Let us make it precise
now. We assume that some smooth embeddings w; : W x Rk 5 TQ,i=1,2
are given. In what follows, we identify R~ with R*~* x {0} ¢ R*"*!~%. We make
the following additional assumptions of w; :
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e First, we assume that @; restricted to W x R”™* embedds in TM; C TQ;.

e Then, we want that @; restricted to W x {0} maps to the zero section of T'M;
(which we identify with M;) and thus gives an embedding W — M, C ;.
The image of this embedding is denoted by W7.

e Further we assume that @; restrict to linear isomorphisms a, : {p} X
RH-F . Ny (o)W for all p € W. Here NW/ denotes the normal
bundle of W/ defined using g¢;. In addition, we assume that «, restricted
to {p} x R”*k is an isomorphism onto Ny, (p.0)W{ NTM;. We can assume
also that @;({p} x (0,---,0,1)) denotes the outer normal unit vector at p.

Now, we set w; := exp?: ow;. This gives embeddings w; : W x Berl*k(Rmax) — Q;
for some Rpyax > 0 and for ¢ = 1,2. We have W/ = w;(W x {0}). We obtain
a new manifold with boundary Q# by gluing @ \ (w1 (W x B" M (Rpy.x))) and
Q2 \ (wa (W x B" ™ "%(Rpax))) along w;(W x S™~*). This manifold is again called
the connected sum of Qq and Qy along W. Let M# := 0Q. Then, M# is the
connected sum of M; and Ms along W as explained above.

In the special case that (Q2,g2) is the half-sphere S"™' (and hence M, is the
standard n-dimensional sphere) and that W = S* C S = 881“, then one can
verify that the resulting manifold Q# is obtained from €2; by attachment of a (k+1)-
dimensional handle as explained in paragraph @ and hence, M# is obtained from
M by a surgery of dimension k.

In what follows, we assume that the metrics g; have a product form h; + ds? near
the boundaries M;. We define the disjoint union

(©,9) = (1 I Q2,01 U go),
(M, h) = (Mq IT My, hy 1T hy)
and
W' =W 11 W3.
Let 7; be the function on €; giving the distance to W/ associated to the metric g;.
Since the metric g; has the product form h; + dsf near M;, we have

2 = 52 4 (dista, (-, W)))2. ©

We also have r1 o wy (p, ) = 1y ows(p, x) = || for p € W, z € B F(Rpay). Let
r be the function on M defined by r(z) := r;(x) for x € M;, i = 1,2. For ¢ > 0
we set Uj(e) :={x € M; : ri(z) < e} and U(e) := Uy(e) UUz(€). For 0 < € < 0 we
define
QF = (2 \ U1(6)) U (22 \ Ua(e))/~
and
U (0) = WO\ U())/~

)
where ~ indicates that we identify @ € U, (¢) with wy o w; () € OUs(e). Hence
0F = (@\U(0) VT (0).

We say that Qfﬁ is obtained from Mj, My (and wy, Ws) by a connected sum along
W with parameter €.

The diffeomorphism type of Q¥ is independent of ¢, hence unless when the param-
eter € is needed, we will usually write Q% = Q7.

2.4. Surgery and Yamabe invariants.
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2.4.1. Statement of the results. First, we will need the following theorem due to
Gromov-Lawson and Schoen-Yau ([[GL8(0] and [FY79]) and which can be also de-

duced from the [ADHO{]:

Theorem 2.4. Let (Q, G) be a compact Riemannian manifold of dimension greater
than 3 with boundary M and let Q7 be obtained from M by an interior surgery of
codimension at least 3. Assume that u(Y,[G); M,0[G]) > 0. Then, there exists
on Q# a metric G# equal to G in a neighborhood of M = 0 = 0Q# such that
p(Q#, [G#]; M, 9[G]) > 0.

