Relative Yamabe invariant and c-concordant metrics

Emmanuel Humbert

To cite this version:

Emmanuel Humbert. Relative Yamabe invariant and c-concordant metrics. 2008. hal-00309127v1

HAL Id: hal-00309127
 https://hal.science/hal-00309127v1

Preprint submitted on 6 Aug 2008 (v1), last revised 2 Feb 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RELATIVE YAMABE INVARIANT AND C-CONCORDANT METRICS

EMMANUEL HUMBERT

Abstract

We show a surgery formula for the relative Yamabe invariant and give applications to the study of concordance classes of metrics.

Contents

1. Introduction 1
2. Surgery 5
2.1. The double of a manifold with boundary 5
2.2. Surgeries and attachments of handles 6
2.3. Connected sum along a submanifold of manifolds with boundary 7
2.4. Surgery and Yamabe invariants 8
2.5. Surgery on cylinders 12
3. c-concordant metrics 15
3.1. Proof of Proposition 3.4 16
3.2. Proof of Corollary 3.6 18
References 18

1. Introduction

In the whole paper, the manifolds are assumed to be oriented. If M is a manifold, $-M$ denotes the same manifold with the opposite orientation. Let M be a compact closed n-manifold ($n \geq 3$) and a conformal class of metrics C on M. The Yamabe constant is defined as

$$
\mu(M, C)=\inf \int_{M} \mathrm{Scal}_{g} d v_{g}
$$

where the infimum is taken over the metrics $g \in C$ such that $\operatorname{Vol}_{g}(M)=1$. For any metric g on M and any $u \in C^{\infty}(M)$, let

$$
J_{M, g}^{n}(u)=\frac{\int_{M} u L_{g}(u) d v_{g}}{\left(\int_{M}|u|^{\frac{2 n}{n-2}} d v_{g}\right)^{\frac{n-2}{n}}}
$$

Here, L_{g} is the conformal Laplacian or Yamabe operator and is defined by

$$
L_{g}=\frac{4(n-1)}{n-2} \Delta_{g}+\operatorname{Scal}_{g}
$$

Date: July 17th, 2008.
2000 Mathematics Subject Classification. 35J60, 57R65, 55N22.
Key words and phrases. Yamabe operator, Yamabe invariant, surgery, positive scalar curvature.

Then, it is well known that (see LP87, Au98, He97)

$$
\begin{equation*}
\mu(M,[g])=\inf _{u \in C^{\infty}(M) ; u \neq 0} J_{M, g}^{n}(u) \tag{1}
\end{equation*}
$$

The Yamabe constant has been introduced by Yamabe in 1960 while attempting to find metrics of constant scalar curvature in a conformal class. He was able to show that the infimum in the definition of μ is always attained. Unfortunately, there was a gap in his proof which was repaired by Trüdinger (1968), Aubin (1976) and Schoen (1984). For a survey on this problem, the so-called Yamabe problem, the reader may refer to LP87, Au98, He97.

Now, let

$$
\sigma(M)=\sup \mu(M, C)
$$

where the supremum runs over the sets of all conformal classes of metrics. Aubin proved in Au76 that for all conformal classes of metrics $C, \mu(M, C) \leq \mu\left(\mathbb{S}^{n}\right)=$ $n(n-1) \omega_{n}^{\frac{2}{n}}$ where \mathbb{S}^{n} denotes the n-sphere S^{n} equipped with its standard metric. Its volume is denoted by ω_{n}. This implies that $\sigma(M) \leq \sigma\left(S^{n}\right)=\mu\left(\mathbb{S}^{n}\right)$ and hence, $\sigma(M)$ is well-defined and depends only on the differentiable manifold M. It is called the Yamabe invariant.

The critical points of the functional $g \rightarrow \int_{M} \mathrm{Scal}_{g} d v_{g}$ among the metrics g with $\mathrm{Vol}_{g}(M)=1$ are Einstein metrics. Besides, one can check that $\sigma(M)>0$ if and only if there exists a metric g on M with positive scalar curvature. The study of $\sigma(M)$ has then slight connections with the hard still open questions to know if a manifold possesses or not Einstein metrics or positive metrics (i.e. with positive scalar curvature). This explains why the Yamabe invariant has attracted so much interests in the last decades. For more informations and references on σ, the reader may consult ADH08]. The Yamabe invariant turns to be very difficult to compute explicitly and the value of σ is known for very few manifolds (see again ADH08). A natural way to go further in its study is to use surgery techniques, whose power is demonstrated in the papers of Gromov-Lawson GL80 and Schoen-Yau SY79.

We focus here on the following surgery theorem, proved in ADH08], which plays a central role in the whole paper:
Theorem 1.1. (Ammann-Dahl-Humbert; 2008) Let (M, g) be a compact n dimensional ($n \geq 3$) Riemannian manifold and let $M^{\#}$ be obtained from M by a surgery of dimension $k \in\{0, \cdots, n-3\}$. Then, there exists constants $\beta_{n, k}>0$ with $\beta_{n, 0}=+\infty$ depending only on n and k and metrics $\left(g_{\theta}\right)_{\theta>0}$ on $M^{\#}$ such that

$$
\lim _{\theta \rightarrow 0} \mu\left(M^{\#},\left[g_{\theta}\right]\right) \geq \min \left(\mu(M,[g]), \beta_{n, k}\right)
$$

In particular,

$$
\sigma\left(M^{\#}\right) \geq \min \left(\sigma(M), \beta_{n}\right)
$$

where $\beta_{n}=\min _{k \in\{0, \cdots, n-3\}} \beta_{n, k}$.
Now, let Ω be a $(n+1)$-manifold with boundary M. If g is a metric on Ω, we denote by ∂g the metric induced by g on M. If C is a conformal class, then $\partial C:=\{\partial g \mid g \in C\}$. In particular, if g is a metric on $\Omega, \partial[g]=[\partial g]$. Let us fix a
conformal class C (resp. \bar{C}) on M (resp. Ω) such that $\partial \bar{C}=C$. Again, we can define

$$
\mu(\Omega, \bar{C} ; M, C)=\inf \int_{\Omega} \operatorname{Scal}_{g} d v_{g}
$$

where the infimum is taken over the metrics $g \in \bar{C}$ for which the boundary M is minimal and for which Ω has volume 1. This number is called the relative Yamabe constant and by Escobar Es92

$$
\mu(\Omega, \bar{C} ; M, C) \leq \mu\left(\mathbb{S}_{+}^{n+1}, \mathbb{S}^{n}\right)=2^{\frac{2}{n+1}} \mu\left(S^{n+1}\right)=2^{\frac{2}{n+1}} n(n+1) \omega_{n+1}^{\frac{2}{n+1}}
$$

As in the closed case, for all metric g on Ω such that $\partial g=h$ and all $u \in C^{\infty}(\Omega)$, we set

$$
J_{\Omega, g}^{n+1}(u)=\frac{\int_{\Omega} u L_{g}(u) d v_{g}+\int_{M} H_{g} u^{2} d v_{h}}{\left(\int_{\Omega}|u|^{\frac{2(n+1)}{n-1}} d v_{g}\right)^{\frac{n-1}{n+1}}}
$$

where H_{g} is the mean curvature of the boundary M with respect to the metric g. Then, it is well known that

$$
\mu(\Omega,[g] ; M,[h])=\inf _{u \in C^{\infty}(\Omega) ; u \neq 0} J_{\Omega, g}^{n+1}(u) .
$$

If in addition M is minimal for the metric g, then

$$
\begin{equation*}
\mu(\Omega,[g] ; M,[h])=\inf _{u \in C^{\infty}(\Omega) ; u \neq 0 ; \partial_{\nu} u=0} J_{\Omega, g}^{n+1}(u), \tag{2}
\end{equation*}
$$

where ν is the outer normal unit vector field on M.
Escobar Es92 studied a Yamabe type problem concerning this conformal invariant. More precisely, he studied the problem of finding in a conformal class metrics with constant scalar curvature for which the boundary is minimal. He proved
Theorem 1.2. (Escobar; 1992) Let (Ω, g) be a $(n+1)$-dimensional manifold for which the boundary M is minimal. Assume that

$$
\mu(\Omega,[g] ; M,[\partial g])<\mu\left(\mathbb{S}_{+}^{n+1}, \mathbb{S}^{n}\right)
$$

Then, $\mu(\Omega,[g] ; M,[\partial g])$ is attained. In other words, there exists a metric g^{\prime} conformal to g for which $\operatorname{Vol}_{g^{\prime}}(\Omega)=1, \partial g^{\prime} \in[\partial g], M$ is minimal in $\left(\Omega, g^{\prime}\right)$ and such that

$$
\mu(\Omega, \bar{C} ; M, C)=\int_{\Omega} \operatorname{Scal}_{g^{\prime}} d v_{g^{\prime}}
$$

One can verifies that the metric g^{\prime} of the above theorem has constant scalar curvature. Since it is conformal to g, it has the form $g^{\prime}=u^{\frac{4}{n-1}} g$ for some positive smooth function u on Ω that we can normalized by $\int_{\Omega} u^{p} d v_{g}=1$ where $p:=\frac{2(n+1)}{n-1}$. Then,

$$
\mu(\Omega,[g] ; M,[\partial g])=J_{\Omega, g}^{n+1}(u) .
$$

Writing the Euler equation of u, we obtain:

$$
\left\{\begin{array}{cl}
L_{g^{\prime}} u=\mu(\Omega, \bar{C} ; M, C) u^{p-1} & \text { on } \\
\stackrel{\circ}{\Omega} \\
\partial_{\nu} u=0 & \text { on } \\
\partial \Omega=M
\end{array}\right.
$$

Now, as in the closed case, one defined the relative Yamabe invariant by

$$
\sigma(\Omega ; M, C)=\sup _{C^{\prime}} \mu\left(\Omega, C^{\prime} ; M, C\right)
$$

where the supremum runs over all conformal classes of metrics C^{\prime} on Ω for which $\partial C^{\prime}=C$. This invariant is related to the topology of the set of metrics with positive scalar curvature. It was studied for example by Akutagawa and Botvinnik. In particular, they proved in AB02 the following result:

Theorem 1.3. (Akutagawa, Botvinnik; 2002) Let Ω_{1}, Ω_{2} be ($n+1$)-dimensional manifolds with respective boundaries $M_{1} \amalg M$ and $M_{2} \amalg M\left(M_{1}\right.$ and M_{2} are possibly empty). Let C_{1}, C_{2}, C be conformal classes of metrics respectively on M_{1}, M_{2} and M and let Ω be the manifold with boundary $M_{1} \amalg M_{2}$ obtained by gluing Ω_{1} and Ω_{2} along M. Assume that $\sigma\left(\Omega_{i} ; M_{i} \amalg M, C_{i} \amalg C\right)>0$ for $i=1,2$. Then, $\sigma\left(\Omega ; M_{1} \amalg M_{2}, C_{1} \amalg C_{2}\right)>0$ where by convention, $\sigma(\Omega ; \emptyset)=\sigma(M)$.

