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Chamfer distances are widely used in image analysis, and many ways have been investigated to compute optimal chamfer mask coefficients. Unfortunately, these methods are not systematized: they have to be conducted manually for every mask size or image anisotropy. Since image acquisition (e.g. medical imaging) can lead to anisotropic discrete grids with unpredictable anisotropy value, automated calculation of chamfer mask coefficients becomes mandatory for efficient distance map computation. This article presents a systematized calculation of these coefficients based on the automatic construction of chamfer masks of any size associated with a triangulation that allows to derive analytically the relative error with respect to the Euclidean distance, in any 3-D anisotropic lattice.

Introduction

Distance transformations (DTs) are widely used in image analysis since they allow to recover morphometric features of a binary shape. Among other applications, they can be applied to skeleton computation [START_REF] Pudney | Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images[END_REF], Voronoï diagram construction, or shape-based interpolation [START_REF] Herman | Shape-based interpolation[END_REF]. Distance transformation transforms a binary image into a grey level image where the value of each foreground pixel corresponds to its shortest distance to the background. Brute-force computation of DT is not compatible with expected image analysis requirements, so DTs are usually computed by propagation. Exact Euclidean maps can be computed through Euclidean Distance Transformations (EDT). Several EDT have been proposed, using morphological operators [START_REF] Shih | A mathematical morphology approach to euclidean distance transformation[END_REF][START_REF] Huang | A euclidean distance transform using grayscale morphology decomposition[END_REF], filters [START_REF] Saito | New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications[END_REF], several path on rows and columns [START_REF] Hirata | A unified linear-time algorithm for computing distance maps[END_REF], or propagating vectors [START_REF] Danielsson | Euclidean distance mapping[END_REF][START_REF] Ragnemalm | The euclidean distance transform in arbitrary dimensions[END_REF], but lead to time and/or memory consuming algorithms. A good trade-off between precision and computational cost for DT is achieved by chamfer maps that have been made popular by Borgefors [START_REF] Borgefors | Distance transformations in digital images[END_REF]. These maps are computed through two raster-scan on the image that propagate the distance values by the way of chamfer masks. The coefficients of the mask are (proportional) estimation of short-range distances: the larger the chamfer mask is, the closest to the Euclidean map the chamfer map will be. The calculation of optimal coefficients can be done by minimizing either an absolute error [START_REF] Borgefors | Distance transformations in arbitrary dimensions[END_REF] or a relative one [START_REF] Verwer | Local distances for distance transformations in two and three dimensions[END_REF]. It has first been done for 2-D 3 × 3 masks [START_REF] Borgefors | Distance transformations in arbitrary dimensions[END_REF] in isotropic lattices, then extended to larger masks [START_REF] Borgefors | Distance transformations in digital images[END_REF][START_REF] Verwer | Local distances for distance transformations in two and three dimensions[END_REF] and to higher dimensions [START_REF] Borgefors | On digital distance transforms in three dimensions[END_REF]. Anisotropic lattices have also been considered [START_REF] Coquin | Discrete distance operator on rectangular grids[END_REF][START_REF] Mangin | Chamfer distances in anisotropic 3D images[END_REF][START_REF] Sintorn | Weighted distance transfoms for images using elongated voxel grids[END_REF]. However, those calculations remain tedious and are not systematized: thus they have to be conducted manually for every mask size or anisotropy value.

Our motivation is the computation of DT in 3-D medical images: they are usually acquired on anisotropic lattices (slice thickness is usually larger than the pixel size) and this anisotropy may vary from one acquisition to the other. The efficient computation of chamfer maps requires then the calculation of the chamfer mask's coefficient to be automated. calculation of these coefficients for any mask size and any anisotropy value. In addition to classical error criteria, we also consider norm constraints [START_REF] Remy | Optimizing 3d chamfer masks with norm constraints[END_REF] that guarantee predictable results. Our approach is based on the automatic construction of chamfer masks of any size associated with a triangulation that allows to derive analytically the relative error with respect to the Euclidean distance.

In the following, we first recall some basic definitions. Then we describe error estimation and norm constraints. Some results (coefficients of isotropic 7 3 and anisotropic 3 3 masks) are given before we conclude.

Definitions and notations

We recall here some notations and definitions. We consider the discrete space E = Z 3 . An image I is an application defined on E.

A discrete distance is an application d : E × E -→ N that verifies for all p, q, r ∈ E the following 4 properties:

d(p) ≥ 0,
d(p, q) = 0 ⇐⇒ p = q, d(p, q) = d(q, p), and d(p, q) ≤ d(p, r) + d(r, q).

