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ABSTRACT

Optimal surface salinity perturbations influencing the meridional overturning circulation maximum are
exhibited and interpreted on a stable steady state of a 2D latitude–depth ocean thermohaline circulation
model. Despite the stability of the steady state, the nonnormality of the dynamics is able to create some
transient growth and variability through stimulation by optimal perturbations. Two different measures are
compared to obtain the optimum—one associated with the departure from steady state in terms of density,
and the other with the overturning circulation intensity. It is found that such optimal analysis is measure
dependent; hence, the latter measure is chosen for studying the following physical mechanisms. The re-
sponse to the optimal initial sea surface salinity perturbation involves a transient growth mechanism leading
to a maximum modification of the circulation intensity after 67 yr; the amplification is linked to the most
weakly damped linear eigenmode, oscillating on a 150-yr period. Optimal constant surface salinity flux
perturbations are also obtained, and confirm that a decrease in the freshwater flux amplitude enhances the
circulation intensity. At last, looking for the optimal stochastic surface salinity flux perturbation, it is
established that the variance of the circulation intensity is controlled by the weakly damped 150-yr oscil-
lation. Two approaches are tested to consider extending such studies in more realistic 3D models. Explicit
solutions (versus eigenvalue problems) are found for the overturning circulation measure (except for the
stochastic optimal); a truncation method on a few leading eigenmodes usually provides the optimal per-
turbations for analyses on long time scales.

1. Introduction

One of the expected consequences of global warming
is the modification of the water cycle, one of the main
forcing mechanisms of the ocean thermohaline circula-
tion. In actuality, freshwater fluxes have a local influ-
ence on the surface salinity, and thus on the ocean dy-
namics. Josey and Marsh (2005) show that sea surface
salinity has been modified since the mid-1970s because
of increased precipitation in the North Atlantic Ocean
subpolar gyre. Modification of ocean salinity in the re-
cent decades is also found deeper in the North Atlantic
(Curry et al. 2003; Curry and Mauritzen 2005). These
studies point out that the water cycle is the least-under-
stood part of the climate system because evaporation
and precipitation over the ocean have large measure-

ment uncertainties. As the slow component of the cli-
mate system, the ocean, and more particularly the ther-
mohaline circulation, is the best candidate to produce
low-frequency variability. Given these considerations,
in this study we will focus on the impact of freshwater
flux on the thermohaline circulation.

In the ocean, two paradigms coexist to explain the
observed variability: the variability could be either en-
dogenous or exogenous. For the first paradigm, the
variability is due to internal modes, such as millennial
[e.g., Colin de Verdière et al. (2006): relaxation oscil-
lation] or centennial [e.g., Sévellec et al. (2006): non-
linear saturation of a linear growing mode] oscillation;
this theory relies intrinsically on nonlinear effects. The
second paradigm is based on the hypothesis of a stable
steady state of the ocean circulation and the presence of
an external stimulation needed to sustain the variabil-
ity, for example, oscillations sustained by stochastic
freshwater forcing on centennial (Mysak et al. 1993;
Mikolajewicz and Maier-Reimer 1990) and multide-
cadal (Griffies and Tziperman 1995) time scales. Be-
cause of the nonnormal nature of the ocean dynamics,
some perturbations can produce dramatic variability
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around a steady state even though it is stable. Transient
amplification of initial perturbations has been analyzed
in both the atmospheric (Farrell and Ioannou 1996) and
oceanic (Farrell and Moore 1992; Moore and Farrell
1993; Moore et al. 2002) contexts, and more recently for
coupled El Niño variability (Moore et al. 2003). Our
study belongs to this last paradigm, because we will
study the variability of the ocean circulation perturbed
by freshwater flux.

Some previous work has been done on the variability
of the thermohaline circulation in accordance with this
second paradigm. Lohmann and Schneider (1999) in-
vestigated optimal initial and stochastic perturbations
in Stommel’s (1961) two-box model, with applications
to initial error growth and predictability. Sirkes and
Tziperman (2001) used the adjoint of a 3D primitive-
equation model to establish the sensitivity of heat trans-
port at 24°N, and found an oscillatory mode of centen-
nial time scale with basically the same properties and
mechanism as that of the interdecadal oscillation pre-
viously studied in box models (Tziperman et al. 1994;
Griffies and Tziperman 1995). In a three-box model,
Tziperman and Ioannou (2002) have analyzed the op-
timal finite-time growth of a measure defined as the
square of the circulation intensity. The mechanism, re-
sulting from the mixed boundary conditions, corre-
sponds to a rapid decay of the temperature of the
anomaly, initially balanced in terms of density, which
induces a salinity-driven circulation anomaly in a finite
time before the slower decay of the salinity anomaly.
Looking for the optimal stochastic perturbation, these
authors found that no peak appears in the frequency
range of their analysis despite the existence of a linear
damped oscillatory mode. In Stommel’s (1961) two-box
model of the thermohaline circulation, Mu et al. (2004)
search the optimal initial condition within a nonlinear
approach called conditional nonlinear optimal pertur-
bation (CNOP); the authors show the limit of the linear
approximation, and highlight the asymmetry of the ad-
vection term in the nonlinear equations. These conclu-
sions are extended within a coupled ocean–atmosphere
box model (Sun et al. 2005); furthermore, their results
suggest that a linear approach is valid for studying weak
overturning variations of the present thermohaline cir-
culation. More recently, Zanna and Tziperman (2005)
studied the optimal perturbation and analyzed its tran-
sient growth in a simple coupled model (a latitude–
depth ocean model with two levels on the vertical and
a one-layer atmosphere); they find the optimal initial
perturbation maximizing some kind of spatial variance
transport after 40 yr. Their amplification mechanism
involves the growth of both temperature and salinity