This paper aims to obtain a surgery formula for the relative Yamabe invariant similar to the one in Theorem 1.1 for the standard Yamabe invariant. More precisely, we prove
Theorem 1.4. Let $n \in \mathbb{N}, n \geq 2$ and (Ω, g) be a compact $(n+1)$-dimensional Riemannian manifold with boundary M. We set $h:=\partial g$. Let also $k \in\{0, \cdots, n-2\}$ and $M^{\#}$ be obtained from M by a surgery of dimension k. We denote by $\Omega^{\#}$ the manifold with boundary $M^{\#}$ obtained from Ω by attaching the corresponding $(k+1)$ dimensional handle along M. Then, there exist some constants $\alpha_{n, k}>0$ depending only on n and k and a sequence of metrics $\left(g_{\theta}\right)_{\theta>0}$ on $\Omega^{\#}$ such that, setting $h_{\theta}=\partial g_{\theta}$

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \mu\left(\Omega^{\#},\left[g_{\theta}\right] ; M^{\#},\left[h_{\theta}\right]\right) \geq \min \left(\mu(\Omega,[g] ; M,[h]), \alpha_{n, k}\right) . \tag{3}
\end{equation*}
$$

If in addition, $n \geq 3$ and $k \leq n-3$, the metrics h_{θ} coincide with the metrics given by Theorem 1.1. In other words, there exists a constant $\beta_{n, k}>0$ depending only on n and k (the same as in Theorem (1.1) such that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \mu\left(M^{\#},\left[h_{\theta}\right]\right) \geq \min \left(\mu(M,[h]), \beta_{n, k}\right) \tag{4}
\end{equation*}
$$

Moreover, for $k=0$, we have

$$
\begin{equation*}
\alpha_{n, 0}=\beta_{n, 0}=+\infty \tag{5}
\end{equation*}
$$

This theorem is an equivalent of Theorem 1.1 for manifolds with boundary. Adapting such surgery results on manifolds with boundary has already be done and Theorem 1.4 is in the spirit of the results in Ga87, Da06] or An08]. A first corollary of our theorem is:
Corollary 1.5. Let $n \geq 2$ and let Ω be $a(n+1)$-dimensional compact manifold with boundary M and let Ω^{\sharp} be obtained by adding a $(k+1)$-dimensional handle on M for some $k \in\{0, \cdots, n-2\}$. Let C be a conformal class on M. We note $M^{\#}=\partial \Omega^{\#}$ which is obtained from M by a surgery of dimension k. Then there exists a conformal class $C^{\#}$ on $M^{\#}$ such that

$$
\sigma\left(\Omega^{\#} ; M^{\#}, C^{\#}\right) \geq \min \left(\sigma(\Omega ; M, C), \alpha_{n}\right)
$$

where

$$
\alpha_{n}:=\min _{k \in\{0, \cdots n-2\}} \alpha_{n, k}
$$

and where $\alpha_{n, k}$ is as in Theorem 1.4. If in addition, $n \geq 3$ and $k \neq n-2$, for all $\epsilon>0$, we can choose $C^{\#}$ so that

$$
\mu\left(M^{\#}, C^{\#}\right) \geq \min \left(\mu(M, C), \beta_{n}\right)-\epsilon
$$

where

$$
\beta_{n}:=\min _{k \in\{0, \cdots n-3\}} \beta_{n, k}
$$

and where $\beta_{n, k}$ is as in Theorem 1.1.
Since $\alpha_{n}, \beta_{n}>0$, Corollary 1.5 implies main Theorem in Ga87.
Now, let g, g^{\prime} be metrics with positive scalar curvature on M. We say that that g, g^{\prime} are concordant or 0 -concordant if there exists a metric G on $M \times[0,1]$ with positive scalar curvature and such that $\partial[G]=[g] \amalg\left[g^{\prime}\right]$. It is well known that "to be concordant" is an equivalence relation. The set of equivalence classes is denoted by $\operatorname{Conc}_{0}(M)$.
We now define

$$
\sigma^{\prime \prime}:=\left\lvert\, \begin{array}{ccc}
\operatorname{Conc}_{0}(M) & \rightarrow &] \infty, \sigma(M)] \\
C & \mapsto & \min \left(\sup _{g \in C}(\mu(M,[g])), \beta_{n}\right)
\end{array}\right.
$$

where β_{n} is as in Corollary 1.5 so that

$$
\min \left(\sigma(M), \beta_{n}\right)=\sup _{C \in \operatorname{Conc}_{0}(M)} \sigma^{\prime \prime}(C)
$$

A hard open question is to know whether σ is attained or not. A first step in this direction could be to study whether the supremum above is attained or not. This is the main motivation here to introduce $\sigma^{\prime \prime}$. As an application of Theorem 1.4, we prove in Section 3

Proposition 1.6. Let M, N be compact n-manifolds such that N is obtained from M by a finite sequence of surgeries of dimension $k \in\{2, \cdots, n-3\}$. Then

$$
\sigma^{\prime \prime}\left(\operatorname{Conc}_{0}(M)\right)=\sigma^{\prime \prime}\left(\operatorname{Conc}_{0}(N)\right)
$$

Acknowledgements: The author is very grateful to Bernd Ammann, Mattias Dahl and Julien Maubon for many helpful discussions and comments.

2. Surgery

In this section, we prove Theorem 1.4. In this goal, we give some basic facts on the double of manifolds with boundary which will be used in the proof. We also give the definitions of surgery and attachment of handles. The last Paragraph (2.5) is devoted to the proof of two lemmas which will be helpful in Section 3.
2.1. The double of a manifold with boundary. Let Ω be a compact $(n+1)$ dimensional manifold with boundary M. The double of M is the compact closed manifold $X:=\Omega \cup_{M}(-\Omega)$ obtained by gluing two copies of Ω along their common boundary. For instance, if M is a compact closed manifold of dimension n, the double of $[0,1] \times M$ is $S^{1} \times M$. Let g be a metric on Ω and let $h:=\partial g$ be the induced metric on the boundary M. Assume that g is a product metric near the boundary M, i.e. that g has the form $g=h+d s^{2}, s$ being the distance to M. Then g extends naturally to a smooth metric $\bar{g}:=g \cup g$ on X. We will need the following basic results:

Proposition 2.1. Let $u \in C^{\infty}(\Omega), u>0$ be a positive function which satisfies:

$$
\left\{\begin{array}{ccc}
L_{g} u=\lambda u^{p} & \text { on } & \stackrel{\circ}{\Omega} \\
\partial_{\nu} u=0 & \text { on } & \partial \Omega \stackrel{\Omega}{=} M,
\end{array}\right.
$$

for some $\lambda \in \mathbb{R}$ and some $p \geq 1$. The function $\bar{u}=u \cup u$ is smooth on X.

Proof. Just notice that $\bar{u} \in C^{1}(M)$ and satisfies $L_{\bar{g}} \bar{u}=\lambda \bar{u}^{p}$ weakly on X. Then, $\bar{u} \in C^{\infty}(X)$ by standard elliptic regularity theorems.
Proposition 2.2. We have

$$
2^{\frac{2}{n+1}} \mu(\Omega,[g] ; M,[h])=\inf J_{X, \bar{g}}^{n+1}(u)
$$

where the infimum runs over the non-zero functions $u \in C^{\infty}(X)$ such that $\partial_{\nu} u \equiv 0$ on M, ν being any normal vector field on M.

The proof easily follows from (11), (22) and the fact that the mean curvature H_{g} vanishes on M.
2.2. Surgeries and attachments of handles. Let M be a n-dimensional manifold and let k be an integer such that $0 \leq k \leq n-1$. We assume that an orientationpreserving embedding $f: S^{k} \times B^{n-k} \rightarrow \stackrel{\circ}{M}$ is given. Then, $M \backslash f\left(S^{k} \times B^{n-k}\right)$ is a manifold whose boundary is diffeomophic to $S^{k} \times S^{n-k-1}$. We then construct

$$
M_{f}^{\#}:=\left(M \backslash f\left(S^{k} \times B^{n-k}\right) \cup_{f\left(S^{k} \times S^{n-k-1}\right)}\left(\overline{B^{k+1}} \times S^{n-k-1}\right)\right.
$$

We say that $M_{f}^{\#}$ is obtained from M by a surgery of dimension k along $f\left(S^{k} \times\right.$ $\left.B^{n-k}\right)$. If M has a boundary, we say that $M_{f}^{\#}$ is obtained from M by an interior surgery of dimension k to emphasise the fact that nothing happens on the boundary.

