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Abstract. Chamfer distances are widely used in image analysis, and
many ways have been investigated to compute optimal chamfer mask
coefficients. Unfortunately, these methods are not systematized: they
have to be conducted manually for every mask size or image anisotropy.
Since image acquisition (e.g. medical imaging) can lead to anisotropic dis-
crete grids with unpredictable anisotropy value, automated calculation
of chamfer mask coefficients becomes mandatory for efficient distance
map computation. This article presents a systematized calculation of
these coefficients based on the automatic construction of chamfer masks
of any size associated with a triangulation that allows to derive analyt-
ically the relative error with respect to the Euclidean distance, in any
3-D anisotropic lattice.
Keywords: chamfer distance, anisotropic lattice

1 Introduction

Distance transformations (DTs) are widely used in image analysis since they
allow to recover morphometric features of a binary shape. Among other ap-
plications, they can be applied to skeleton computation [1], Voronöı diagram
construction, or shape-based interpolation [2]. Distance transformation trans-
forms a binary image into a grey level image where the value of each foreground
pixel corresponds to its shortest distance to the background. Brute-force com-
putation of DT is not compatible with expected image analysis requirements, so
DTs are usually computed by propagation. Exact Euclidean maps can be com-
puted through Euclidean Distance Transformations (EDT). Several EDT have
been proposed, using morphological operators [3, 4], filters [5], several path on
rows and columns [6], or propagating vectors [7, 8], but lead to time and/or
memory consuming algorithms. A good trade-off between precision and compu-
tational cost for DT is achieved by chamfer maps that have been made popular
by Borgefors [9]. These maps are computed through two raster-scan on the image
that propagate the distance values by the way of chamfer masks. The coefficients
of the mask are (proportional) estimation of short-range distances: the larger the
chamfer mask is, the closest to the Euclidean map the chamfer map will be. The
calculation of optimal coefficients can be done by minimizing either an abso-
lute error [10] or a relative one [11]. It has first been done for 2-D 3 × 3 masks



[10] in isotropic lattices, then extended to larger masks [9, 11] and to higher di-
mensions [12]. Anisotropic lattices have also been considered [13–15]. However,
those calculations remain tedious and are not systematized: thus they have to
be conducted manually for every mask size or anisotropy value.

Our motivation is the computation of DT in 3-D medical images: they are
usually acquired on anisotropic lattices (slice thickness is usually larger than
the pixel size) and this anisotropy may vary from one acquisition to the other.
The efficient computation of chamfer maps requires then the calculation of the
chamfer mask’s coefficient to be automated. calculation of these coefficients for
any mask size and any anisotropy value. In addition to classical error criteria,
we also consider norm constraints [16] that guarantee predictable results. Our
approach is based on the automatic construction of chamfer masks of any size
associated with a triangulation that allows to derive analytically the relative
error with respect to the Euclidean distance.

In the following, we first recall some basic definitions. Then we describe error
estimation and norm constraints. Some results (coefficients of isotropic 73 and
anisotropic 33 masks) are given before we conclude.

2 Definitions and notations

We recall here some notations and definitions. We consider the discrete space
E = Z3. An image I is an application defined on E.

A discrete distance is an application d : E × E −→ N that verifies for all
p, q, r ∈ E the following 4 properties:

d(p) ≥ 0, d(p, q) = 0 ⇐⇒ p = q,
d(p, q) = d(q, p), and d(p, q) ≤ d(p, r) + d(r, q).

Given a discrete distance d, the application n : E −→ N is a discrete norm on Z

if and only if ∀p ∈ E, n(λp) = |λ|n(p) ∀λ ∈ Z.
Let us consider a binary image I with foreground X and background X. The

distance map DX is an application defined on E such that DX(p) = infq∈X d(p, q).
Distance maps can be approximated by chamfer maps, that can be computed

with a two-passes (so-called forward and backward passes) algorithm [17]. To do
so, we need to define the chamfer mask which is a set MC = {(vi, ωi), 1 ≤ i ≤
m} of weighted vectors representing authorized displacements. It is centered in
O, symmetrical with respect to its center and contains at least a base of E.