Let us deal now with the case where W embedds in the boundary. We prove the
following result which in view of Paragraph E is stronger than Theorem @

Theorem 2.5. Let n € N, n > 2 and (Q1,91), (£22,92) be compact (n + 1)-
dimensional Riemannian manifolds with respective boundaries My and Ms and set
h; = 0g;. Let also W be a a compact manifold without boundary of dimension
k € {0,---,n — 2} that embedds in M, (see paragraph P.3). Let Q% be the con-
nected sum of Q1 and Qy along W and set M#* := 0Q#. Then, there exists some
constants au, 1 > 0 depending only on n and k with a0 = +00 and a sequence of
metrics (go)o>o on Q% equal to g = g1 11 go except in a small neigbourhood of W
(if U is a small neighborhood of W, we see W \ U as embedded in Q7 ) such that,
if we note hg = gy,

gii%u(ﬂ#, [96); M#, [hg]) > min(u(Q1, g1; My, [ha]), (2, [g2); M2, [ha]), ). (7)

If in addition, n > 3 and k < n — 3, the metrics hy := Ogg coincides with the
metrics given by Theorem 2.3 in [ADHOY]. In other words, there exists a constant
Bn.ie > 0 (the same as in Theorem [1.1) with B, = +oo such that

lim 1(M#, [9go]) > min(u(My, (1), (Mo, [Ba]) (3)
Moreover, for k =0, we have
Qn 0 = ﬁn,O = +00.

2.4.2. Proof of Theorem @ We use the notations of Paragraph . We recall
the notations @ = Qy [T Qy, M = My I My, W/ = W/ I W, and g = g1 II
g2. We also use the notation h := dg. If (g) is a sequence of metric which
converges toward a metric g, in C°(2) and if Scal,, converges also in C° to
Scaly then wu(€, [gm]; 09, [0gm])) tends to u(€2, [geo]; 05, [0gso]) (see Proposition
4.31 of Bérard-Bergery in [Be8703 and Lemma 4.1 in [AB02d]). Theorem 4.6 in
[ABO24] or the results of Carr [Ca8q] then imply that we can choose a metric § on
Q such that:
e 0g =0g = h,
e § = h+ds? in a neighborhood of M (where s = s; on M; with s; defined
as in the end of Paragraph E),
o 1(,[g]; M, [R]) is as close as desired to u(2, [g]; M, [h]) =
min(u(Q1, [g1]; M, [ha]), n(Q2, [g2]; Ma, [he])).

Then, without loss of generality, we can replace g by g so that the metric has now
the above properties. The desired sequence (gg) of metrics will be constructed as
in [ADHO§]. We now explain how this construction can be adapted here. In the
following, C' denotes a constant that might change its value between lines. We
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denote by A} the restriction of g; to TW’' =T (W{ LI W}) over W’ C Q. As already
explained, the normal exponential map of W’ defines a diffeomorphism

w; : W x B R (Ruas) — Us(Rmax), 0= 1,2,

which decomposes U (Rmax) = U1 (Rmax)[1U2(Rmax) as a product W’xBﬁ‘Ll*k(Rmax).
In general the Riemannian metric g does not have a corresponding product struc-
ture, and we introduce an error term 7" measuring the difference from the product
metric. If r denotes the distance function to W', then the metric g can be written
on U(Rumax) \ W' 2 W’ x (0, Rimax) x S" 7% as

g=h +F LT =p' 1 dr? 420"+ T, (9)

where h' is the restriction of g on TW’, T is a symmetric (2, 0)-tensor vanishing on
W’ (in the sense of sections of (T*Q ® T*Q)|w~). Note that since g is a product
near the boundary,

T(v,-) =0 (10)
for all vector v normal to M. We also define the product metric
g/ — h/ +§n+lfk — h/ +d7"2 _|_,r20,nfk, (11)

on U(Rmax) \ W’. Thus g = ¢’ + T. We define T; :=T|q, for i =1,2.
For a fixed Rg € (0, Rmax) we choose a smooth positive function F': Q\ W' — R
such that
1 if Qi \ Ui (Rmax);
Py {1 RN\ Ul
ri(x)™, ifxeU(Ry) \ W'
Next we choose small numbers 6, §y € (0, Ry) with 6 > g > 0. Here “small” means
that we first choose a sequence § = 6; of small positive numbers tending to zero,
such that all following arguments hold for all 8. Then we choose for any given 6 a
number g = do(0) € (0,0) such that all arguments which need dy to be small will
hold,
For any 6 > 0 and sufficiently small §y there is Ag € [071, (0p) 1) and a smooth
function f : U(Rmax) — R depending only on the coordinate r = disty (-, W’) such
that