Remark 2.3. Observe that

$$
M=M_{f}^{\#} \backslash\left(B^{k+1} \times S^{n-k-1}\right) \cup_{f\left(S^{k} \times S^{n-k-1}\right)} \overline{f\left(S^{k} \times B^{n-k}\right)}
$$

In particular, M is obtained from $M_{f}^{\#}$ by a $(n-1-k)$-surgery that we will call the dual surgery of the surgery given by f.
Now, let Ω be a $(n+1)$-dimensional differentiable manifold whose boundary is M and attach the disk $D^{k+1}:=\overline{B^{k+1}} \times \overline{B^{n-k}}$ along $f\left(S^{k} \times B^{n-k}\right) \subset M$ using f. Smoothing the corners, we get a new manifold

$$
\Omega_{f}^{\#}:=\Omega \cup_{f}\left(\overline{B^{k+1}} \times \overline{B^{n-k}}\right)
$$

with $\partial \Omega_{f}^{\#}=M_{f}^{\#}$. We say that $\Omega_{f}^{\#}$ is obtained from Ω by attachment of a handle of dimension $k+1$. The handle corresponding to the dual surgery of the one given by f will be called the the dual handle of D^{k+1}

Assume that near the boundary M of Ω we have some trivialisation $\Omega \sim(M \times]-$ $2,0]$). In other words, $M=\partial \Omega$ is identified to $M \times\{0\}$. We define the half-balls and the half-spheres

$$
\begin{aligned}
B_{-}^{m+1}\left(\text { resp. } B_{+}^{m+1}\right) & :=\left\{\left(y_{1}, \cdots, y_{m+1}\right) \in B^{m+1} \subset \mathbb{R}^{m+1} \mid y_{m+1} \leq(\text { resp. } \geq 0)\right\} \\
S_{-}^{m}\left(\text { resp. } S_{+}^{m}\right) & :=\left\{\left(y_{1}, \cdots, y_{m+1}\right) \in S^{m} \subset \mathbb{R}^{m+1} \mid y_{m+1} \leq(\text { resp. } \geq) 0\right\}
\end{aligned}
$$

and we set

$$
F: \left\lvert\, \begin{array}{ccc}
S^{k} \times \overline{B_{-}^{n+1-k}} & \rightarrow & M \times]-2,0] \\
\left(x,\left(y_{1}, \cdots, y_{n+1-k}\right)\right) & \mapsto & \left(f\left(x, y^{\prime}\right), y_{n+1-k}\right)
\end{array}\right.
$$

where $y^{\prime}=\left(y_{1}, \cdots, y_{n-k}\right) \in B^{n-k}$. Clearly, F is a smooth embedding in Ω such that $F_{/ S^{k} \times B^{n-k}}=f$ where the B^{n-k} is seen as a subset of B_{-}^{n+1-k} via projection onto the $(n-k)$ first coordinates.
Set now

$$
\tilde{\Omega}_{F}:=\left(\Omega \backslash F\left(S^{k} \times \overline{B_{-}^{n+1-k}}\right)\right) \cup\left(\overline{B^{k+1}} \times S_{-}^{n-k}\right) / \sim
$$

where \sim means that we glue the boundaries. It is straightforward to see that $\tilde{\Omega}_{F}$ is diffeomorphic to $\Omega_{f}^{\#}$. In this way, attaching a handle is view as a "half-surgery" on Ω. This is the point of view adopted by Ole Andersonn An08] in his thesis.

2.3. Connected sum along a submanifold of manifolds with boundary.

 Suppose first that $\left(M_{1}, h_{1}\right)$ and $\left(M_{2}, h_{2}\right)$ are Riemannian closed manifolds of dimension n and that W is a compact manifold of dimension k. Let embeddings $W \hookrightarrow M_{1}$ and $W \hookrightarrow M_{2}$ be given. We assume further that the normal bundles of these embeddings are trivial. Removing tubular neighborhoods of the images of W in M_{1} and M_{2}, and gluing together these manifolds along their common boundary, we get a new compact manifold $M^{\#}:=M_{1} \cup_{W} M_{2}$, called the connected sum of M_{1} and M_{2} along W. Notice that $M^{\#}$ depends on the trivialisation of the normal bundles. Surgery as explained in last paragraph 2 is a special case of this construction: if $M_{2}=S^{n}, W=S^{k}$ and if $S^{k} \hookrightarrow S^{n}$ is the standard embedding, then $M^{\#}$ is obtained from M_{1} from a k-dimensional surgery along $S^{k} \hookrightarrow M_{1}$. For more informations on this construction, see ADH08].Let us deal now with the case of manifolds with boundary. Let $\left(\Omega_{1}, g_{1}\right),\left(\Omega_{2}, g_{2}\right)$ be ($n+1$)-dimensional Riemannian manifolds with respective boundaries M_{1} and M_{2}. We denote by $h_{i}(i=1,2)$ the trace of g_{i} on M_{i} i.e. $\partial g_{i}=h_{i}$. Let W be a compact manifold of dimension k. If W embedds in $\stackrel{\circ}{\Omega}_{1}$ and $\stackrel{\circ}{\Omega}_{2}$, then we can do exactly as in the case of manifolds without boundary explained above and we obtain a new manifold $\Omega^{\#}:=\Omega_{1} \cup_{W} \Omega_{2}$ called again the connected sum of Ω_{1} and Ω_{2} along W. Obviously, $\partial \Omega^{\#}=M_{1} \amalg M_{2}$. In the case where $\Omega_{2}=S^{n}, W=S^{k}$ and if $S^{k} \hookrightarrow S^{n}$ is the standard embedding, then $\Omega^{\#}$ is obtained from Ω_{1} by an interior k-dimensional surgery.
Now, assume that W embedds into the boundaries M_{i} of Ω_{i}. Let us make it precise now. We assume that some smooth embeddings $\bar{w}_{i}: W \times \mathbb{R}^{n+1-k} \rightarrow T \Omega_{i} i=1,2$ are given. In what follows, we identify \mathbb{R}^{n-k} with $\mathbb{R}^{n-k} \times\{0\} \subset \mathbb{R}^{n+1-k}$. We make the following additional assumptions of \bar{w}_{i} :

- First, we assume that \bar{w}_{i} restricted to $W \times \mathbb{R}^{n-k}$ embedds in $T M_{i} \subset T \Omega_{i}$.
- Then, we want that \bar{w}_{i} restricted to $W \times\{0\}$ maps to the zero section of $T M_{i}$ (which we identify with M_{i}) and thus gives an embedding $W \hookrightarrow M_{i} \subset \Omega_{i}$. The image of this embedding is denoted by W_{i}^{\prime}.
- Further we assume that \bar{w}_{i} restrict to linear isomorphisms $\alpha_{p}:\{p\} \times$ $\mathbb{R}^{n+1-k} \rightarrow N_{\bar{w}_{i}(p, 0)} W_{i}^{\prime}$ for all $p \in W$. Here $N W_{i}^{\prime}$ denotes the normal bundle of W_{i}^{\prime} defined using g_{i}. In addition, we assume that α_{p} restricted to $\{p\} \times \mathbb{R}^{n-k}$ is an isomorphism onto $N_{\bar{w}_{i}(p, 0)} W_{i}^{\prime} \cap T M_{i}$. We can assume also that $\bar{w}_{i}(\{p\} \times(0, \cdots, 0,1))$ denotes the outer normal unit vector at p.
Now, we set $w_{i}:=\exp ^{g_{i}} \circ \bar{w}_{i}$. This gives embeddings $w_{i}: W \times B_{-}^{n+1-k}\left(R_{\max }\right) \rightarrow \Omega_{i}$ for some $R_{\max }>0$ and $i=1,2$ where $B_{ \pm}^{m}$ (resp. $S^{m}(\pm)$). We have $W_{i}^{\prime}=$ $w_{i}(W \times\{0\})$. We obtain a new manifold with boundary $\Omega^{\#}$ by gluing $\Omega_{1} \backslash\left(w_{1}(W \times\right.$
$\left.\left.B_{-}^{n+1-k}\left(R_{\max }\right)\right)\right)$ and $\Omega_{2} \backslash\left(w_{2}\left(W \times B_{-}^{n+1-k}\left(R_{\max }\right)\right)\right)$ along $w_{i}\left(W \times S^{n-k}\right)$. This manifold is again called the connected sum of Ω_{1} and Ω_{2} along W. Let $M^{\#}:=\partial \Omega$. Then, $M^{\#}$ is the connected sum of M_{1} and M_{2} along W as explained above.
In the special case that $\left(\Omega_{2}, g_{2}\right)$ is the half-sphere \mathbb{S}_{+}^{n+1} (and hence M_{2} is the standard n-dimensional sphere) and that $W=\mathbb{S}^{k} \subset \mathbb{S}^{n}=\partial \mathbb{S}_{+}^{n+1}$, then one can verify that the resulting manifold $\Omega^{\#}$ is obtained from Ω_{1} by attachment of a $(k+1)$-dimensional handle as explained in paragraph 2 and hence, $M^{\#}$ is obtained from M_{1} by a surgery of dimension k.
In what follows, we assume that the metrics g_{i} have a product form $h_{i}+d s_{i}^{2}$ near the boundary M_{i}. We define the disjoint union

$$
\begin{aligned}
(\Omega, g) & :=\left(\Omega_{1} \amalg \Omega_{2}, g_{1} \amalg g_{2}\right), \\
(M, h) & :=\left(M_{1} \amalg M_{2}, h_{1} \amalg h_{2}\right)
\end{aligned}
$$

and

$$
W^{\prime}:=W_{1}^{\prime} \amalg W_{2}^{\prime} .
$$

Let r_{i} be the function on Ω_{i} giving the distance to W_{i}^{\prime} associated to the metric g_{i}. Since the metric g_{i} has the product form $h_{i}+d s_{i}^{2}$ near M_{i}, we have

$$
\begin{equation*}
r_{i}^{2}=s_{i}^{2}+\left(\operatorname{dist}_{h_{i}}\left(\cdot, W_{i}^{\prime}\right)\right)^{2} \tag{6}
\end{equation*}
$$

We also have $r_{1} \circ w_{1}(p, x)=r_{2} \circ w_{2}(p, x)=|x|$ for $p \in W, x \in B_{-}^{n+1-k}\left(R_{\max }\right)$. Let r be the function on M defined by $r(x):=r_{i}(x)$ for $x \in M_{i}, i=1,2$. For $\epsilon>0$ we set $U_{i}(\epsilon):=\left\{x \in M_{i}: r_{i}(x)<\epsilon\right\}$ and $U(\epsilon):=U_{1}(\epsilon) \cup U_{2}(\epsilon)$. For $0<\epsilon<\theta$ we define

$$
\Omega_{\epsilon}^{\#}:=\left(\Omega_{1} \backslash U_{1}(\epsilon)\right) \cup\left(\Omega_{2} \backslash U_{2}(\epsilon)\right) / \sim
$$

and

$$
U_{\epsilon}^{\Omega^{\#}}(\theta):=(U(\theta) \backslash U(\epsilon)) / \sim
$$

where \sim indicates that we identify $x \in \partial U_{1}(\epsilon)$ with $w_{2} \circ w_{1}^{-1}(x) \in \partial U_{2}(\epsilon)$. Hence

$$
\Omega_{\epsilon}^{\#}=(\Omega \backslash U(\theta)) \cup U_{\epsilon}^{\Omega^{\#}}(\theta)
$$

We say that $\Omega_{\epsilon}^{\#}$ is obtained from M_{1}, M_{2} (and $\left.\bar{w}_{1}, \bar{w}_{2}\right)$ by a connected sum along W with parameter ϵ.
The diffeomorphism type of $\Omega_{\epsilon}^{\#}$ is independent of ϵ, hence unless when the parameter ϵ is needed, we will usually write $\Omega^{\#}=\Omega_{\epsilon}^{\#}$.