Given a chamfer mask MC and two points p, q ∈ E, we define a path Ppq

from A to B as a sequence of vectors vi ∈ MC so that −→pq is expressed as a
linear combination of vectors: −→pq =

∑
ni.vi with ni ∈ N. The cost W of a path

Ppq is defined as W (Ppq) =
∑

ni.ωi. The chamfer distance between two points
p, q ∈ E as the minimal possible cost, i.e. dC(p, q) = minPpq

W (Ppq).

3 Computing optimal coefficients for chamfer norms

Calculating the optimal weights for a given chamfer mask is usually achieved by
minimizing the error (either absolute or relative) between the chamfer’s distance



and the Euclidean one. Thanks to symmetry considerations, we can only consider
the mask generator Mg

C , i.e. the part of the anisotropic chamfer mask MC that
is included in the first eighth of the space, 1

8Z3, delimited by the half-lines (O,x),
(O,y) and (O, z). Moreover, vectors are also chosen so that ∀i, j with i 6= j, 6 ∃n ∈
N such that vi = nvj .

Estimating the error between a chamfer distance and the Euclidean one is
quite awkward when dealing with large masks. This difficulty can be reduced if
we are able to triangulate the mask generator Mg

C into regular cones.
A continuous cone, defined by a triplet of vectors and denoted by 〈vi,vj ,vk〉,

represents the region of R3 delimited by the vectors vi, vj and vk, i.e.

〈vi,vj ,vk〉 , {M ∈ R3|−−→OM = λi.vi + λj .vj + λk.vk, λi, λj , λk ∈ R+}

A discrete cone, 〈〈vi,vj ,vk〉〉, is the set of points of Z3 that are included in

the continuous cone 〈vi,vj ,vk〉: 〈〈vi,vj ,vk〉〉 , {M ∈ Z3|M ∈ 〈vi,vj ,vk〉}.
A regular cone is a discrete cone that verifies ∆i,j,k = ±1 where ∆i,j,k is the
determinant of the matrix |vivjvk| (first column is vector vi, etc). Regular cones
have the interesting properties that any point of the cone can be expressed in
the basis of the 3 vectors defining the cone, i.e.

〈〈vi,vj ,vk〉〉 = {M ∈ Z3|−−→OM = λi.vi + λj .vj + λk.vk, λi, λj , λk ∈ N}

only holds for regular cones [18]. Having a mask generator that can be trian-
gulated into regular cones allows us to reduce the calculation of the error into
independent calculations in each regular cone. In the following, we will only deal
with such mask generators. To ensure that they can be triangulated into regular
cones, we build them with the Farey triangulation [16]. This technique allows us
to recursively (and automatically) built large mask generators Mg

C with their
associated regular triangulation T g

C = {〈〈vi,vj ,vk〉〉} (see appendix A).

3.1 Error definition and calculation

We have chosen to minimize the relative error between the chamfer distance and
the Euclidean one, computed on planes x = cste, or y = cste, or z = cste.

Let us consider a point P = (x, y, z). According to above section, we know
that its chamfer distance to the origin O, denoted dC(P ), is a linear combination
of the weights of the 3 vectors defining the regular cone it belongs to. We have
then dC(P ) = a.ωi +b.ωj +c.ωk with

−−→
OP = a.vi +b.vj +c.vk. Solving the latter

expression yields (recall that ∆i,j,k = ±1 for regular cones)

a =
1

∆i,j,k

∣∣∣∣∣∣

x xj xk

y yj yk

z zj zk

∣∣∣∣∣∣
, b =

1

∆i,j,k

∣∣∣∣∣∣

xi x xk

yi y yk

zi z zk

∣∣∣∣∣∣
, and c =

1

∆i,j,k

∣∣∣∣∣∣

xi xj x
yi yj y
zi zj z

∣∣∣∣∣∣

and allows us to obtain dC(x, y, z) = α.x + β.y + γ.z with

α = (yjzk − ykzj).ωi + (ykzi − yizk).ωj + (yizj − yjzi).ωk

β = (zjxk − zkxj).ωi + (zkxi − zixk).ωj + (zixj − zjxi).ωk

γ = (xjyk − xkyj).ωi + (xkyi − xiyk).ωj + (xiyj − xjyi).ωk



Chamfer distances are usually computed with integer weights, and have to be
scaled with a real factor, ε (typically the displacement associated with the
smallest voxel size), to be compared to the Euclidean distance dE(x, y, z) =√