f) = —lnr(z), ifx € U(Rmax) \U(0);
T mde, itz e UG,

and such that

af | | df d df d?f
"ar| T ‘d(lnr) "ar <T%> d?(Inr)
as § — 0. We set € = e~ 49§;. We can and will assume that ¢ < 1. Let Q# be
obtained from {2 by a connected sum along W with parameter €, as described in
Paragraph .3 In particular, Ueﬂ#(s) = U(s)\U(e)/~ for all s > e. On the set
UL (Rmax) = U(Rmax) \ U(€)/~ we define the variable ¢ by

. —lnr; +1lne, on Uy(Rmax) \ Ui(e);
T Inre —Ine, on Us(Rpmax) \ Uz(e).

<1

— 3

and

-0 (12)

Lo ‘ L
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We can assume that ¢ : Ueﬂ# (Rmax) — R is smooth. We choose a cut-off function
X : R — [0,1] such that x = 0 on (—o0,—1], |[dx| < 1, and x = 1 on [1,00). With
these choices, we define

F29i, on QZ\U1(6‘),
) e O(RL +Ty) + dt? + o, on U;(0) \ U;(do);
IO A3x(t/A0) (W + To) + AF(1 — x(t/Ag)) (R} + 1) oF
2 —k n Ue (60)
+dt* 4+ o™,

It remains to proves that the sequence (gy) satisfies the desired conclusions. Set
hg = Ogp. First of all, we prove that M# is minimal for the metrics gg. Let p € M#.
Assume first that p € Q; \ U;(0). Note that the function F' depends only on the
coordinate 7. We denote by v the outer normal unit vector at p. Formula (E) then
implies that 9,7 = 0 on M \ W’ and hence 9, F(p) = 0. This implies that the mean
curvature vanishes at p. Assume now that p € U;(8) \ Ui (d0) U UL (80) = US™ (8).
Observe that by Relation ([L]), the metric gy has the form

go = H1 + Oé(T)HQ + dt2 + Un_k

where H; are 2-forms satisfying H;(v,-) = 0 and where a(r) is a function depending
only on r and §. Set rg := dists,(W’,-). Then, dt* = Ldr? = 5 (r§ + ds*). Since
d,7 = 0, we easily get that the mean curvature vanishes at p and hence M# is
minimal.

Assume for a while that & < n — 3. Observe that since g is a product metric
near M, the function r = disty(-, W’) coincides with dist, (-, W’) on the boundary.
Consequently, the metric hy on M# is exactly the same than the one constructed
in the proof of Theorem 2.3 of [ADHO§| which then shows that Relation (§) holds.
Let us come back to the general case k € {0,---,n — 2} and let us show Relation
(A). Let us denote by X; := Q; Upr, i (i = 1,2) (resp. X# := Q# Uy QF) the
double of Q; (resp. Q#). Notice that X# is the connected sum of X; and X, along
W. We define on X; (resp. X#) the metric §; = g; U g; (resp. go = go U gp) as in
Paragraph EI Set also X := X; I X5 and g := g1 I go. The manifold X is then
the double of Q. Clearly, we can assume that p(Q%, [go]; M#, [he]) < u(S},S™)
otherwise the proof is done. By Theorem E, there exists a function ug € C°°(Q#),

up > 0 normalized by
2(n+1)
n—1 _
/ Ug dvg, =1
Q#

n+3 °
Lg,ug = Xou, " on (QF)
Oyug =0 on M#,
where A\g = p(Q7, [go]; M*, [hg]). By possibly taking a subsequence, we can assume
that Ao := limg_o Ag € [—00, u(S T, S™)] exists.

which satisfies

Define
_ ug U ug ug U ug
Ug = o
omrn  |lugUuel 20in
L™ n=T1 (X#)
on X#. Then,

2(n+41)
—Tn—1 _
/ Uy dvg, = 1.
X#
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Proposition @ implies that g is smooth on X# and satisfies
__n—1_ n+3 2 nt3
Lg,ug = 2 20»FD Ag(ug Uug)n—1 = 2"_“)\917,0?71 .
The idea now is to see how the proof of Theorem 2.3 in [] can be adapted to
this situation. The first observation is that the metric (X%, gp) is construted from
(X, g) exactly in the same way than (N, gg) is constructed from (M, g) in [ADHOJ].
We deduce immediatly that