2.4. Surgery and Yamabe invariants.

2.4.1. Statement of the results. First, we will need the following Theorem due to GL80 or SY79 and which can be also deduced from the ADH08:

Theorem 2.4. Let (Ω, G) be a compact Riemannian manifold of dimension greater than 3 with boundary M and let $\Omega^{\#}$ be obtained from M by an interior surgery of codimension at least 3. Assume that $\mu(\Omega,[G] ; M, \partial[G])>0$. Then, there exists on $\Omega^{\#}$ a metric $G^{\#}$ equal to G in a neighborhood of $M=\partial \Omega=\partial \Omega^{\#}$ such that $\mu\left(\Omega^{\#},\left[G^{\#}\right] ; M, \partial[G]\right)>0$.

Let us deal now with the case where W embedds in the boundary. We prove the following result which in view of Paragraph 2.3 is stronger than Theorem 1.4.

Theorem 2.5. Let $n \in \mathbb{N}, n \geq 2$ and $\left(\Omega_{1}, g_{1}\right)$, $\left(\Omega_{2}, g_{2}\right)$ be compact $(n+1)$ dimensional Riemannian manifolds with respective boundaries M_{1} and M_{2} and set $h_{i}=\partial g_{i}$. Let also W be a a compact closed manifold of dimension $k \in\{0, \cdots, n-2\}$ that embedds in M_{i} (see paragraph 2.3). Let $\Omega^{\#}$ be the connected sum of Ω_{1} and Ω_{2} along W and set $M^{\#}:=\partial \Omega^{\#}$. Then, there exists some constants $\alpha_{n, k}>0$ depending only on n and k with $\alpha_{n, 0}=+\infty$ and a sequence of metrics $\left(g_{\theta}\right)_{\theta>0}$ on $\Omega^{\#}$ equal to $g=g_{1} \amalg g_{2}$ except in a small neigbourhood of W (if U is a small neighborhood of W, we see $W \backslash U$ as embedded in $\Omega^{\#}$) such that, if we note $h_{\theta}=\partial g_{\theta}$,

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \mu\left(\Omega^{\#},\left[g_{\theta}\right] ; M^{\#},\left[h_{\theta}\right]\right) \geq \min \left(\mu\left(\Omega_{1}, g_{1} ; M_{1},\left[h_{1}\right]\right), \mu\left(\Omega_{2},\left[g_{2}\right] ; M_{2},\left[h_{2}\right]\right), \alpha_{n, k}\right) \tag{7}
\end{equation*}
$$

If in addition, $n \geq 3$ and $k \leq n-3$, the metrics $h_{\theta}:=\partial g_{\theta}$ coincides with the metrics given by Theorem 2.3 in ADH08. In other words, there exists a constant $\beta_{n, k}>0$ (the same as in Theorem 1.1) with $\beta_{n, 0}=+\infty$ such that

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \mu\left(M^{\#},\left[\partial g_{\theta}\right]\right) \geq \min \left(\mu\left(M_{1},\left[h_{1}\right]\right), \mu\left(M_{2},\left[h_{2}\right]\right), \beta_{n_{k}}\right. \tag{8}
\end{equation*}
$$

Moreover, for $k=0$, we have

$$
\alpha_{n, 0}=\beta_{n, 0}=+\infty
$$

2.4.2. Proof of Theorem 2.5. We use the notations of Paragraph 2.3. We recall that we have noted $\Omega=\Omega_{1} \amalg \Omega_{2}, M=M_{1} \amalg M_{2}, W^{\prime}=W_{1}^{\prime} \amalg W_{2}^{\prime}$ and $g=$ $g_{1} \amalg g_{2}$. We also use the notation $h:=\partial g$. If $\left(g_{m}\right)$ is a sequence of metric which converges toward a metric g_{∞} in $C^{0}(\Omega)$ and if $\operatorname{Scal}_{g_{m}}$ converges also in C^{0} to $\operatorname{Scal}_{g_{\infty}}$ then $\mu\left(\Omega,\left[g_{m}\right] ; \partial \Omega,\left[\partial g_{m}\right]\right)$) tends to $\mu\left(\Omega,\left[g_{\infty}\right] ; \partial \Omega,\left[\partial g_{\infty}\right]\right)$ (see Proposition 4.31 of Bérard-Bergery in Be8702 and Lemma 4.1 in AB02). Theorem 4.6 in AB02 or the results of Carr Ca88 then imply that we can choose a metric \tilde{g} on Ω such that:

- $\partial \tilde{g}=\partial g=h$,
- $\tilde{g}=h+d s^{2}$ in a neighborhood of M (where $s=s_{i}$ on M_{i} with s_{i} defined as in the end of Paragraph 2.3),
- $\mu(\Omega,[\tilde{g}] ; M,[h])$ is as close as desired to $\mu(\Omega,[g] ; M,[h])=$ $\min \left(\mu\left(\Omega_{1},\left[g_{1}\right] ; M_{1},\left[h_{1}\right]\right), \mu\left(\Omega_{2},\left[g_{2}\right] ; M_{2},\left[h_{2}\right]\right)\right)$.
Then, without loss of generality, we can replace g by \tilde{g} so that the metric has now the above properties. The desired sequence $\left(g_{\theta}\right)$ of metrics will be constructed as in ADH08]. We now explain how this construction can be adapted here. In the following, C denotes a constant that might change its value between lines. We denote by h_{i}^{\prime} the restriction of g_{i} to $T W^{\prime}=T\left(W_{1}^{\prime} \amalg W_{2}^{\prime}\right)$ over $W^{\prime} \subset \Omega$. As already explained, the normal exponential map of W^{\prime} defines a diffeomorphism

$$
w_{i}: W \times B_{-}^{n+1-k}\left(R_{\max }\right) \rightarrow U_{i}\left(R_{\max }\right), \quad i=1,2
$$

which decomposes $U\left(R_{\max }\right)=U_{1}\left(R_{\max }\right) \amalg U_{2}\left(R_{\max }\right)$ as a product $W^{\prime} \times B_{-}^{n+1-k}\left(R_{\max }\right)$. In general the Riemannian metric g does not have a corresponding product structure, and we introduce an error term T measuring the difference from the product metric. If r denotes the distance function to W^{\prime}, then the metric g can be written on $U\left(R_{\max }\right) \backslash W^{\prime} \cong W^{\prime} \times\left(0, R_{\max }\right) \times S_{-}^{n-k}$ as

$$
\begin{equation*}
g=h^{\prime}+\xi^{n+1-k}+T=h^{\prime}+d r^{2}+r^{2} \sigma^{n-k}+T . \tag{9}
\end{equation*}
$$

where h^{\prime} is the restriction of g on $T W^{\prime}, T$ is a symmetric (2,0)-tensor vanishing on W^{\prime} (in the sense of sections of $\left.\left.\left(T^{*} \Omega \otimes T^{*} \Omega\right)\right|_{W^{\prime}}\right)$. Note that since g is a product near the boundary,

$$
\begin{equation*}
T(v, \cdot)=0 \tag{10}
\end{equation*}
$$

for all vector v normal to M. We also define the product metric

$$
\begin{equation*}
g^{\prime}:=h^{\prime}+\xi^{n+1-k}=h^{\prime}+d r^{2}+r^{2} \sigma^{n-k} \tag{11}
\end{equation*}
$$

on $U\left(R_{\max }\right) \backslash W^{\prime}$. Thus $g=g^{\prime}+T$. We define $T_{i}:=\left.T\right|_{\Omega_{i}}$ for $i=1,2$.
For a fixed $R_{0} \in\left(0, R_{\max }\right)$ we choose a smooth positive function $F: \Omega \backslash W^{\prime} \rightarrow \mathbb{R}$ such that

$$
F(x)= \begin{cases}1, & \text { if } x \in \Omega_{i} \backslash U_{i}\left(R_{\max }\right) ; \\ r_{i}(x)^{-1}, & \text { if } x \in U_{i}\left(R_{0}\right) \backslash W^{\prime}\end{cases}
$$

Next we choose small numbers $\theta, \delta_{0} \in\left(0, R_{0}\right)$ with $\theta>\delta_{0}>0$. Here "small" means that we first choose a sequence $\theta=\theta_{j}$ of small positive numbers tending to zero, such that all following arguments hold for all θ. Then we choose for any given θ a number $\delta_{0}=\delta_{0}(\theta) \in(0, \theta)$ such that all arguments which need δ_{0} to be small will hold,