d2
xx2 + d2

yy2 + d2
zz

2 where dx, dy and dz denote the voxel size in the x, y, and

z direction. The relative error to minimize is then defined by

Erelative(x, y, z) =
dC/ε − dE

dE

=
1

ε

α.x + β.y + γ.z√
d2

xx2 + d2
yy2 + d2

zz
2
− 1. (1)

Depending on the orientation of the cone, this error has to be minimized on
either the plane x = M , or y = M , or z = M . Without loss of generality,
we will only go into details for the case x = M ,M 6= 0. The error has then
to be estimated on the triangle defined as the intersection between the cone
〈vi,vj ,vk〉 and the plan x = M . The vertices of this triangle are the points
Vl = (M,M yl

xl
,M yl

xl
) = (M,y′

l, x
′
l) for l = i, j, k. In plane x = M , the relative

error can be rewritten

Ex(y′, z′) =
1

ε

α + β.y′ + γ.z′√
d2

x + d2
yy′2 + d2

zz
′2

− 1 with y′ =
y

M
and z′ =

z

M
. (2)

Ex is continuous on a closed and bounded interval (the triangle ViVjVk), it is
then bounded and reaches its bounds. Its extrema can be located either inside
the triangle, or on the edges of the triangle, or at the vertices of the triangle.
Let us consider the three cases.

1. The extremum is inside the triangle. By derivating equation 2, it comes that

the extremum will be located at (y′
max, z′max) =

(
βd2

x

αd2
y
,

γd2

x

αd2
z

)
. If this point is

inside the triangle ViVjVk, it yields an extreme value

Ex(ViVjVk) =
1

ε

√
α2

d2
x

+
β2

d2
y

+
γ2

d2
z

− 1.

2. The extremum is on an edge. There are three edges, but we will only present
the calculation for ViVj . In this case, a point M belonging to the edge can
be represented by M = aVi + (1 − a)Vj yielding the relative error along the
edge

Ex(a) = 1
ε

(β.Y +γ.Z)a+(α+β.yj+γ.zj)√
(d2

yY 2+d2
zZ2)a2+2(d2

yyjY +d2
zzjZ)a+d2

x+d2
yy2

j
+d2

zz2

j

−1 with

{
Y = yi − yj

Z = zi − zj
.

(3)
After derivation, it can be shown that the extreme value is reached for

amax = − (β(yjZ−zjY )+αZ)zjd2

z+(γ(zjY −yjZ)+αY )yjd2

y−(βY +γZ)d2

x

(β(yjZ−zjY )+αZ)Zd2
z+(γ(zjY −yjZ)+αY )Y d2

y
.

If 0 ≤ amax ≤ 1, the extreme value Ex(ViVj) is given by Ex(amax) whose
form is not simple enough to be displayed here.



3. The extremum is reached on one of the triangle’s vertices, Vl where the
relative error value is given by

Ex(Vl) =
1

ε

ωl

||vl||R
− 1 with ||vl||R =

√
x2

l d
2
x + y2

l d2
y + z2

l d2
z

Thus we are now able to compute both the minimum and maximum relative
errors, τmin and τmax (please recall that they depend on ε), for a mask generator
Mg

C by

τmin = min
〈〈vi,vj ,vk〉〉∈T g

C

min

(
Eu(ViVjVk),min

l,m
Eu(VlVm),min

l
Eu(Vl)

)

τmax = max
〈〈vi,vj ,vk〉〉∈T g

C

max

(
Eu(ViVjVk),max

l,m
Eu(VlVm),max

l
Eu(Vl)

)

u denoting the plane (x, y, or z) where the error is minimized; Eu(ViVjVk) and
Eu(VlVm) being estimated only if the corresponding extremum lies in the correct
interval.