2757 oo = min(u(X, [g1), Bat1)
where 0, is as in Theorem E The problem here is to get a lower bound of
w(X,[g]) in terms of u(<2,[g]; M, [h]) which seems difficult without additional as-
sumptions. So we have to go through the proof in ] a little more deeply.
Observe that it is divided in many cases. The only case which is an issue is Sub-
case II.1.2. Indeed, in other cases, we obtain that 27%1)\00 > Bp+1,k and we just
set o,k 1= 2_%@1“,;@ to get Theorem @ So assume now that assumptions of
Subcase I1.1.2 occur. More precisely, we assume, using the notations of Paragraph

(B-3) that:

lim limsup sup ug =0
b—0 g0 U€X#(b)
where Y Y Y
UX"(0) = U (b) Uppar yno0s Ue' ().

We then mimick the proof of [ADHO0Y]. Let dyp > 0. We can choose a b > 0 such
that

2(n+1)
/ @9”71 d’l}ge 2 1— do
X#\UX? (20)

and

9
Ugdvg, < dp.
/Usf#@b)\U:(#(b) o

Then we choose a cut-off function n € C*(X*), 0 < 1 < 1 depending only on ¢
(clearly the function ¢ can be naturally extended smoothly to X#) equal to 0 on

Uex# (b), equal to 1 on X# \ Uex#(2b) and which satisfies |d¢|5, < 21n(2). Then, as
in JADHO§], we obtain that
_ 2757 Ng + 2757 Ag|do + 4(In(2))%ady

J 71()(@9) > o
X9 (1 _ do)ﬁ
4n

where a = —==. Since x depends only on ¢ and hence of r, observe that the function

X1ig has normal derivative vanishing on the minimal hypersurface M# C X#. By
Proposition .4, we obtain that

2 n _
271 (€, [g]; M, [B]) < Jx7 (xe)
and hence, letting dy tends to zero,

(€2, [g]; M, [h]) < Ao

This proves Theorem @

2.5. Surgery on cylinders.
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2.5.1. Statements of the results. Let M, N be a compact n-dimensional manifold
without boundary. Assume that NV is obtained from M by a surgery of dimension
k€ {0,---,n—1} associated to an embedding f : S¥ x B" ™% < M. Let Q = M x
[0,1]. Attaching on Q two (k+ 1)-dimensional handles along f(S* x B"~*) x {0, 1},
we get a new manifold ' whose boundary is N IT N (see Paragraph []). We prove:

Lemma 2.6. The manifold N x [0,1] is obtained from ' by an interior (k + 1)-
dimensional surgery.

Start again with Q = M x [0,1]. Let " be obtained from attaching first a k-
dimensional handle on  along f(S* x B" ) x {0} and then attaching the dual
handle along N C (Q Up(skx grn-K)x {0y BF1 x B"*k). The new manifold Q" has
a boundary M II M. We prove

Lemma 2.7. The manifold M x [0, 1] is obtained from Q' by an interior (n — k)-
dimensional surgery.

Remark 2.8. If k = 0 Lemma E, then by standard surgery theory, the interior
n-dimensional surgery can be replaced by an interior surgery of dimension 1.

2.5.2. Proof of Lemma P.4. The manifold ' is equal to
Q = (BkJrl X Bnik) Us(skx Brn—k)x {0} Q Ug(skxBr—k)x {1} (BkJrl X Bnik) .

We define
1

W= <Bk+1 x Bk <§)> U (st x Brk (1)) {0}
<f (S’“ x B* (%)) x [0, 1]) Us(skxmn—r(2))x(1}
(Bk“ x B"F (%)) C (5’) .