For any $\theta>0$ and sufficiently small δ_{0} there is $A_{\theta} \in\left[\theta^{-1},\left(\delta_{0}\right)^{-1}\right)$ and a smooth function $f: U\left(R_{\max }\right) \rightarrow \mathbb{R}$ depending only on the coordinate $r=\operatorname{dist}_{g}\left(\cdot, W^{\prime}\right)$ such that

$$
f(x)=\left\{\begin{array}{cl}
-\ln r(x), & \text { if } x \in U\left(R_{\max }\right) \backslash U(\theta) \\
\ln A_{\theta}, & \text { if } x \in U\left(\delta_{0}\right),
\end{array}\right.
$$

and such that

$$
\begin{equation*}
\left|r \frac{d f}{d r}\right|=\left|\frac{d f}{d(\ln r)}\right| \leq 1, \quad \text { and } \quad\left\|r \frac{d}{d r}\left(r \frac{d f}{d r}\right)\right\|_{L^{\infty}}=\left\|\frac{d^{2} f}{d^{2}(\ln r)}\right\|_{L^{\infty}} \rightarrow 0 \tag{12}
\end{equation*}
$$

as $\theta \rightarrow 0$. We set $\epsilon=e^{-A_{\theta}} \delta_{0}$. We can and will assume that $\epsilon<1$. Let $\Omega^{\#}$ be obtained from Ω by a connected sum along W with parameter ϵ, as described in Paragraph 2.3. In particular, $U_{\epsilon}^{\Omega^{\#}}(s)=U(s) \backslash U(\epsilon) / \sim$ for all $s \geq \epsilon$. On the set $U_{\epsilon}^{\Omega^{\#}}\left(R_{\max }\right)=U\left(R_{\max }\right) \backslash U(\epsilon) / \sim$ we define the variable t by

$$
t:=\left\{\begin{aligned}
-\ln r_{1}+\ln \epsilon, & \text { on } U_{1}\left(R_{\max }\right) \backslash U_{1}(\epsilon) ; \\
\ln r_{2}-\ln \epsilon, & \text { on } U_{2}\left(R_{\max }\right) \backslash U_{2}(\epsilon) .
\end{aligned}\right.
$$

We can assume that $t: U_{\epsilon}^{\Omega^{\#}}\left(R_{\max }\right) \rightarrow \mathbb{R}$ is smooth. We choose a cut-off function $\chi: \mathbb{R} \rightarrow[0,1]$ such that $\chi=0$ on $(-\infty,-1],|d \chi| \leq 1$, and $\chi=1$ on $[1, \infty)$. With these choices, we define

$$
g_{\theta}:= \begin{cases}\begin{array}{l}
F^{2} g_{i}, \\
e^{2 f(t)}\left(h_{i}^{\prime}+T_{i}\right)+d t^{2}+\sigma^{n-k}, \\
A_{\theta}^{2} \chi\left(t / A_{\theta}\right)\left(h_{2}^{\prime}+T_{2}\right)+A_{\theta}^{2}\left(1-\chi\left(t / A_{\theta}\right)\right)\left(h_{1}^{\prime}+T_{1}\right) \\
\quad \\
\quad+d t^{2}+\sigma^{n-k},
\end{array} & \text { on } \Omega_{i} \backslash U_{i}(\theta) \backslash U_{i}\left(\delta_{0}\right) ; \\
\text { on } U_{\epsilon}^{\Omega^{\#}}\left(\delta_{0}\right) .\end{cases}
$$

It remains to proves that the sequence $\left(g_{\theta}\right)$ satisfies the desired conclusions. Set $h_{\theta}:=\partial g_{\theta}$. First of all, we prove that $M^{\#}$ is minimal for the metrics g_{θ}. Let $p \in M^{\#}$. Assume first that $p \in \Omega_{i} \backslash U_{i}(\theta)$. Note that the function F depends only on the coordinate r. We denote by ν the outer normal unit vector at p. Then, since $\nu=-\frac{\partial}{\partial s}$, Formula (6) implies that $\partial_{\nu} r \equiv 0$ on $M \backslash W^{\prime}$ and hence $\partial_{\nu} F(p)=0$. This implies that the mean curvature vanishes at p. Assume now that
$p \in U_{i}(\theta) \backslash U_{i}\left(\delta_{0}\right) \cup U_{\epsilon}^{\Omega^{\#}}\left(\delta_{0}\right)=U_{\epsilon}^{\Omega^{\#}}(\theta)$. Observe that by Relation (10), the metric g_{θ} has the form

$$
g_{\theta}=H_{1}+\alpha(r) H_{2}+d t^{2}+\sigma^{n-k}
$$

where H_{i} are 2-forms satisfying $H_{i}(\nu, \cdot) \equiv 0$ and where $\alpha(r)$ is a function depending only on r and θ. Set $r_{\theta}:=\operatorname{dist}_{h_{\theta}}\left(W^{\prime}, \cdot\right)$. Then, $d t^{2}=\frac{1}{r^{2}} d r^{2}=\frac{1}{r^{2}}\left(r_{\theta}^{2}+d s^{2}\right)$. Since $\partial_{\nu} r \equiv 0$, we easily get that the mean curvature vanishes at p and hence $M^{\#}$ is minimal.

Assume for a while that $k \leq n-3$. Observe that since g is a product metric near M, the function $r=\operatorname{dist}_{g}\left(\cdot, W^{\prime}\right)$ coincides with $\operatorname{dist}_{h}\left(\cdot, W^{\prime}\right)$ on the boundary. Consequently, the metric h_{θ} on $M^{\#}$ is exactly the same than the one constructed in the proof of Theorem 2.3 of ADH08. Hence, Theorem 2.3 in ADH08 tells us that Relation (8) holds.
Let us come back to the general case $k \in\{0, \cdots, n-2\}$ and let us show Relation (7). Let us denote by $X_{i}:=\Omega_{i} \cup_{M_{i}} \Omega_{i}(i=1,2)$ (resp. $X^{\#}:=\Omega^{\#} \cup_{M^{\#}} \Omega^{\#}$) the double of Ω_{i} (resp. $\Omega^{\#}$). Notice that $X^{\#}$ is the connected sum of X_{1} and X_{2} along W. We define on X_{i} (resp. $X^{\#}$) the metric $\bar{g}_{i}=g_{i} \cup g_{i}$ (resp. $\bar{g}_{\theta}=g_{\theta} \cup g_{\theta}$) as in Paragraph 2.1. Set also $X:=X_{1} \amalg X_{2}$ and $\bar{g}:=\bar{g}_{1} \amalg \bar{g}_{2}$. The manifold X is then the double of Ω. Clearly, we can assume that $\mu\left(\Omega^{\#},\left[g_{\theta}\right] ; M^{\#},\left[h_{\theta}\right]\right)<\mu\left(\mathbb{S}_{+}^{n+1}, \mathbb{S}^{n}\right)$ otherwise the proof is done. Hence by Theorem 1.2, there exists a function $u_{\theta} \in$ $C^{\infty}\left(\Omega^{\#}\right), u_{\theta}>0$ normalized by

$$
\int_{\Omega^{\#}} u_{\theta}^{\frac{2(n+1)}{n-1}} d v_{g_{\theta}}=1
$$

which satisfies

$$
\left\{\begin{array}{ccc}
L_{g_{\theta}} u_{\theta}=\lambda_{\theta} u_{\theta}^{\frac{n+3}{n-1}} & \text { on } & \left(\Omega^{\#}\right) \\
\partial_{\nu} u_{\theta}=0 & \text { on } & M^{\#}
\end{array}\right.
$$

where $\lambda_{\theta}=\mu\left(\Omega^{\#},\left[g_{\theta}\right] ; M^{\#},\left[h_{\theta}\right]\right)$. By possibly taking a subsequence, we can assume that $\lambda_{\infty}:=\lim _{\theta \rightarrow 0} \lambda_{\theta} \in\left[-\infty, \mu\left(\mathbb{S}_{+}^{n+1}, \mathbb{S}^{n}\right)\right]$ exists.
Define

$$
\bar{u}_{\theta}:=\frac{u_{\theta} \cup u_{\theta}}{2^{\frac{n-1}{2(n+1)}}}=\frac{u_{\theta} \cup u_{\theta}}{\left\|u_{\theta} \cup u_{\theta}\right\|_{L^{\frac{2(n+1)}{n-1}}\left(X^{\#}\right)}}
$$

on $X^{\#}$. Then,

$$
\int_{X \#} \bar{u}_{\theta}^{\frac{2(n+1)}{n-1}} d v_{\bar{g}_{\theta}}=1
$$

Proposition 2.1 implies that \bar{u}_{θ} is smooth on $X^{\#}$ and satisfies

$$
L_{\bar{g}_{\theta}} \bar{u}_{\theta}=2^{-\frac{n-1}{2(n+1)}} \lambda_{\theta}\left(u_{\theta} \cup u_{\theta}\right)^{\frac{n+3}{n-1}}=2^{\frac{2}{n+1}} \lambda_{\theta} \bar{u}_{\theta}^{\frac{n+3}{n-1}}
$$

The idea now is to see how the proof of Theorem 2.3 in ADH08 can be adapted to this situation. The first observation is that the metric $\left(\bar{X}^{\#}, \bar{g}_{\theta}\right)$ is construted from (X, \bar{g}) exactly in the same way than $\left(N, g_{\theta}\right)$ is constructed from (M, g) in ADH08. We deduce immediatly that

$$
2^{\frac{2}{n+1}} \lambda_{\infty} \geq \min \left(\mu(X,[\bar{g}]), \beta_{n+1, k}\right)
$$

where $\beta_{n, k}$ is as in Theorem 1.1. The problem here is to get a lower bound of $\mu(X,[\bar{g}])$ in terms of $\mu(\Omega,[g] ; M,[h])$ which seems difficult without additional assumptions. So we have to go through the proof in ADH08 a little more deeply.