The global relative error is defined by τ(ε) = max(τmin(ε), τmax(ε)). Accord-
ing that τmin(ε) < 0 and τmax(ε) > 0, we can make them equal in absolute
value by changing the value of ε into εopt = ε

(
τmin+τmax

2 + 1
)

[19]. We obtain
the optimal relative error τopt by τopt = −τmin(εopt) = τmax(εopt).

3.2 Norm constraints

Fig. 1. Equivalent ratio-
nal ball of a 3D 5 × 5 × 5
isotropic chamfer mask.

It can be shown that the chamfer distance dC in-
duced by any chamfer mask MC is a discrete dis-
tance [20]. However, a distance that is not a norm
is not invariant by homothety and this may not be
desirable (for instance when comparing skeletons of
the same object at different scales). Therefore, we
introduce additional criteria to ensure that the com-
puted weights will define a discrete norm.

A distance is a norm if and only if its ball is
convex, symmetric, and homogeneous. For chamfer
masks, symmetry is achieved by construction, ho-
mogeneity is due to the regular triangulation (also
obtained by construction) while convexity can be

Fig. 2. Notations
for equation 4.

assessed on the equivalent rational ball of the chamfer mask
[16].

Given a chamfer mask MC = {(vi ∈ Z3, ωi ∈ N)} its
equivalent rational mask is defined by M′

C = {(vi/ωi ∈
Q3, 1)}. The polyhedron defined by this equivalent rational
mask is the equivalent rational ball (see figure 1).

To check the convexity of the ball, we have to check
whether the ball is convex at each of its edges [16]: each



edge must be “turned to the outside” of the ball. It turns out that we only have
to check a local convexity criterion (LCC) at each edge of the equivalent rational
ball. Given 2 faces (P,Q, S) and (Q,R, S) of a triangulation sharing edge (Q,S),
the LCC can be expressed as

LCC(P,Q,R, S) =
1

ωP .ωQ.ωR.ωS

.

xQ xR xS xP

yQ yR yS yP

zQ zR zS zP

ωQ ωR ωS ωP

≥ 0. (4)

4 Automatic calculation of chamfer mask coefficients

The computation of optimal coefficients for a mask of size (2n + 1)3 is done
in three steps: generation of the Farey triangulation, generation of the norm
constraints, and iterative computation of the optimal sets of weights.

4.1 Building the Farey triangulation

The recursive automated construction of the Farey triangulation of order n is
described in appendix A. This triangulation T g

C corresponds to isotropic chamfer
mask generator Mg

C . When dealing with anisotropic lattice, one has to add extra
vectors to the mask generator and extra cones to the triangulation.

This is achieved by symmetry considerations. For instance, for a 33 mask, if
the voxel size dz along z is different from the ones along x and y, dx and dy, we
have to consider in the mask generator, in addition to the vectors {(1,0,0), (1,1,0), (1,1,1)},
the two extra vectors {(0,0,1), (1,0,1)} that corresponds to weights induced by the
anisotropy. These extra vectors belongs to the two extra cones, 〈〈(1,0,0), (1,0,1), (1,1,1)〉〉
and 〈〈(0,0,1), (1,0,1), (1,1,1)〉〉, that are to be considered for the error computation
and the local convexity constraints.

4.2 Generating convexity criteria

The triangulation T g
C has been built as described above. It allows us to generate

all the local convexity constraints (equation 4) that are to be verified. They have
to be generated for every edge inside the mask generator, but also for the edges
that are at the border of the mask generator. For the latter, the fourth point
(see figure 2) is derived from symmetry considerations.

Please notice that each of the generated LCC depends on 4 weights ωi.

4.3 Finding the optimal coefficients

This is the tough part. We have to identify the m-tuples (ω1 . . . ωm) of weights
corresponding to the chamfer mask generator Mg

C = {vi, 1 ≤ i ≤ m} to find the
optimal ones that yield optimal error.

