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By using the Wang-Landau flat-histogram Monte Carlo (MC) method for very large lattice sizes
never simulated before, we show that the phase transition in the frustrated Heisenberg stacked
triangular antiferromagnet is of first-order, contrary to results of earlier MC simulations using old-
fashioned methods. Our result lends support to the conclusion of a nonperturbative renormalization
group performed on an effective Hamiltonian. It puts an end to a 20-year long controversial issue.

PACS numbers: 75.10.-b General theory and models of magnetic ordering ; 75.40.Mg Numerical simulation

studies

I. INTRODUCTION

When a spin cannot fully satisfy energetically all the
interactions with its neighbors, it is ”frustrated”. This
situation occurs when the interactions are in competi-
tion with each other or when the lattice geometry does
not allow to satisfy all interaction bonds simultaneously
as seen for example in the triangular lattice with an anti-
ferromagnetic interaction between the nearest-neighbors.
Effects of the frustration in spin systems have been ex-
tensively investigated during the last 30 years. Frus-
trated spin systems are shown to have unusual properties
such as large ground state (GS) degeneracy, interesting
GS symmetries, successive phase transitions with com-
plicated nature, partially disordered phase, reentrance
and disorder lines. Frustrated systems still constitute
at present a challenge for theoretical, experimental and
simulational methods. For recent reviews, the reader is
referred to Ref. 1.

The nature of the phase transition in strongly frus-
trated spin systems has been a subject of intensive in-
vestigations in the last 20 years. Theoretically, these
systems are excellent testing grounds for theories and
approximations. Many well-established methods such as
renormalization group (RG), high- and low-temperature
series expansions etc often failed to deal with these sys-
tems. Experimentally, data on different frustrated sys-
tems show a variety of possibilities: first-order or second-
order transitions with unknown critical exponents etc.
(see reviews in Ref. 1). One of the most studied sys-
tems is the stacked triangular antiferromagnet (STA):
the antiferromagnetic (AF) interaction between nearest-
neighbor (NN) spins on the triangular lattice causes a
very strong frustration. It is impossible1 to fully sat-
isfy the three AF bond interactions on each equilateral
triangle. The GS configuration of both Heisenberg and
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XY models is the well-known 120-degree structure. The
cases of XY (N = 2) and Heisenberg (N = 3) spins on
the STA have been intensively studied since 1987. For de-
tails, see for example the review by Delamotte et al2. Let
us briefly recall here some main historical developments.
Kawamura3,4 has conjectured by a two-loop RG analy-
sis and Monte Carlo (MC) simulations that the transi-
tion in XY and Heisenberg models belong each to a new
universality class in dimension d = 3. Since then there
have been many other calculations and simulations with
contradictory results. For example, Azaria et al5 sug-
gested from a non-linear sigma model that if the transi-
tion is not of first order or mean-field tricritical then it
should be O(4) universality. Numerical simulations7,8,13

however did not confirm these conjectures. Antonenko
et al.9 went further in a four-loop RG calculation with
a Borel resummation technique. They concluded that
the transition is of first order. From 2000, Tissier and
coworkers 10–12 have carried out a nonperturbative RG
study of frustrated magnets for any dimension between
two and four. They recovered all known perturbative
one-loop results in two and four dimensions as well as
for the infinite spin-component number N → ∞. They
determined Nc(d) for all d and found Nc(d = 3) = 5.1
below which the transition is of first order in contradic-
tion with the conjecture of the existence of a new chiral
universality class by Kawamura.3,4 They explained why
theories and simulations have encountered so far many
difficulties by the existence of a whole region in the flow
diagram in which the flow is slow: the first-order char-
acter for N = 2, 3 is so weak that the transition has
a second-order aspect with ”pseudo” critical exponents.
They calculated these pseudo exponents and found that
they coincided with some experimental data. While this
scenario is very coherent, we note that in this nonpertur-
bative RG technique, the real Hamiltonian is truncated
at the beginning and replaced by an effective one. How-
ever, as will be seen in this paper, the nonperturbative
results are well confirmed.