Observe that it is divided in many cases. The only case which is an issue is Subcase II.1.2. Indeed, in other cases, we obtain that $2^{\frac{2}{n+1}} \lambda_{\infty} \geq \beta_{n+1, k}$ and we just set $\alpha_{n, k}:=2^{-\frac{2}{n+1}} \beta_{n+1, k}$ to get Theorem 2.5. So assume now that assumptions of Subcase II.1.2 occur. More precisely, we assume, using the notations of Paragraph (2.3) that:

$$
\lim _{b \rightarrow 0} \limsup _{\theta \rightarrow 0} \sup _{U_{\epsilon}^{x \#}(b)} \bar{u}_{\theta}=0
$$

where

$$
U_{\epsilon}^{X^{\#}}(b):=U_{\epsilon}^{\Omega^{\#}}(b) \cup_{\partial U_{\epsilon}^{\Omega \#}}(b) \cap \partial \Omega^{\#} U_{\epsilon}^{\Omega^{\#}}(b) .
$$

We then the proof of ADH08. Let $d_{0}>0$. We can choose a $b>0$ such that

$$
\int_{X \# \backslash U_{\epsilon}^{X} \#}(2 b) \bar{u}_{\theta}^{\frac{2(n+1)}{n-1}} d v_{\bar{g}_{\theta}} \geq 1-d_{0}
$$

and

$$
\int_{U_{\epsilon}^{X}}{ }_{(2 b) \backslash U_{\epsilon}^{X \#}}{ }_{(b)} \bar{u}_{\theta}^{2} d v_{\bar{g}_{\theta}} \leq d_{0}
$$

Then we choose a cut-off function $\eta \in C^{\infty}\left(X^{\sharp}\right), 0 \leq \eta \leq 1$ depending only on t (clearly the function t can be naturally extended smoothly to $X^{\#}$) equal to 0 on $U_{\epsilon}^{X \#}(b)$, equal to 1 on $X^{\#} \backslash U_{\epsilon}^{X^{\#}}(2 b)$ and which satisfies $|d \xi|_{\bar{g}_{\theta}} \leq 2 \ln (2)$. Then, as in ADH08, we obtain that

$$
J_{X, \bar{g}}^{n+1}\left(\chi \bar{u}_{\theta}\right) \leq \frac{2^{\frac{2}{n+1}} \lambda_{\theta}+\left|2^{\frac{2}{n+1}} \lambda_{\theta}\right| d_{0}+4(\ln (2))^{2} a d_{0}}{\left(1-d_{0}\right)^{\frac{n-1}{n+1}}}
$$

where $a=\frac{4 n}{n-1}$. Since χ depends only on t and hence of r, observe that the function $\chi \bar{u}_{\theta}$ has normal derivative vanishing on the minimal hypersurface $M^{\#} \subset X^{\#}$. By Proposition 2.2, we obtain that

$$
2^{\frac{2}{n+1}} \mu(\Omega,[g] ; M,[h]) \leq J_{X, \bar{g}}^{n+1}\left(\chi \bar{u}_{\theta}\right)
$$

and hence, letting d_{0} tends to zero,

$$
\mu(\Omega,[g] ; M,[h]) \leq \lambda_{\infty}
$$

This proves Theorem 2.5.

2.5. Surgery on cylinders.

2.5.1. Statements of the results. Let M, N be a compact closed n-dimensional manifold. Assume that N is obtained from M by a surgery of dimension $k \in\{0, \cdots, n-$ $1\}$ associated to an embedding $f: S^{k} \times B^{n-k} \hookrightarrow M$. Let $\Omega=M \times[0,1]$. Attaching on Ω two ($k+1$)-dimensional handles along $f\left(S^{k} \times B^{n-k}\right) \times\{0,1\}$, we get a new manifold Ω^{\prime} whose boundary is $N \amalg(-N)$ (see Paragraph (2). We prove:

Lemma 2.6. The manifold $N \times[0,1]$ is obtained from Ω^{\prime} by an interior $(k+1)$ dimensional surgery.
Start again with $\Omega=M \times[0,1]$. Let $\Omega^{\prime \prime}$ be obtained from attaching first a k dimensional handle on Ω along $f\left(S^{k} \times B^{n-K}\right) \times\{0\}$ and then attaching the dual handle along $N \subset\left(\Omega \cup_{f\left(S^{k} \times B^{n-K}\right) \times\{0\}} \overline{B^{k+1}} \times \overline{B^{n-k}}\right)$. The new manifold $\Omega^{\prime \prime}$ has a boundary $M \amalg(-M)$. We prove

Lemma 2.7. The manifold $M \times[0,1]$ is obtained from $\Omega^{\prime \prime}$ by an interior $(n-k)$ dimensional surgery.
Remark 2.8. If $k=0$ Lemma 2.7, then by standard surgery theory, the interior n-dimensional surgery can be replaced by an interior surgery of dimension 1 .
2.5.2. Proof of Lemma 2.5. The manifold Ω^{\prime} is equal to

$$
\Omega^{\prime}=\left(B^{k+1} \times B^{n-k}\right) \cup_{f\left(S^{k} \times B^{n-k}\right) \times\{0\}} \Omega \cup_{f\left(S^{k} \times B^{n-k}\right) \times\{1\}}\left(B^{k+1} \times B^{n-k}\right)
$$

We define

$$
\begin{aligned}
W:= & \left(B^{k+1} \times B^{n-k}\left(\frac{1}{2}\right)\right) \cup_{f\left(S^{k} \times B^{n-k}\left(\frac{1}{2}\right)\right) \times\{0\}} \\
& \left(f\left(S^{k} \times B^{n-k}\left(\frac{1}{2}\right)\right) \times[0,1]\right) \cup_{f\left(S^{k} \times B^{n-k}\left(\frac{1}{2}\right)\right) \times\{1\}} \\
& \left(B^{k+1} \times B^{n-k}\left(\frac{1}{2}\right)\right) \subset\left(\Omega^{\prime}\right) .
\end{aligned}
$$

Let $m \in \mathbb{N}$. Observe that

$$
\begin{equation*}
B^{m+1} \cup_{S^{m} \times\{0\}}\left(S^{m} \times[0,1]\right) \cup_{S^{m} \times\{1\}} B^{m+1} \simeq S^{m+1} \tag{13}
\end{equation*}
$$

Here, \simeq means diffeomorphic. Hence, $W \simeq S^{k+1} \times B^{n-k}$.
Define

$$
\begin{aligned}
W^{\prime}:= & \left(B_{+}^{k+2} \times S^{n-k-1}\right) \cup_{B^{k+1} \times S^{n-k-1} \times\{0\}} \\
& \left(B^{k+1} \times S^{n-k-1} \times[0,1]\right) \cup_{S^{k+1} \times S^{n-k-1} \times\{1\}} \\
& \left(B_{+}^{k+2} \times S^{n-k-1}\right) .
\end{aligned}
$$

Note that $\partial B_{+}^{k+2}=S_{+}^{k+1} \cup_{S_{k}} B^{k+1}$ hence W^{\prime} is well defined. For $m \in \mathbb{N}$, let us note that

$$
B_{+}^{m+1} \cup_{B^{m} \times\{0\}}\left(B^{m} \times[0,1]\right) \cup_{B^{m} \times\{1\}} B_{+}^{m+1} \simeq B^{m+1}
$$

Hence, $W^{\prime} \simeq B^{k+2} \times S^{n-k-1}$ and if we define

$$
\Omega^{\#}:=\left(\Omega^{\prime} \backslash W\right) \cup W^{\prime}
$$

where we glue the boundaries, $\Omega^{\#}$ is obtained from Ω^{\prime} by an interior $(k+1)$ dimensional surgery along W.
Define

$$
\begin{aligned}
H:= & \left(B^{k+1} \times B^{n-k}\right) \backslash\left(B^{k+1} \times B^{n-k}\left(\frac{1}{2}\right)\right) \cup_{B^{k+1} \times S^{n-k-1}\left(\frac{1}{2}\right) \simeq S_{+}^{k+1} \times S^{n-k-1}} \\
& \left(B_{+}^{k+2} \times S^{n-k-1}\right) \\
\simeq & \left(B^{k+1} \times S^{n-k-1}\left(\frac{1}{2}\right) \times\left[\frac{1}{2}, 1\right]\right) \cup_{B^{k+1} \times S^{n-k-1} \simeq S_{+}^{k+1} \times S^{n-k-1}} \\
& \left(B_{+}^{k+2} \times S^{n-k-1}\right) .
\end{aligned}
$$

Since

$$
\left(B^{k+1} \times\left[\frac{1}{2}, 1\right]\right) \cup_{B^{k+1} \times\left\{\frac{1}{2}\right\} \simeq S_{+}^{k+1}} B_{+}^{k+2} \simeq B_{+}^{k+2}
$$

we see that

$$
H \simeq B_{+}^{k+2} \times S^{n-k-1}
$$

Now observe that

$$
\Omega^{\#}=H \cup_{B^{k+1} \times S^{n-k-1} \times\{0\}}(N \times[0,1]) \cup_{B^{k+1} \times S^{n-k-1} \times\{1\}} H
$$

It is not difficult to see that $\Omega^{\#} \simeq N \times[0,1]$. This proves Lemma 2.6.
2.5.3. Proof of Lemma 2.7. Let

$$
H:=\left(B^{k+1} \times B^{n-k}\right) \cup_{B^{k+1} \times S^{n-k-1}}\left(B^{k+1} \times B^{n-k}\right) .
$$

We have

$$
\partial H=\left(S^{k} \times B^{n-k}\right) \cup_{S^{k} \times S^{n-k-1}}\left(S^{k} \times B^{n-k}\right) .
$$

Since for all $m \in \mathbb{N}, n \geq 1$,

$$
B^{m} \cup_{S^{m-1}} B_{m} \simeq S^{m}
$$

(by smoothing the corners), we have

$$
H \simeq B^{k+1} \times S^{n-k} \text { and } \partial H \simeq S^{k} \times S^{n-k}
$$

By construction, $\Omega^{\prime \prime}$ is equal to

$$
\Omega^{\prime \prime}=\Omega \cup_{f\left(S^{k} \times B^{n-k}\right)} H
$$

Now, we set

$$
\begin{aligned}
W & :=\left(B^{k+1}\left(\frac{1}{2}\right) \times B^{n-k}\right) \cup_{B^{k+1}\left(\frac{1}{2}\right) \times S^{n-k-1}}\left(B^{k+1}\left(\frac{1}{2}\right) \times B^{n-k}\right) \\
& \simeq B^{k+1}\left(\frac{1}{2}\right) \times S^{n-k} \subset \stackrel{\circ}{H}
\end{aligned}
$$

We now perform a surgery on $\Omega^{\prime \prime}$ along W to get a new manifold $\Omega^{\#}$. Then,

$$
\begin{equation*}
\Omega^{\#}=\Omega \cup_{f\left(S^{k} \times B^{n-k}\right)} H^{\#} \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
H^{\#} & \simeq\left(B^{k+1} \times B^{n-k}\right) \backslash\left(B^{k+1}\left(\frac{1}{2}\right) \times B^{n-k}\right) \cup_{S^{k} \times S^{n-k}}\left(S^{k} \times B^{n-k+1}\right) \\
& \simeq\left(\left[\frac{1}{2}, 1\right] \times S^{k} \times S^{n-k}\right) \cup_{S^{k} \times S^{n-k}}\left(S^{k} \times B^{n-k+1}\right) \\
& \simeq S^{k} \times B^{n-k-1}
\end{aligned}
$$

Note again that

$$
\partial H^{\#}=\left(S^{k} \times B^{n-k}\right) \cup_{S^{k} \times S^{n-k-1}}\left(S^{k} \times B^{n-k}\right)
$$

and the gluing in Formula (14) is along the first $\left(S^{k} \times B^{n-k}\right)$. Now, it is easy to see that $\Omega^{\#} \simeq \Omega$. This ends the proof of Lemma 2.7.