These sets of optimal coefficients are searched by a brute-force method. How-
ever, we try to reduce this computationally expensive search by throwing away



m-tuples (ω1 . . . ωm) as soon as part of them do not satisfy the local convexity
constraints (as sketched by below recursive algorithm1).

1: procedure Test( n )
2: if some LCCs can be verified with (ωi, . . . ωn) then

3: test these LCCs and return if one of them is not verified
4: if n equals to m then {All ωi are set.}
5: Compute the error τopt

6: if this τopt is smaller than the previous one then

7: (ωi, . . . , ωm) is an optimal set of coefficients
8: return

9: for ωn+1 from ω1||vi||∞ to ω1||vi||1 do {Iteratively set a value to ωn+1.}
10: Test( n + 1 )
11: {Main Program}
12: for ω1 from 1 to some user provided value do

13: Test( 1 )

ω1, the coefficient corresponding to the direction of smallest voxel size, varies
from 1 to some maximal value provided by the user, while the other coefficients
are searched in the interval [ω1||vi||∞, ω1||vi||1]. Error computation is only per-
formed on coefficients sets that verify all the local convexity constraints. As a
result, this algorithm gives all the optimal m-tuples in lexicographical order.

aX aY aZ bY Z bXZ bXY c εopt τopt(%)

1 2 3 3 3 2 3 1.257 25.66
1 2 3 4 4 2 4 1.238 23.79
2 3 6 6 6 3 6 2.370 18.49
2 3 6 7 6 4 7 2.353 17.65
2 3 6 7 7 4 7 2.302 15.09
4 6 12 13 12 7 13 4.592 14.81
4 6 12 13 13 7 14 4.584 14.60
4 6 12 14 13 7 14 4.581 14.52
5 8 15 17 16 9 17 5.703 14.06
6 9 18 20 19 11 21 6.834 13.90
6 9 18 21 19 11 21 6.815 13.59
10 15 30 34 32 18 35 11.343 13.43

Table 1. 3 × 3 × 3 chamfer mask coefficients for anisotropic grid.

5 Results

Table 1 presents optimal sets of weights of a 3 × 3 × 3 chamfer mask for an
anisotropic grid with dx = 1, dy = 1.5, dz = 3.0. The points belonging to this
mask are: aX(1, 0, 0), aY (0, 1, 0), aZ(0, 0, 1), bY Z(0, 1, 1), bXZ(1, 0, 1), bXY (1, 1, 0),
and c(1, 1, 1). The time needed to compute these sets is 958 ms.

1 Java code is available from http://www-sop.inria.fr/epidaure/personnel/Celine.Fouard/.



Table 2 presents optimal sets of weights the associated maximum relative er-
ror for 7×7×7 isotropic chamfer masks. The points belonging to this mask are:
a(1, 0, 0), b(1, 1, 0), c(1, 1, 1), d(2, 1, 0), e(2, 1, 1), f(2, 2, 1), g(3, 1, 0), h(3, 1, 1),
i(3, 2, 0), j(3, 2, 1), k(3, 2, 2), l(3, 3, 1), m(3, 3, 2). The computational times needed
to examine all the m-tuples with ω1 less or equal to 5, 7, 10, and 14 are respec-
tively of 2 min, 25 min, 6 h 37 mn, and 102 h.

a b c d e f g h i j k l m εopt τopt(%)

1 1 1 2 2 2 3 3 3 3 3 3 3 1.211 21.13
1 2 2 3 3 4 4 4 5 5 5 6 6 1.207 20.71
2 2 3 4 4 5 6 6 6 6 7 7 8 2.293 14.64
2 3 3 5 5 6 7 7 8 8 8 9 9 2.252 12.60
2 3 4 5 6 7 7 8 8 9 10 10 11 2.225 11.24
3 4 5 6 7 9 9 9 10 11 12 13 14 3.158 5.28
4 6 7 9 10 13 13 14 15 16 17 19 20 4.179 4.49
5 7 9 11 12 15 16 16 18 19 21 22 24 5.186 3.72
5 7 9 11 12 15 16 17 18 19 21 22 24 5.149 2.97
7 10 12 16 17 21 22 23 26 27 29 31 33 7.176 2.51
8 11 14 18 19 24 25 26 29 30 33 34 38 8.184 2.30
10 14 17 22 24 30 32 33 36 37 41 43 47 10.224 2.24
12 17 21 27 29 36 38 40 44 45 49 52 56 12.245 2.04
14 20 24 31 34 43 44 46 51 53 58 62 67 14.248 1.77