Let m € N. Observe that

B Ugmyqoy (8™ % [0,1]) Ugmy 13 BT = g™+ (13)
Here, ~ means diffeomorphic. Hence, W ~ Sk+1 x Bn—Fk,
Define
W= (B-IT-+2 % Snfkfl) Uttt w0kt (0
(B]H_l x SnRL % [0, 1]) Ugk+1x gn—k-1x{1}
(B2 x gkt
Note that 8B-]Tr+2 = S_]ffl Us, B**! hence W’ is well defined. For m € N, let us

note that
BT Ugmyqoy (B™ % [0,1]) Upmy 1y BYT =~ B

Hence, W' ~ B**2 x §n=k=1 and if we define
QF = (U \W)uw’

where we glue the boundaries, Q# is obtained from 2’ by an interior (k + 1)-

dimensional surgery along W.
Define
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1
H = (B]H_l X Bn_k) \ (Bk-‘rl X Bn_k (5)) UBk+lXSnfk—l(%)gsiJrlXSnfk—l

(BﬁchrQ % Sn—k—l)

ko1 (1 1
~ BkJrl x S™ k=1 <§) X [5, 1]> UBk+1XSn—k—1:Si+1XSn7k71
(B_IT_JrQ ~ Snfkfl) )
Since
1
(BkJr1 X [57 1]) UBHlx{%}:si“ B-IT-+2 = Bi+2
we see that
H ~ B2 gn 7+t
Now observe that
O =H Upk+1yx gn—k—1x {0} (N X [0, 1]) Upk+1y gn—k—15 {1} H
It is not difficult to see that Q# ~ N x [0, 1]. This proves Lemma P.q.
2.5.3. Proof of Lemma @ Let
H = (BkJrl X ank) UBk+1x gn—k—1 (BkJrl X ank) .
We have
O0H = (Sk X ank) Ugk y gn—k—1 (Sk X ank) .
Since for all m e N, n > 1,
B™ Ugm-1 By, ~ S™
(by smoothing the corners), we have
H ~ B¥t1 5 §n=% and 9H ~ S§* x §nF,
By construction, Q" is equal to
Q/I = Q Uf(SkXB”*k) H

Now, we set

1 1
v (Bkﬂ <§> . Bnk) Ui (4)xsn—r-1 <B’“Jrl (§> X Bnk>
1 o
~ B! (5) xS FCH.

We now perform a surgery on € along W to get a new manifold Q#. Then,
Q# :QUf(SkXBn—k) H# (14)

where

H#

R

(Bk+1 x ank)\ (Bk+1 <%> X Bnk) Uskan*k (Sk x ankJrl)

([l, 1} x Sk x S"‘k) Ugkxgn-r (8% x BnFFL)

12

2
Sk x prk=1,

R
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Note again that
8H# = (Sk X ank) Ugk y gn—k—1 (Sk X ank)

and the gluing in Formula ([l4) is along the first (Sk X B”*k). Now, it is easy to
see that Q% ~ Q. This ends the proof of Lemma E

3. ¢c-CONCORDANT METRICS

Let M be a compact manifold without boundary of dimension n > 3. Let R(M)
be the set of all Riemannian metrics on M. For all ¢ € R, we set

Re(M) = {g € R(M)|u(M, [g]) > ¢} .

Let g, h be Riemannian metrics on M and ¢ > O0R. We say that h, g are c-concordant
if (M x[0,1); MIIM, [g]IT[h]) > 0 and if g, h € R.(M). If M is oriented and if g, h
have positive scalar curvature, then g, h are c-concordant if and only if g, h € R.(M)
and there exists a metric G with positive scalar curvature on M x [0, 1] such that
the boundary is minimal (see Corollary D in [ABO2H]). A consequence of Theorem
5.11in [ is the fact that "to be c-concordant” is an equivalence relation. We
denote by Conc.(M) the set of equivalence classes of concordant metrics. For a
metric h on a manifold P, we denote by [h]% its class in Conc.(P). If ¢, € R are
such that ¢ < ¢ and if h € R/ (M) C R.(M), then we clearly have

(A5 = [hl5 O Re (M). (15)
Let g, h be Riemannian metrics in M. An important well-know fact is the following

g, h are in the same connected component of Ro(M) = [g]%, = [h]%,- (16)

Lots of works aim to study the sets Ro(M) and Conco(M) ([Ca8§, Ha84, [Ha91l,
, ) In particular, Gajer proved in [] very interesting results about
the topology and the structures of these sets. The reader may also consult Dahl
[Da0d] for a nice study of the set of metrics with invertible Dirac operator on spin
manifolds.