3. c-CONCORDANT METRICS

Let M be a compact closed manifold of dimension $n \geq 3$. Let $\mathcal{R}(M)$ be the set of all Riemannian metrics on M. For all $c \in \mathbb{R}$, we set

$$
\mathcal{R}_{c}(M)=\{g \in \mathcal{R}(M) \mid \mu(M,[g])>c\} .
$$

Let g, h be Riemannian metrics on M and $c \in \mathbb{R}$. We say that h, g are c-concordant if $\mu(M \times[0,1], M \amalg M,[g] \amalg[h])>0$ and if $g, h \in \mathcal{R}_{c}(M)$. A consequence of AkutagawaBotvinnik's result 1.3 is the fact that "to be c-concordant" is an equivalence relation. We denote by $\operatorname{Conc}_{c}(M)$ the set of equivalence classes of concordant metrics. For a metric h on a manifold P, we denote by $[h]_{P}^{c}$ its class in $\operatorname{Conc}_{c}(P)$. If $c, c^{\prime} \in \mathbb{R}$ are such that $c \leq c^{\prime}$ and if $h \in \mathcal{R}_{c^{\prime}}(M) \subset \mathcal{R}_{c}(M)$, then we clearly have

$$
\begin{equation*}
[h]_{M}^{c^{\prime}}=[h]_{M}^{c} \cap \mathcal{R}_{c^{\prime}}(M) \tag{15}
\end{equation*}
$$

Let g, h be Riemannian metrics in M. An important well-know fact is the following
g, h are in the same connected component of $\mathcal{R}_{0}(M) \Longrightarrow[g]_{M}^{0}=[h]_{M}^{0}$.
Lots of works aim to study the sets $\mathcal{R}_{0}(M)$ and $\operatorname{Conc}_{0}(M)$ (Ca88, Ha88, Ha91, RS98, Ru02]). In particular, Gajer proved in [Ga93] very interesting results about the topology and the structures of these sets. The reader may also consult Dahl Da06 for a nice study of the set of metrics with invertible Dirac operator on spin manifolds.

The goal of this section is to show how Theorem 1.4 can be applied to collect informations on $\operatorname{Conc}_{c}(M)$. For this, we need to introduce lds-relative manifolds.

Definition 3.1. Let M_{1}, M_{2} be n-dimensional compact closed manifolds. We say that M_{1}, M_{2} are lds-relative ("lds" for "low dimensional surgery") if M_{2} can be obtained from M_{1} with a finite sequence of surgeries of dimension $2 \leq k \leq n-3$.

Remark 3.2. (1) Remark 2.3 obviously implies that "to be lds-relative" is an equivalence relation. We denote by $\Gamma_{n}^{\mathrm{lds}}$ the set of equivalence classes of lds-relative n-manifolds.
(2) Let M, N be two compact connected n-manifolds. Assume that there is a 2-connected bordism between M and N. Then, it follows from standard theory that M, N are lds-relative.
An immediate consequence of Theorem 1.1 is the following.
Proposition 3.3. Let $\beta_{n}>0$ be the positive constant defined as in Corollary 1.5. For all compact closed n-manifold M, we define $\bar{\sigma}(M)=\min \left(\sigma(M), \beta_{n}\right)$. Then,

$$
\left.\left.\bar{\sigma}: \Gamma_{n}^{\text {lds }} \longrightarrow\right]-\infty, n(n-1) \omega_{n}^{\frac{2}{n}}\right]
$$

where ω_{n} denotes the volume of the standard n-dimensional sphere, is a well-defined map.
As an application of Theorem 1.4, we prove:
Proposition 3.4. Let M, N be lds-relative n-manifolds. For all $c \leq \beta_{n}$ (β_{n} is as above), there are bijective maps

$$
\Theta_{M, N}^{c}: \operatorname{Conc}_{c}(M) \rightarrow \operatorname{Conc}_{c}(N)
$$

such that $\Theta_{M, N}^{C}=\left(\Theta_{N, M}^{c}\right)^{-1}$. In addition, let $c, c^{\prime} \in \mathbb{R}$ with $c \leq c^{\prime}$ and let $h \in$ $\mathcal{R}_{c^{\prime}}(M) \subset \mathcal{R}_{c}(M)$. Then,

$$
\begin{equation*}
\Theta_{M, N}^{c^{\prime}}\left([h]_{M}^{c^{\prime}}\right)=\Theta_{M, N}^{c}\left([h]_{N}^{c}\right) \cap \mathcal{R}_{c^{\prime}}(N) \tag{17}
\end{equation*}
$$

Remark 3.5. Let M, N be compact closed n-manifolds and assume that N is obtained from M by a surgery of dimension 0 . In particular, these condition are satisfied if $M=M_{1} \amalg M_{2}$ and if $N=M_{1} \# M_{2}$ is the connected sum of M_{1} and M_{2}. One can verify that the proof of Proposition 3.4 can be mimicked, unless we use Remark 2.8 instead of Lemma 2.7 to obtain for all c an injective map $\Theta_{M, N}^{c}: \operatorname{Conc}_{c}(M) \rightarrow \operatorname{Conc}_{c}(N)$.

For $c=0$, Proposition 3.4 was already known (see Ga93. The proof here is slightly different and uses only basic facts on surgery.

We now define

$$
\sigma^{\prime}:=\left\lvert\, \begin{array}{ccc}
\operatorname{Conc}_{0}(M) & \rightarrow &] \infty, \sigma(M)] \\
C & \mapsto & \sup _{g \in C} \mu(M,[g]) .
\end{array}\right.
$$

Clearly,

$$
\sup _{C \in \operatorname{Conc}_{0}(M)} \sigma^{\prime}(C)=\sigma(M)
$$

Let also $\sigma^{\prime \prime}:=\min \left(\sigma^{\prime}, \beta_{n}\right)$. An immediate corollary of Proposition 3.4 is the following:
Corollary 3.6. Assume that M, N are lds-relative, then

$$
\sigma^{\prime \prime}\left(\operatorname{Conc}_{0}(M)\right)=\sigma^{\prime \prime}\left(\operatorname{Conc}_{0}(N)\right)
$$

3.1. Proof of Proposition 3.4. We set

$$
c_{n}=\min _{k \in\{0, \cdots, n-3\}} \beta_{n, k}>0
$$

where $\beta_{n, k}$ is the constant which appears in the statement of Theorem 1.4. We fix some $c<c_{n}$. Let M, N be some compact manifolds and let $g \in \mathcal{R}_{c}(M)$. Assume that N is obtained from M by a surgery of dimension $k \in\{0, \cdots, n-3\}$. By Theorem 1.1, there exists a sequence of metrics $\left(g_{\theta}\right)_{\theta>0}$ on N such that for θ small enough (smaller than some $\epsilon>0$), $g_{\theta} \in \mathcal{R}_{c}(N)$. We define

$$
\Theta_{M, N}^{c}:=\left\lvert\, \begin{array}{ccc}
\operatorname{Conc}_{c}(M) & \rightarrow & \operatorname{Conc}_{c}(N) \\
{[g]_{M}^{c}} & \mapsto & {\left[g_{\theta}\right]_{N}^{c} .}
\end{array}\right.
$$

We have to show that $\Theta^{c}(M, N)$ is well-defined and is a bijection if M and N are lds-relative. First, let us show that if $0<\theta_{1}, \theta_{2}$ are small enough then

$$
\begin{equation*}
\left[g_{\theta_{1}}\right]_{N}^{c}=\left[g_{\theta_{2}}\right]_{N}^{c} \tag{18}
\end{equation*}
$$

Let $\Omega:=M \times[0,1]$. We equip Ω with the product metric $G=g+d t^{2}$. We attach the $(k+1)$-dimensional handle to Ω along $M \times\{0\}$ related to the given surgery to obtain a manifold Ω_{1} with $\partial \Omega_{1}=N \amalg(-M)$. By Theorem 1.4 applied with $g=G$, there exists a sequence of metrics $\left(G_{\theta}^{1}\right)$ on Ω_{1} for which the boundary is minimal and such that for θ small, $\mu\left(\Omega_{1},\left[G_{\theta}^{1}\right] ; N \amalg(-M), \partial\left[G_{\theta}^{1}\right]\right)>0$ and such that $\partial G_{\theta}^{1} \in \mathcal{R}_{c}(N \amalg(-M))$. By construction,

$$
\partial G_{\theta}^{1}=g_{\theta} \amalg g
$$

We choose $\theta=\theta_{1}$ small enough so that these conditions are satisfied. Now, we attach the $(k+1)$-dimensional handle to Ω along $M \times\{1\}$ related to the given surgery to obtain a manifold Ω_{2} with $\partial \Omega_{2}=N \amalg(-N)$. Again by Theorem 1.4 applied with $g=G_{\theta_{1}}^{1}$, we obtain a sequence of metrics $\left(G_{\theta}^{2}\right)$ on Ω_{2} for which the boundary is minimal and such that for θ small, $\mu\left(\Omega_{2},\left[G_{\theta}^{2}\right] ; N \amalg(-N), \partial\left[G_{\theta}^{2}\right]\right)>0$, such that $\partial G_{\theta}^{2} \in \mathcal{R}_{c}(N \amalg(-N))$ and by construction,

$$
\partial G_{\theta}^{2}=g_{\theta_{1}} \amalg g_{\theta} .
$$

Choose θ_{2} small enough such these conditions are satisfied. Note that since the metrics G_{θ}^{1} is equal to G near $M \times\{1\}$, the number θ_{2} does not depend on the choice of θ_{1}. Now, by Lemma 2.6, $N \times[0,1]$ is obtained from Ω_{2} by a $(k+1)$ dimensional interior surgery on Ω_{2}. By Theorem 2.4, there exists a sequence of metrics $\left(G_{\theta}\right)$ on $N \times[0,1]$ equal to $G_{\theta_{2}}^{2}$ in a neighborhood of $N \amalg(-N)$ such that $\mu\left(N \times[0,1],\left[G_{\theta}\right] ; N \amalg(-N), \partial\left[G_{\theta}\right]\right)>0$. Since $\partial G_{\theta_{2}}^{2}=g_{\theta_{1}} \amalg g_{\theta_{2}}$, we obtain that $\sigma\left(N \times[0,1] ; N \amalg(-N), g_{\theta_{1}} \amalg g_{\theta_{2}}\right)>0$. Since $\partial G_{\theta}^{2} \in \mathcal{R}_{c}(N \amalg(-N))$, we have that $g_{\theta_{1}}, g_{\theta_{2}} \in \mathcal{R}_{c}(N)$ and hence, these two metrics are c-concordant.