Given a discrete distance d, the application n :

E -→ N is a discrete norm on Z if and only if ∀p ∈ E, n(λp) = |λ|n(p) ∀λ ∈ Z.
Let us consider a binary image I with foreground X and background X. The distance map D X is an application defined on E such that D X (p) = inf q∈X d(p, q). Distance maps can be approximated by chamfer maps, that can be computed with a two-passes (so-called forward and backward passes) algorithm [START_REF] Rosenfeld | Sequential operations in digital picture processing[END_REF]. To do so, we need to define the chamfer mask which is a set M C = {(v i , ω i ), 1 ≤ i ≤ m} of weighted vectors representing authorized displacements. It is centered in O, symmetrical with respect to its center and contains at least a base of E.

Given a chamfer mask M C and two points p, q ∈ E, we define a path P pq from A to B as a sequence of vectors v i ∈ M C so that -→ pq is expressed as a linear combination of vectors: -→ pq = n i .v i with n i ∈ N. The cost W of a path P pq is defined as W (P pq ) = n i .ω i . The chamfer distance between two points p, q ∈ E as the minimal possible cost, i.e. d C (p, q) = min Ppq W (P pq ).

Computing optimal coefficients for chamfer norms

Calculating the optimal weights for a given chamfer mask is usually achieved by minimizing the error (either absolute or relative) between the chamfer's distance and the Euclidean one. Thanks to symmetry considerations, we can only consider the mask generator M g C , i.e. the part of the anisotropic chamfer mask M C that is included in the first eighth of the space, 1 8 Z 3 , delimited by the half-lines (O, x), (O, y) and (O, z). Moreover, vectors are also chosen so that ∀i, j with i = j, ∃n ∈ N such that v i = nv j .

Estimating the error between a chamfer distance and the Euclidean one is quite awkward when dealing with large masks. This difficulty can be reduced if we are able to triangulate the mask generator M g C into regular cones. A continuous cone, defined by a triplet of vectors and denoted by v i , v j , v k , represents the region of R 3 delimited by the vectors v i , v j and v k , i.e.

v i , v j , v k {M ∈ R 3 | --→ OM = λ i .v i + λ j .v j + λ k .v k , λ i , λ j , λ k ∈ R + } A discrete cone, v i , v j , v k , is the set of points of Z 3 that are included in the continuous cone v i , v j , v k : v i , v j , v k {M ∈ Z 3 |M ∈ v i , v j , v k }. A regular cone is a discrete cone that verifies ∆ i,j,k = ±1 where ∆ i,j,k is the determinant of the matrix |v i v j v k | (first column is vector v i , etc
). Regular cones have the interesting properties that any point of the cone can be expressed in the basis of the 3 vectors defining the cone, i.e.

v i , v j , v k = {M ∈ Z 3 | --→ OM = λ i .v i + λ j .v j + λ k .v k , λ i , λ j , λ k ∈ N}
only holds for regular cones [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. Having a mask generator that can be triangulated into regular cones allows us to reduce the calculation of the error into independent calculations in each regular cone. In the following, we will only deal with such mask generators. To ensure that they can be triangulated into regular cones, we build them with the Farey triangulation [START_REF] Remy | Optimizing 3d chamfer masks with norm constraints[END_REF]. This technique allows us to recursively (and automatically) built large mask generators M g C with their associated regular triangulation

T g C = { v i , v j , v k } (see appendix A).

Error definition and calculation

We have chosen to minimize the relative error between the chamfer distance and the Euclidean one, computed on planes x = cste, or y = cste, or z = cste. Let us consider a point P = (x, y, z). According to above section, we know that its chamfer distance to the origin O, denoted d C (P ), is a linear combination of the weights of the 3 vectors defining the regular cone it belongs to. We have then d

C (P ) = a.ω i + b.ω j + c.ω k with --→ OP = a.v i + b.v j + c.v k .
Solving the latter expression yields (recall that ∆ i,j,k = ±1 for regular cones)

a = 1 ∆ i,j,k x x j x k y y j y k z z j z k , b = 1 ∆ i,j,k x i x x k y i y y k z i z z k , and c = 1 ∆ i,j,k x i x j x y i y j y z i z j z and allows us to obtain d C (x, y, z) = α.x + β.y + γ.z with α = (y j z k -y k z j ).ω i + (y k z i -y i z k ).ω j + (y i z j -y j z i ).ω k β = (z j x k -z k x j ).ω i + (z k x i -z i x k ).ω j + (z i x j -z j x i ).ω k γ = (x j y k -x k y j ).ω i + (x k y i -x i y k ).ω j + (x i y j -x j y i ).ω k
Chamfer distances are usually computed with integer weights, and have to be scaled with a real factor, ε (typically the displacement associated with the smallest voxel size), to be compared to the Euclidean distance d E (x, y, z) =

d 2 x x 2 + d 2 y y 2 + d 2 z z 2
where d x , d y and d z denote the voxel size in the x, y, and z direction. The relative error to minimize is then defined by