Table 2. 7 × 7 × 7 chamfer mask coefficients.

6 Conclusion

We have proposed an automated approach to compute optimal chamfer norm
coefficients for mask of any size and for lattice of any anisotropy. It is based on
the Farey triangulation that permits us to recursively build large masks while
ensuring a regular triangulation of the chamfer mask generators. It allows us to
automatically compute the error of any mask, thanks to analytical expressions
of errors we can derive on regular cones. In addition, the coefficients we calculate
verify norm constraints, thus yields scale invariant chamfer maps.
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A Recursive Farey triangulation construction

A.1 Farey Set Points

A Farey set F̂n of order n is a set of all the irreducible points
(

y
x
, z

x

)
in Q∩ [0, 1]

whose denominator does not exceed n. It is built only with visible points (this
means the greatest common divisor of (x, y, z) is 1).

A Farey set of order n correspond to the vectors of the generator of a 3-D
chamfer mask of size (2n+1)3. For example, the ordered (lexicographical order)

Farey set of order 1 F̂1 = {( 0
1 , 0

1 ), ( 1
1 , 0

1 ), ( 1
1 , 1

1 )} correspond to the set of vectors
{(1, 0, 0), (1, 1, 0), (1, 1, 1)} which is the generator of an isotropic chamfer mask
of size 33. Other vectors that are involved in an anisotropic chamfer mask are
deduced from the previous ones by symmetries.

The Farey set of order n + 1, F̂n+1, can be built from F̂n by

F̂n+1 = F̂n∪
{(

y
x
, z

x

)
+̂

(
y′

x′
, z′

x′

)
with x + x′ ≤ n and

(
y

x
,
z

x

)
,

(
y′

x′
,
z′

x′

)
∈ F̂n

}

the addition being defined by
(

y
x
, z

x

)
+̂

(
y′

x′
, z′

x′

)
=

(
y+y′

x+x′
, z+z′

x+x′

)
[18].



A.2 Recursive construction of Farey Set triangulations

The triangulation T1 associated to F̂1 is composed of a single cone 〈〈(1,0,0), (1,1,0), (1,1,1)〉〉,
or equivalently a Farey triangle 〈〈( 0

1 , 0
1 ), ( 1

1 , 0
1 ), ( 1

1 , 1
1 )〉〉, that is regular.

To build Tn+1 from Tn, we first put all the Farey triangle in a list L. We now
examine successively the triangle in L, and will try to build new triangles by
splitting the existing one into two triangles.

Let us consider the triangle 〈〈A,B, C〉〉 of L. We try to add a new vertex
along its largest edge2, say AB. Such a vertex belongs to Fn+1 if and only if
xa + xb ≤ n + 1. If the latter is not true, the triangle is put again in the list but
will no more be considered. If xa + xb ≤ n + 1 is true, let us denote C ′ = A+̂B
the new Farey point: the two triangles 〈〈A,C, C ′〉〉 and 〈〈B,C,C ′〉〉 are put into
the list L. It can also recursively be shown that those two triangles are regular.

The construction of Tn+1 stops when no more triangles, whose vertices are
Farey points of order n + 1, can be inserted into L.

Figure 3 shows the different steps of the construction of T2 from T1. T3 and

Fig. 3. Construction of T2 from T1.

T4 are displayed in Figure 4.

Fig. 4. T3 and T4.

2 We consider that large discrepancies between the chamfer distance and the Euclidean
one are more likely to occur along the largest edges.