The goal of this section is to show how Theorem @ can be applied to collect
informations on Conc.(M) and in particular to prove Theorem E For this, we
need to introduce lds-relative manifolds.

Definition 3.1. Let M7, M5 be n-dimensional compact manifolds without bound-
ary. We say that My, My are lds-relative ("1ds” for ”low dimensional surgery”)
if Ms can be obtained from M; with a finite sequence of surgeries of dimension
2<k<n-3.

Remark 3.2. (1) Remark E obviously implies that "to be lds-relative” is an
equivalence relation. We denote by T4 the set of equivalence classes of
lds-relative n-manifolds.

(2) Let M, N be two compact connected n-manifolds. Assume that there is a
2-connected bordism between M and N. Then, it follows from standard
theory that M, N are lds-relative.

An immediate consequence of Theorem E is the following.
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Proposition 3.3. Let 8, > 0 be the positive constant defined as in Corollary IE
For all compact n-manifold without boundary M, we define 5(M) = min(c (M), B,).
Then,

Tl ] —oo,n(n— 1)w§]
where wy, denotes the volume of the standard n-dimensional sphere, is a well-defined
map.

As an application of Theorem @, we prove:

Proposition 3.4. Let M, N be lds-relative n-manifolds. For all ¢ < 8, (B is as
above), there are bijective maps

04y n : Conc.(M) — Conce(N)

such that ©F; y = (0% ). In addition, let ¢, € R with ¢ < ¢ and let h €
Re (M) C Re(M). Then,

S ([h5r) = 05 n([h]%) N R (N). (17)

Remark 3.5. Let M, N be compact n-manifolds without boundary and assume that
N is obtained from M by a surgery of dimension 0. In particular, these condition
are satisfied if M = M; II My and if N = M;#M> is the connected sum of M;
and Ms. One can verify that the proof of Proposition @ can be mimicked, un-
less we use Remark P.§ instead of Lemma P.7 to obtain for all ¢ an injective map
04 n : Conc.(M) — Conce(N).

For ¢ = 0, Proposition B.4 was already known (see [[Ga9J]). The proof here is
slightly different and uses only basic facts on surgery.

We now define
o Conco(M) — Joo, a(M)]
c = supgeq u(M, [g]).
Clearly,
sup o' (C) =a(M).

CeConco(M)
Let also ¢” := min(o’, 3,,). As an application of Proposition @, we get Theorem
E we recall here:

Corollary 3.6. Assume that M, N are lds-relative, then
o' (Concy(M)) = o” (Concy(N)).
3.1. Proof of Proposition @ . We set,

Cn = min Bk >0
ke{0,--- ,n—3}

where (3, ; is the constant which appears in the statement of Theorem B We fix
some ¢ < ¢,,. Let M, N be some compact manifolds and let g € R.(M). Assume
that N is obtained from M by a surgery of dimension k € {0,---,n — 3}. By
Theorem D, there exists a sequence of metrics (gg)s>o on N such that for § small
enough (smaller than some € > 0), gg € R.(N). We define

Conc.(M) — Conc.(N)

C

MNE L e e el
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We have to show that ©°(M, N) is well-defined and is a bijection if M and N are
lds-relative. First, let us show that if 0 < 64,65 are small enough then

[991]%/ = [992]%/' (18)
Let Q := M x [0,1]. We equip 2 with the product metric G = g + dt?>. We
attach the (k + 1)-dimensional handle to © along M x {0} related to the given
surgery to obtain a manifold 2, with 92y = N II M. By Theorem @ applied with
g = G, there exists a sequence of metrics (G§) on € for which the boundary is
minimal and such that for 6 small, u(Qq,[G}]; N II M,9[G}]) > 0 and such that
OG} € R.(N 11 M). By construction,

0Gy = go Il g.