E relative (x, y, z) = d C /ε -d E d E = 1 ε α.x + β.y + γ.z d 2 x x 2 + d 2 y y 2 + d 2 z z 2 -1. (1) 
Depending on the orientation of the cone, this error has to be minimized on either the plane x = M , or y = M , or z = M . Without loss of generality, we will only go into details for the case x = M ,M = 0. The error has then to be estimated on the triangle defined as the intersection between the cone v i , v j , v k and the plan x = M . The vertices of this triangle are the points

V l = (M, M y l x l , M y l x l ) = (M, y ′ l , x ′ l ) for l = i, j, k.
In plane x = M , the relative error can be rewritten

E x (y ′ , z ′ ) = 1 ε α + β.y ′ + γ.z ′ d 2 x + d 2 y y ′ 2 + d 2 z z ′ 2 -1 with y ′ = y M and z ′ = z M . ( 2 
)
E x is continuous on a closed and bounded interval (the triangle V i V j V k ), it is then bounded and reaches its bounds. Its extrema can be located either inside the triangle, or on the edges of the triangle, or at the vertices of the triangle. Let us consider the three cases.

1. The extremum is inside the triangle. By derivating equation 2, it comes that the extremum will be located at (y ′ max , z ′ max ) = . If this point is inside the triangle V i V j V k , it yields an extreme value

E x (V i V j V k ) = 1 ε α 2 d 2 x + β 2 d 2 y + γ 2 d 2 z -1.
2. The extremum is on an edge. There are three edges, but we will only present the calculation for V i V j . In this case, a point M belonging to the edge can be represented by M = aV i + (1 -a)V j yielding the relative error along the edge

E x (a) = 1 ε (β.Y +γ.Z)a+(α+β.yj +γ.zj ) √ (d 2 y Y 2 +d 2 z Z 2 )a 2 +2(d 2 y yj Y +d 2 z zj Z)a+d 2 x +d 2 y y 2 j +d 2 z z 2 j -1 with Y = y i -y j Z = z i -z j .
(3) After derivation, it can be shown that the extreme value is reached for

a max = - (β(yj Z-zj Y )+αZ)zj d 2 z +(γ(zj Y -yj Z)+αY )yj d 2 y -(βY +γZ)d 2 x (β(yj Z-zj Y )+αZ)Zd 2 z +(γ(zj Y -yj Z)+αY )Y d 2 y .
If 0 ≤ a max ≤ 1, the extreme value E x (V i V j ) is given by E x (a max ) whose form is not simple enough to be displayed here.

3. The extremum is reached on one of the triangle's vertices, V l where the relative error value is given by

E x (V l ) = 1 ε ω l ||v l || R -1 with ||v l || R = x 2 l d 2 x + y 2 l d 2 y + z 2 l d 2 z
Thus we are now able to compute both the minimum and maximum relative errors, τ min and τ max (please recall that they depend on ε), for a mask generator M g C by

τ min = min vi,vj ,vk ∈T g C min E u (V i V j V k ), min l,m E u (V l V m ), min l E u (V l ) τ max = max vi,vj ,vk ∈T g C max E u (V i V j V k ), max l,m E u (V l V m ), max l E u (V l )
u denoting the plane (x, y, or z) where the error is minimized; E u (V i V j V k ) and E u (V l V m ) being estimated only if the corresponding extremum lies in the correct interval.

The global relative error is defined by τ (ε) = max(τ min (ε), τ max (ε)). According that τ min (ε) < 0 and τ max (ε) > 0, we can make them equal in absolute value by changing the value of ε into ε opt = ε τmin+τmax 2 + 1 [START_REF] Thiel | Les distances de chanfrein en analyse d'images : fondements et applications[END_REF]. We obtain the optimal relative error τ opt by τ opt = -τ min (ε opt ) = τ max (ε opt ). It can be shown that the chamfer distance d C induced by any chamfer mask M C is a discrete distance [START_REF] Remy | Normes de chanfrein et axe médian dans le volume discret[END_REF]. However, a distance that is not a norm is not invariant by homothety and this may not be desirable (for instance when comparing skeletons of the same object at different scales). Therefore, we introduce additional criteria to ensure that the computed weights will define a discrete norm.