Let us recall some results on the XY case. Early MC
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results on XY STA have been reviewed by Loison.13 Un-
til 2003, all numerical simulations found a second-order
transition with exponents. A numerical breakthrough
has been realized with the results of Itakura14 who used
an improved MC renormalization-group scheme to in-
vestigate the renormalization group flow of the effective
Hamiltonian used in field-theoretical studies for the XY
STA. He found that the XY STA exhibits a clear first-
order behavior and there are no chiral fixed points of
renormalization-group flow for N=2. In 2004, Peles et
al15 have used a continuous model to study the XY STA
by MC simulation. They found evidence of a first-order
transition. In 2006, Kanki et al16, using a microcanoni-
cal MC method, have found a first-order signature of the
XY STA. While these recent simulations have demon-
strated evidence of first-order transition for the XY STA
in agreement with the nonperturbative RG analysis, all
of them suffered one or two uncertain aspects: the work
of Itakura has used a truncated Hamiltonian, the work
of Peles et al has used standard MC methods and the
work of Kanki et al used a traditional microcanonical MC
technique. Using a very high-performance technique for
weak first-order transitions, the so-called Wang-Landau
flat-histogram method,18 we have recently carried out
simulations on the XY STA. We have found clearly a
first-order transition in that system confirming results
of other authors and putting an end to the controversy
which has been lasting for 20 years.

For the Heisenberg case, Itakura14 found, as in the XY
case mentioned above, the absence of chiral fixed points
of renormalization-group flow. However, he could not
find numerical evidence of the first-order transition. He
predicted that if the transition is of first order for the
Heisenberg spins, it should occur at much larger lattice
sizes which he was not able to perform at that time. En-
couraged by the high performance of the Wang-Landau
method, we decided to study the Heisenberg case in this
work using the full Hamiltonian with very large lattice
sizes. As shown below, we find indeed a first-order tran-
sition in this case.

The paper is organized as follows. Section II is devoted
to the description of the model and the technical details
of the Wang-Landau (WL) methods as applied in the
present paper. Section III shows our results. Concluding
remarks are given in section IV.

II. MONTE CARLO SIMULATION:

WANG-LANDAU ALGORITHM

We consider the stacking of triangular lattices in the z
direction. The spins are the classical Heisenberg model
of magnitude S = 1. The Hamiltonian is given by

H = J
∑

(i,j)

Si.Sj , (1)

where Si is the Heisenberg spin at the lattice site i,
∑

(i,j)

indicates the sum over the NN spin pairs Si and Sj both

in the xy planes and in adjacent planes in the z direction.
For simplicity, we suppose the same antiferromagnetic
interaction J (J > 0) for both in-plane NN pairs and
inter-plane NN ones.

Recently, Wang and Landau18 proposed a Monte Carlo
algorithm for classical statistical models. The algorithm
uses a random walk in energy space in order to obtained
an accurate estimate for the density of states g(E) which
is defined as the number of spin configurations for any
given E. This method is based on the fact that a flat
energy histogram H(E) is produced if the probability for
the transition to a state of energy E is proportional to
g(E)−1. At the beginning of the simulation, the density
of states (DOS) is set equal to one for all possible ener-
gies, g(E) = 1. We begin a random walk in energy space
(E) by choosing a site randomly and flipping its spin with
a probability proportional to the inverse of the momen-
tary density of states. In general, if E and E′ are the
energies before and after a spin is flipped, the transition
probability from E to E′ is

p(E → E′) = min [g(E)/g(E′), 1] . (2)

Each time an energy level E is visited, the DOS is mod-
ified by a modification factor f > 0 whether the spin
flipped or not, i.e. g(E) → g(E)f . At the beginning
of the random walk, the modification factor f can be as
large as e1 ≃ 2.7182818. A histogram H(E) records how
often a state of energy E is visited. Each time the en-
ergy histogram satisfies a certain ”flatness” criterion, f
is reduced according to f →

√
f and H(E) is reset to

zero for all energies. The reduction process of the mod-
ification factor f is repeated several times until a final
value ffinal which close enough to one. The histogram is
considered as flat if

H(E) ≥ x%.〈H(E)〉 (3)

for all energies, where x% is chosen between 70% and
95% and 〈H(E)〉 is the average histogram.

The thermodynamic quantities18,19 can be evalu-
ated by 〈En〉 = 1

Z

∑
E Eng(E) exp(−E/kBT ), Cv =

〈E2〉−〈E〉2

kBT 2 , 〈Mn〉 = 1
Z

∑
E Mng(E) exp(−E/kBT ), and

χ = 〈M2〉−〈M〉2

kBT
, where Z is the partition function de-

fined by Z =
∑

E g(E) exp(−E/kBT ). The canonical
distribution at any temperature can be calculated sim-
ply by P (E, T ) = 1

Z
g(E) exp(−E/kBT ).