We choose # = 6; small enough so that these conditions are satisfied. Now, we
attach the (k + 1)-dimensional handle to © along M x {1} related to the given
surgery to obtain a manifold Q2 with Qs = NIIN. Again by Theorem @ applied
with g = G§,, we obtain a sequence of metrics (G3) on € for which the boundary
is minimal and such that for 6 small, u(fs, [G2]; N I N,9[G2]) > 0, such that
0G% € R.(N1I N) and by construction,

8G§ = go, Hgg.

Choose 65 small enough such these conditions are satisfied. Note that since the
metrics G is equal to G near M x {1}, the number 65 does not depend on the
choice of f;. Now, by Lemma P.§, N x [0,1] is obtained from Qg by a (k + 1)-
dimensional interior surgery on 3. By Theorem @, there exists a sequence of
metrics (Gy) on N x [0,1] equal to Gj, in a neighborhood of N II N such that
(N % [0,1],[Gg]; N I N,9[Gg]) > 0. Since G, = g, 1l gp,, we obtain that
o(N x [0,1]; N I N, gp, 1T go,) > 0. Since 0G3 € R.(N Il N), we have that
901,90, € Re(N) and hence, these two metrics are c-concordant.

Now, let g, h be two metrics on M which are c-concordant and let G be a metric
on M x [0, 1] such that the boundary M IT M is minimal, with G = gIIh and such
that (M x [0,1]; M I M, [g] LI [A]) > 0. Doing the same than above, we show that
9o, and hg, are c-concordant on N if §; and 65 are small enough.

This shows that ©f, y is well-defined. Now assume that M and N are lds-relative
and consider the dual surgery from N to M. In the same way, we can construct

w.r - Conee(N) — Conc, (M)
as above. We now prove that
®§V,M © 6?\4,N = IdConcC(M)- (19)

Let g € Re(M). Define Q := M x [0,1] and let G := g+ dt? and let Q; be obtained
as above equipped with a metric Géo (0o small enough) for which the boundary is
minimal and such that G} = gg, I1g € Re(NIIM with [gg,]5 = O%, n([g]5,) and
such that (1, [Gg ; N IIM,d[Gy ]) > 0. Now, we attach the (n — k)-dimensional
handle on €, along N corresponding to the dual surgery from N to M. We get a
new manifold Q3 such that 8Q3 = M x M. We apply Theorem [L.4 with g = G,
and we get a metric Gga for which the boundary is minimal and such that

0G}, = (900)0, 11 g € Re(M 1T M)
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with

[(900)05 130 = ON a1 ([960] %) = O ar © Ofr, v ([9)0)- (20)

By Lemma R4, M x [0,1] is obtained from Q3 by an interior (n — k)-dimensional
surgery. Hence, by Theorem @, there exists a metric Gy on M x [0, 1] equal
to G23 in a neighborhood of the boundary in a neighborhood of M II M such
that u(M x [0,1], [Ge]; M 1T M,8[Ge]) > 0. Since dG§, = (go,)o, 11 g, and since
(960)05, 9 € Re(N), they are c-concordant. By (R(), we obtain

(9150 = [(960)0s)3s = O, © O, v ([910)-

This proves Relation ([L). In the same way, we prove that

9?\4,N o ®§V,M = IdConcc(N)-

We obtain that ©%, y is a bijective map whose inverse is O% ,,.

To prove Relation ([[7), we fix ¢ < ¢/ and h € Ry (M). In view of the definition of
09, v and using Relation (LF), we have for # small enough

v ([Bl3y) = [hely = [holy N Rer(N) = Ofy v ([holir) N Rer (N).
The proof of Proposition @ is now complete.

3.2. Proof of Corollary B.6. Let C € Conco(M), C' := 0% n(C). Set ¢ =
o”(C) and ¢’ := ¢"”(C"). We are done if we prove that

c=c. (21)

By definition of ¢”, for all e > 0, CNR._. # 0. So let h € CNR._.. By Relation
(L3), C N R.—c = [k )57 Relation ([I7) then leads to

C'NRe—e(N) = Y n(C)NRe—e(N)
= BN n([har) NRe—c(N)
= Oy v([heir )
= ?\i?\/(cchfé(M))

and consequently, C’' N R._(N) # 0 which implies ¢’ > ¢. In the same way, since
O%.n = (©% )", we have ¢ > ¢ and Relation (1) is proven. This ends the
proof of Corollary @
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