Now, let g, h be two metrics on M which are c-concordant and let G be a metric on $M \times[0,1]$ such that the boundary $M \amalg(-M)$ is minimal, with $\partial G=g \amalg h$ and such that $\mu(M \times[0,1] ; M \amalg M,[g] \amalg[h])>0$. Doing the same than above, we show that $g_{\theta_{1}}$ and $h_{\theta_{2}}$ are c-concordant on N if θ_{1} and θ_{2} are small enough.
This shows that $\Theta_{M, N}^{c}$ is well-defined. Now assume that M and N are lds-relative and consider the dual surgery from N to M. In the same way, we can construct

$$
\Theta_{N, M}^{c}: \operatorname{Conc}_{c}(N) \rightarrow \operatorname{Conc}_{c}(M)
$$

as above. We now prove that

$$
\begin{equation*}
\Theta_{N, M}^{c} \circ \Theta_{M, N}^{c}=I d_{\operatorname{Conc}_{c}(M)} \tag{19}
\end{equation*}
$$

Let $g \in \mathcal{R}_{c}(M)$. Define $\Omega:=M \times[0,1]$ and let $G:=g+d t^{2}$ and let Ω_{1} be obtained as above equipped with a metric $G_{\theta_{0}}^{1}\left(\theta_{0}\right.$ small enough) for which the boundary is minimal and such that $\partial G_{\theta_{0}}^{1}=g_{\theta_{0}} \amalg g \in \mathcal{R}_{c}\left(N \amalg(-M)\right.$ with $\left[g_{\theta_{0}}\right]_{N}^{c}=\Theta_{M, N}^{c}\left([g]_{M}^{c}\right)$ and such that $\mu\left(\Omega_{1},\left[G_{\theta_{0}}^{1}\right] ; N \amalg(-M), \partial\left[G_{\theta_{0}}^{1}\right]\right)>0$. Now, we attach the $(n-k)$ dimensional handle on Ω_{1} along N corresponding to the dual surgery from N to M. We get a new manifold Ω_{3} such that $\partial \Omega_{3}=M \times(-M)$. We apply Theorem 1.4 with $g=G_{\theta_{0}}^{1}$ and we get a metric $G_{\theta_{3}}^{3}$ for which the boundary is minimal and such that

$$
\partial G_{\theta_{3}}^{3}=\left(g_{\theta_{0}}\right)_{\theta_{3}} \amalg g \in \mathcal{R}_{c}(M \amalg(-M))
$$

with

$$
\begin{equation*}
\left[\left(g_{\theta_{0}}\right)_{\theta_{3}}\right]_{M}^{c}=\Theta_{N, M}^{c}\left(\left[g_{\theta_{0}}\right]_{N}^{c}=\Theta_{N, M}^{c} \circ \Theta_{M, N}^{c}\left([g]_{M}^{c}\right)\right. \tag{20}
\end{equation*}
$$

By Lemma $2.7, M \times[0,1]$ is obtained from Ω_{3} by an interior $(n-k)$-dimensional surgery. Hence, by Theorem 2.4, there exists a metric G_{θ} on $M \times[0,1]$ equal to $G_{\theta_{3}}^{3}$ in a neighborhood of the boundary in a neighborhood of $M \amalg(-M)$ such that $\mu\left(M \times[0,1],\left[G_{\theta}\right] ; M \amalg(-M), \partial\left[G_{\theta}\right]\right)>0$. Since $\partial G_{\theta_{3}}^{3}=\left(g_{\theta_{0}}\right)_{\theta_{3}} \amalg g$, and since $\left(g_{\theta_{0}}\right)_{\theta_{3}}, g \in \mathcal{R}_{c}(N)$, they are c-concordant. By (20), we obtain

$$
[g]_{M}^{c}=\left[\left(g_{\theta_{0}}\right)_{\theta_{3}}\right]_{M}^{c}=\Theta_{N, M}^{c} \circ \Theta_{M, N}^{c}\left([g]_{M}^{c}\right) .
$$

This proves Relation (19). In the same way, we prove that

$$
\Theta_{M, N}^{c} \circ \Theta_{N, M}^{c}=I d_{\operatorname{Conc}_{c}(N)} .
$$

We obtain that $\Theta_{M, N}^{c}$ is a bijective map whose inverse is $\Theta_{N, M}^{c}$.
To prove Relation (17), we fix $c \leq c^{\prime}$ and $h \in \mathcal{R}_{c^{\prime}}(M)$. In view of the definition of $\Theta_{M, N}^{c}$ and using Relation (15), we have for θ small enough

$$
\Theta_{M, N}^{c^{\prime}}\left([h]_{M}^{c^{\prime}}\right)=\left[h_{\theta}\right]_{N}^{c^{\prime}}=\left[h_{\theta}\right]_{N}^{c} \cap \mathcal{R}_{c^{\prime}}(N)=\Theta_{M, N}^{c}\left(\left[h_{\theta}\right]_{M}^{c}\right) \cap \mathcal{R}_{c^{\prime}}(N)
$$

The proof of Proposition 3.4 is now complete.
3.2. Proof of Corollary 3.6. Let $C \in \operatorname{Conc}_{0}(M), C^{\prime}:=\Theta_{M, N}^{0}(C)$. Set $c:=$ $\sigma^{\prime \prime}(C)$ and $c^{\prime}:=\sigma^{\prime \prime}\left(C^{\prime}\right)$. We are done if we prove that

$$
\begin{equation*}
c=c^{\prime} \tag{21}
\end{equation*}
$$

By definition of $\sigma^{\prime \prime}$, for all $\epsilon>0$, there exists $C \cap \mathcal{R}_{c-\epsilon} \neq \emptyset$. So let $h_{\epsilon} \in C \cap \mathcal{R}_{c-\epsilon}$. By Relation (15), $C \cap \mathcal{R}_{c-\epsilon}=\left[h_{\epsilon}\right]_{M}^{c-\epsilon}$. Relation (17) then leads to

$$
\begin{aligned}
C^{\prime} \cap \mathcal{R}_{c-\epsilon}(N) & =\Theta_{M, N}^{0}(C) \cap \mathcal{R}_{c-\epsilon}(N) \\
& =\Theta_{M, N}^{0}\left(\left[h_{\epsilon}\right]_{M}^{0}\right) \cap \mathcal{R}_{c-\epsilon}(N) \\
& =\Theta_{M, N}^{c-\epsilon}\left(\left[h_{\epsilon}\right]_{M}^{c \epsilon}\right) \\
& =\Theta_{M, N}^{c-\epsilon}\left(C \cap \mathcal{R}_{c-\epsilon}(M)\right)
\end{aligned}
$$

and consequently, $C^{\prime} \cap \mathcal{R}_{c-\epsilon}(N) \neq \emptyset$ which implies $c^{\prime} \geq c$. In the same way, since $\Theta_{M, N}^{0}=\left(\Theta_{N, M}^{0}\right)^{-1}$, we have $c \geq c^{\prime}$ and Relation (21) is proven. This ends the proof of Corollary 3.6.

References

[Be8702] A. Besse, Einstein manifolds, Berlin, 1987.
[AB02] K. Akutagawa, B. Botvinnik, Yamabe metrics on cylindrical manifolds, Comm. Anal. Geom. 10 (2002), No 5, 935-969.
[ADH08] B. Ammann, M. Dahl, E. Humbert, Smooth Yamabe invariant and surgery, Preprint arXiv:0804.1418.
[An08] O. Andersonn, Thesis, In preparation.
[Au76] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire., J. Math. Pur. Appl., IX. Ser. 55 (1976), 269-296.
[Au98] , Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
[Ca88] R. Carr, Construction of manifolds of positive scalar curvature, Trans. of the Amer. Math. Soc., 307 (1988), No 1, 63-74.
[Da06] M. Dahl, On the space of metrics with invertible Dirac operator, Preprint arXiv:math/0603018.
[Es92] J. Escobar, The Yamabe problem on manifolds with boundary, J. Diff. Geom., 35 (1992), 21-84.
[Ga93] P. Gajer, Concordance of metrics of positive scalar curvature, Pacific Journ. Math. 157 (1993), No 2, 257-268.
[Ga87] P. Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987), No 3, 179-191.
[GL80] M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423-434.
[Ha88] B. Hajduk, Metrics of positive scalar curvature on spheres and the Gromov-Lawson conjecture, Math. Ann., 280 (1997), No 3, (409-415).
[Ha91] B. Hajduk, On the obstruction group to existence of Riemannian metrics of positive scalar curvature, Global differential geometry and global analysis, Lecture Notes in Math., 1481, Springer, Berlin, 1991.
[He97] E. Hebey, Introduction à l'analyse non-linéaire sur les variétés, Diderot Éditeur, Arts et sciences., 1997.
[LP87] J. M. Lee and T. H. Parker. The Yamabe problem, Bull. Am. Math. Soc., New Ser., 17 37-91, 1987.
[RS98] J. Rosenberg, S. Stolz , Metrics of positive scalar curvature and connections with surgery, Surveys on surgery theory, Ann. of Math. Stud., Princeton Univ. Press, 149 (2001), Vol. 2, 353-386.
[Ru02] D. Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants, Geom. and Top., 5 (2001), 895-924.
[SY79] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159-183.

Institut Élie Cartan, BP 239, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy Cedex, France

E-mail address: humbert@iecn.u-nancy.fr