perturbations resulting from the advection by the
anomaly circulation.

As a follow-up to these works, we will address suc-
cessively the response of our nonnormal dynamical sys-
tem to impulsive and then to continuous excitations
(Farrell and Ioannou 1996). Hence, we look for the
optimal pattern of initial surface salinity perturbation,
constant freshwater flux, and stochastic freshwater flux,
impacting the thermohaline circulation, within a linear
framework. The evaluation of a perturbation impact
requires the definition of a measure of the thermoha-
line circulation. In contrast with previous works, two
different measures will be compared here—one taking
into account all the prognostic-state variables of the
model (temperature and salinity, in terms of density),
and a second (more physical and more intuitively ana-
lyzed) related to the overturning circulation. Solving
for these optimal perturbations leads to maximization
problems whose solutions are exhibited either im-
plicitly through an eigenvalue problem for the first
measure, or explicitly for the second. As a first step,
numerical applications are computed here in a 2D lati-
tude–depth ocean model to represent the North Atlan-
tic thermohaline circulation. As compared with previ-
ous work in box geometry, this model provides signifi-
cant improvements on the structure of the mean
overturning, and the periods of the internal modes are
much more robust. Optimal perturbations show a pre-
dictable large-scale structure that will be discussed in
terms of linear and adjoint eigenmodes. The ocean
model response to these perturbations will be inter-
preted in terms of physical processes. For instance, the
transient growth mechanism is related here to the posi-
tive salinity feedback on the overturning, which is not
obvious in the box model results (Tziperman and Ioan-
nou 2002); furthermore, under optimal stochastic forc-
ing, the period of the least-damped eigenmode domi-
nates the power spectrum density, whereas it does not
appear in the box model (Tziperman and Ioannou
2002). Optimal perturbations are also computed
through a truncation of the linear and adjoint models to
an incomplete sum of their leading eigenmodes. This
method is successful and allows for better interpreta-
tion of the optimal perturbations, but especially the
consideration of applications in more realistic models.

The paper is organized as follows. The equations and
parameters of the model are described in section 2. The
reference stable steady state and its linear stability
analysis are discussed in section 3. The description of
the two measures, the possible perturbation constraints,
and the analytical method of maximization are made
explicit in section 4. The paper proceeds following the
three questions: What is the optimal initial perturbation
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of the surface salinity that induces the largest variation
of the thermohaline circulation (section 5)? What is the
optimal constant perturbation of the surface salinity
flux that induces the largest variation of the thermoha-
line circulation (section 6)? What is the optimal sto-
chastic perturbation of the surface salinity flux that in-
duces the largest variation of the thermohaline circula-
tion (section 7)? Conclusions are drawn in section 8.

2. The ocean model

The latitude–depth 2D model (Sévellec et al. 2006) is
based on the 3D planetary geostrophic equations in
Cartesian coordinates, where zonal averaging requires
some dynamical approximations (Marotzke et al. 1988;
Wright and Stocker 1991; Wright et al. 1995, 1998); here
we use linear friction, leading to

��0
�1�yP � �� � 0, �1a�

��zP � �g � 0, and �1b�

�y� � �zw � 0, �1c�

where y is latitude, z is the vertical coordinate, P is the
pressure, � (�0) is the (reference) density, (�, w) is the
velocity, and g is the gravity acceleration. The choice of
the linear friction coefficient � � 1.45 	 10�4 s�1 leads
to a realistic overturning �15 Sv (1 Sv 
 106 m3 s�1) for
a typical North Atlantic thermohaline stratification.
This solution corresponds to a very frictional system
where the meridional momentum dynamical balance is
between the pressure gradient and the linear friction, as
in Stommel’s (1961) box model.

A linearized equation of state for the seawater is
used:

� � �0�1 � ��T � T0� � ��S � S0��, �2�

where  is the thermal expansion coefficient, T (T0) is
the (reference) temperature, � is the haline contraction
coefficient, and S (S0) is the (reference) salinity.