Norm constraints

A distance is a norm if and only if its ball is convex, symmetric, and homogeneous. For chamfer masks, symmetry is achieved by construction, homogeneity is due to the regular triangulation (also obtained by construction) while convexity can be assessed on the equivalent rational ball of the chamfer mask [START_REF] Remy | Optimizing 3d chamfer masks with norm constraints[END_REF].

Given a chamfer mask

M C = {(v i ∈ Z 3 , ω i ∈ N)} its equivalent rational mask is defined by M ′ C = {(v i /ω i ∈ Q 3 , 1)}.
The polyhedron defined by this equivalent rational mask is the equivalent rational ball (see figure 1).

To check the convexity of the ball, we have to check whether the ball is convex at each of its edges [START_REF] Remy | Optimizing 3d chamfer masks with norm constraints[END_REF]: each edge must be "turned to the outside" of the ball. It turns out that we only have to check a local convexity criterion (LCC) at each edge of the equivalent rational ball. Given 2 faces (P, Q, S) and (Q, R, S) of a triangulation sharing edge (Q, S), the LCC can be expressed as

LCC(P, Q, R, S) = 1 ω P .ω Q .ω R .ω S . x Q x R x S x P y Q y R y S y P z Q z R z S z P ω Q ω R ω S ω P ≥ 0. ( 4 
)

Automatic calculation of chamfer mask coefficients

The computation of optimal coefficients for a mask of size (2n + 1) 3 is done in three steps: generation of the Farey triangulation, generation of the norm constraints, and iterative computation of the optimal sets of weights.

Building the Farey triangulation

The recursive automated construction of the Farey triangulation of order n is described in appendix A. This triangulation T g C corresponds to isotropic chamfer mask generator M g C . When dealing with anisotropic lattice, one has to add extra vectors to the mask generator and extra cones to the triangulation. This is achieved by symmetry considerations. For instance, for a 3 3 mask, if the voxel size d z along z is different from the ones along x and y, d x and d y , we have to consider in the mask generator, in addition to the vectors {(1,0,0), (1,1,0), (1,1,1)}, the two extra vectors {(0,0,1), (1,0,1)} that corresponds to weights induced by the anisotropy. These extra vectors belongs to the two extra cones, (1,0,0), (1,0,1), (1,1,1) and (0,0,1), (1,0,1), [START_REF] Pudney | Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images[END_REF][START_REF] Pudney | Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images[END_REF][START_REF] Pudney | Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images[END_REF] , that are to be considered for the error computation and the local convexity constraints.

Generating convexity criteria

The triangulation T g C has been built as described above. It allows us to generate all the local convexity constraints (equation 4) that are to be verified. They have to be generated for every edge inside the mask generator, but also for the edges that are at the border of the mask generator. For the latter, the fourth point (see figure 2) is derived from symmetry considerations.

Please notice that each of the generated LCC depends on 4 weights ω i .

Finding the optimal coefficients

This is the tough part. We have to identify the m-tuples (ω 1 . . . ω m ) of weights corresponding to the chamfer mask generator M g C = {v i , 1 ≤ i ≤ m} to find the optimal ones that yield optimal error. These sets of optimal coefficients are searched by a brute-force method. However, we try to reduce this computationally expensive search by throwing away m-tuples (ω 1 . . . ω m ) as soon as part of them do not satisfy the local convexity constraints (as sketched by below recursive algorithm1 ).

1: procedure Test( n ) 2: if some LCCs can be verified with (ω i , . . . ω n ) then 3:

test these LCCs and return if one of them is not verified 4: if n equals to m then {All ω i are set.}

5:

Compute the error τ opt 6:

if this τ opt is smaller than the previous one then (ω i , . . . , ω m ) is an optimal set of coefficients 8:

return 9: for ω n+1 from ω 1 ||v i || ∞ to ω 1 ||v i || 1 do {Iteratively set a value to ω n+1 .} 10:
Test( n + 1 ) 11: {Main Program} 12: for ω 1 from 1 to some user provided value do 13:

Test( 1 )
ω 1 , the coefficient corresponding to the direction of smallest voxel size, varies from 1 to some maximal value provided by the user, while the other coefficients are searched in the interval [ω

1 ||v i || ∞ , ω 1 ||v i || 1 ].
Error computation is only performed on coefficients sets that verify all the local convexity constraints. As a result, this algorithm gives all the optimal m-tuples in lexicographical order. 