In this work, we consider a energy range of interest20,21

(Emin, Emax). We divide this energy range to R subin-
tervals, the minimum energy of each subinterval is Ei

min

for i = 1, 2, ..., R, and maximum of the subinterval i is
Ei

max = Ei+1
min + 2∆E, where ∆E can be chosen large

enough for a smooth boundary between two subinter-
vals. The Wang-Landau algorithm is used to calculate
the relative DOS of each subinterval (Ei

min, Ei
max) with

the modification factor ffinal = exp(10−9) and flatness
criterion x% = 95%. We reject the suggested spin flip
and do not update g(E) and the energy histogram H(E)
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of the current energy level E if the spin-flip trial would
result in an energy outside the energy segment. The DOS
of the whole range is obtained by joining the DOS of each
subinterval (Ei

min + ∆E, Ei
max − ∆E).

III. RESULTS

We used the system size of N × N × N where N =
72, 84, 90, 96, 108, 120 and 150. Periodic boundary
conditions are used in the three directions. J = 1 is
taken as the unit of energy in the following.

The energy histograms for three representative sizes
N = 96, N = 120 and N = 150 shown in Figs. 1, 2
and 3, respectively. As seen, for N = 96, the peak is
very broad, a signature of the beginning to of a double-
maximum structure. The double peak begins really at
N = 120. We note that the distance between the two
peaks, i. e. the latent heat, increases with increasing size
and reaches 0.0025 for N = 150. This is to be compared
with the value ≃ 0.009 for N = 120 in the XY case.14–17

Such a small value of the latent heat in the Heisenberg
case explains why the first-order character was so difficult
to be observed. For increasing sizes, the minimum be-
tween the peaks will be deepened to separate completely
the two peaks. Note that the double-peak structure is a
sufficient condition, not a necessary condition, for a first-
order transition. We give here the values of Tc for a few
sizes: Tc = 0.95774, 0.95768 and 0.957242 for N=96, 120
and 150, respectively.

To explain why standard MC methods without his-
togram monitoring (see for example Ref. 3) fail to see
the first order character, let us show in Fig. 4 the energy
vs T obtained by averaging over states obtained by the
WL method for N = 96, 120 and 150. We see here that
while the energy histograms show already a signature of
double-peak structure at these big sizes, the average en-
ergy calculated by using these WL histograms does not
show a discontinuity: the averaging over all states erases
away the bimodal distribution seen in the energy his-
togram at the transition temperature. Therefore, care
should be taken to avoid such problems due to averaging
in MC simulations when studying weak first-order tran-
sitions.

Figures 5 and 6 show the magnetization and the sus-
ceptibility for three sizes N = 96, 120 and 150. Again
here, one does not see with one’s eye the discontinuity
of the magnetization at the transition even for N = 150.
The averaging procedure erases, as for the energy, the
detailed structure at the transition.

At this stage it is interesting to make another check
of the first-order character: in a first-order transition,
the maximum of the susceptibility should scale with
the system volume, namely Nd where d is the system
dimension.22 We plot in Fig. 7 χmax versus N in a ln− ln
scale. The slope of the straight line is ∼ 3.1 which is noth-
ing but d within errors. This is a very strong signature
of a first-order transition.
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FIG. 1: Energy histogram for N = 96 at Tc indicated on the
figure.
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FIG. 2: Energy histogram for N = 120 at Tc indicated on the
figure.
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FIG. 3: Energy histogram for N = 150 at Tc indicated on the
figure.

E

T

−1.18

−1.175

−1.17

−1.165

−1.16

−1.155

 0.955  0.956  0.957  0.958  0.959  0.96

N = 120
N = 150

N = 96  

FIG. 4: Energy versus T for N = 96, 120, 150.
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FIG. 5: Magnetization versus T for N =96, 120, 150.
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FIG. 6: Susceptibility versus T for N =96, 120, 150.

IV. CONCLUDING REMARKS

We have studied in this paper the phase transition in
the Heisenberg STA by using the flat histogram tech-
nique invented by Wang and Landau. The method is
very efficient because it helps to overcome extremely long
transition time between energy valleys in systems with a
first-order phase transition. We found that the transition

becomes clearly of first-order only at a very large lattice
size confirming the result of a nonperturbative RG cal-
culations using an effective average Hamiltonian. The
present work hence puts definitely an end to the long-
standing controversial subject on the nature of the phase
transition in Heisenberg STA. To conclude, let us empha-
size that for complicated systems like this one, methods
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FIG. 7: Maximum of susceptibility versus N=96, 108, 120
and 150 in the ln− ln scale. The slope is 3.1. See text for
comments.

well established for simple systems such as ferromagnets
may encounter difficulties in dealing with the nature of
the phase transition. Such difficulties can be solved only
with high-performance MC simulations as the one used
here, and a detailed analysis of the flow behavior as sug-
gested by a nonperturbative RG calculation.
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