Results

Table 1 presents optimal sets of weights of a 3 × 3 × 3 chamfer mask for an anisotropic grid with dx = 1, dy = 1.5, dz = 3.0. The points belonging to this mask are: aX(1, 0, 0), aY (0, 1, 0), aZ(0, 0, 1), bY Z(0, 1, 1), bXZ(1, 0, 1), bXY (1, 1, 0), and c(1, 1, 1). The time needed to compute these sets is 958 ms.

Table 2 presents optimal sets of weights the associated maximum relative error for 7 × 7 × 7 isotropic chamfer masks. The points belonging to this mask are: a(1, 0, 0), b(1, 1, 0), c(1, 1, 1), d(2, 1, 0), e(2, 1, 1), f (2, 2, 1), g(3, 1, 0), h(3, 1, 1), i(3, 2, 0), j(3, 2, 1), k(3, 2, 2), l(3, 3, 1), m(3, 3, 2). The computational times needed to examine all the m-tuples with ω 1 less or equal to 5, 7, 10, and 14 are respectively of 2 min, 25 min, 6 h 37 mn, and 102 h. 

Conclusion

We have proposed an automated approach to compute optimal chamfer norm coefficients for mask of any size and for lattice of any anisotropy. It is based on the Farey triangulation that permits us to recursively build large masks while ensuring a regular triangulation of the chamfer mask generators. It allows us to automatically compute the error of any mask, thanks to analytical expressions of errors we can derive on regular cones. In addition, the coefficients we calculate verify norm constraints, thus yields scale invariant chamfer maps.

A Recursive Farey triangulation construction

A.1 Farey Set Points

A Farey set F n of order n is a set of all the irreducible points y x , z x in Q ∩ [0, 1] whose denominator does not exceed n. It is built only with visible points (this means the greatest common divisor of (x, y, z) is 1).

A Farey set of order n correspond to the vectors of the generator of a 3-D chamfer mask of size (2n + 1) 3 . For example, the ordered (lexicographical order) Farey set of order 1

F 1 = {( 0 1 , 0 1 ), ( 1 1 , 0 1 ), ( 1 1 , 1 
1 )} correspond to the set of vectors {(1, 0, 0), (1, 1, 0), (1, 1, 1)} which is the generator of an isotropic chamfer mask of size 3 3 . Other vectors that are involved in an anisotropic chamfer mask are deduced from the previous ones by symmetries.

The Farey set of order n + 1, F n+1 , can be built from Fn by 

F n+1 = F n ∪ y x , z x + y ′ x ′ , z ′ x ′ with x + x ′ ≤

A.2 Recursive construction of Farey Set triangulations

The triangulation T 1 associated to F 1 is composed of a single cone (1,0,0), (1,1,0), (1,1,1) , or equivalently a Farey triangle ( 0 1 , 0 1 ), ( 11 , 0 1 ), ( 11 , 1 1 ) , that is regular. To build T n+1 from T n , we first put all the Farey triangle in a list L. We now examine successively the triangle in L, and will try to build new triangles by splitting the existing one into two triangles.

Let us consider the triangle A, B, C of L. We try to add a new vertex along its largest edge 2 , say AB. Such a vertex belongs to F n+1 if and only if x a + x b ≤ n + 1. If the latter is not true, the triangle is put again in the list but will no more be considered. If The construction of T n+1 stops when no more triangles, whose vertices are Farey points of order n + 1, can be inserted into L.

Figure 3 shows the different steps of the construction of T 2 from T 1 . T 3 and T 4 are displayed in Figure 4. 2 We consider that large discrepancies between the chamfer distance and the Euclidean one are more likely to occur along the largest edges.

Fig. 1 .

 1 Fig. 1. Equivalent rational ball of a 3D 5 × 5 × 5 isotropic chamfer mask.

Fig. 2 .

 2 Fig. 2. Notations for equation 4.
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  x a + x b ≤ n + 1 is true, let us denote C ′ = A +B the new Farey point: the two triangles A, C, C ′ and B, C, C ′ are put into the list L. It can also recursively be shown that those two triangles are regular.

Fig. 3 .

 3 Fig. 3. Construction of T2 from T1.

Fig. 4 .

 4 Fig. 4. T3 and T4.

Table 1 .

 1 3 × 3 × 3 chamfer mask coefficients for anisotropic grid.

	7	13 4.592 14.81

Table 2 .

 2 7 × 7 × 7 chamfer mask coefficients.

	6 6	1.207 20.71

Java code is available from http://www-sop.inria.fr/epidaure/personnel/Celine.Fouard/.