Only the thermodynamic equations are prognostic:

�tT � �J��, T � � KH�y
2T � KV�z

2T � F T and �3a�

�tS � �J��, S� � KH�y
2S � KV�z

2S � F S , �3b�

where J is the Jacobian operator, � is the overturning
streamfunction defined as w � �y� and � � ��z�, and
KH (KV) is the horizontal (vertical) eddy diffusivity.
Convection is not explicitly represented, particularly to
simplify the linearization. Zhang et al. (1992), as well as
Marotzke and Scott (1999), have suggested that con-
vective adjustment does not matter as crucially for a

realistic thermohaline structure in 2D as in 3D because
its effect remains efficiently represented through down-
welling. Surface boundary conditions for temperature
and salinity will differ (“mixed boundary conditions”)
to take into account the different feedbacks of sea sur-
face temperature (SST) and salinity (SSS), respectively,
on surface heat and freshwater flux. The surface forcing
is then expressed as

FT � �T
�1�T*�y� � SST�y�� and �4a�

FS �
S0

h
FW �4b�

in the uppermost model level of thickness h � 50 m; the
restoring surface temperature and the freshwater flux
are

T*�y� � T*0�1 � cos�	�y � y0�
�y1 � y0���, and

�5a�

FW�y� � �F0 sin�2	�y � y0�
�y1 � y0��. �5b�

These equations are solved by using a finite differ-
ence formulation (see Table 1 for the model parameter
values) on a uniform latitudinal grid but a nonuniform
vertical grid (15 levels of thickness varying from 50 m at
the surface to 550 m at the bottom). No-normal-flow
conditions are used on the boundaries, resulting in a
zero streamfunction, and zero flux conditions are ap-
plied to temperature and salinity except at the surface.

3. Linear stability analysis

We first describe the steady state used in all the fol-
lowing study and the results from its linear stability

TABLE 1. Parameters used for the 2D model time integrations,
with their values and definitions.

ny 28 No. of grid points in latitude
nz 15 No. of grid points in the vertical
H 4500 m Ocean uniform depth
W 5120 km Zonal basin extent
y0 10°N Southern boundary position
y1 60°N Northern boundary position
KH 103 m2 s�1 Horizontal tracer diffusion
KV 10�4 m2 s�1 Vertical tracer diffusion
g 9.8 m s�2 Gravitational acceleration
�0 1027 kg m�3 Reference density
 2.2 	 10�4 K�1 Thermal expansion coefficient
� 7.7 	 10�4 psu�1 Haline contraction coefficient
�T 66 days Temperature-restoring time
F0 75 cm yr�1 Freshwater flux intensity
T*0 13.5°C Restoring temperature amplitude
� 1.45 	 10�4 s�1 Linear friction coefficient
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analysis. Figures 1a–c show the temperature, salinity,
and meridional overturning field in the steady state ob-
tained after a 10 000 yr-long time integration of the
nonlinear 2D model.

The principle of linear stability analysis is to examine
the evolution of a small perturbation near a steady
state. The prognostic equations of our model (3) can be
written as a general dynamical system,

FIG. 1. Stable steady state of the 2D model: (a) temperature, (b) salinity (both represented
with a logarithmic depth axis), and (c) meridional overturning streamfunction (contour inter-
vals are respectively 2°C, 0.5 psu, and 2 Sv). (d) The eigenvalues spectrum from the linear
stability analysis.
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dt |U� � N �|U��, �6�

where N is a nonlinear operator and |U� is the state
vector consisting of temperature and salinity at every
grid points, written as a ket; the associated bra �U| is
defined through the Euclidian scalar product �U|U�.
Let |U� be a steady state, that is, N (|U�) � 0; the evo-
lution of the perturbation |u� � |U� � |U� by the lin-
earized dynamics is

dt|u� � A|u�, where A �
�N

�|U� | |U�
, �7�

where the Jacobian operator A depends only on the
steady state |U� (autonomous system). We can then
integrate to get the perturbation time evolution,

|u�t�� � exp�At�|u�0�� � M�t�|u�0��, �8�

where M(t) is called the propagator.
The Jacobian operator is calculated by linearization

of the full model equations, both analytically and nu-
merically (Huck and Vallis 2001) with identical results.
Once the Jacobian operator is computed for our steady
state, an eigenanalysis is performed; the spectrum of
the eigenvalues and the least-damped mode is repre-
sented respectively in Figs. 1d and 2. All of the eigen-
values have a negative real part, in agreement with a
stable steady state obtained through time integration.
The presence of complex eigenvalues reveals the exist-
ence of internal oscillatory modes. Actually, the least-
damped eigenmode corresponds to a weakly damped
150-yr oscillation that has been largely studied in Sé-
vellec et al. (2006). For stronger freshwater forcing, the
steady state becomes unstable and oscillations appear
with a slightly longer period. Sévellec et al. (2006)
showed that the period is mainly controlled by the
mean flow advection of salt perturbation and the
growth is due to the competition between diffusion and
salinity perturbation reinforcement at the surface. The
sensitivity of this eigenmode characteristic has been
tested with various horizontal and vertical resolutions
(respectively, 14 and 42 points, with 10 and 20 levels).
Its period varies between 140 and 176 yr with a similar
thermohaline structure, whereas the growth rate in-
creases regularly with increasing resolution as the Hopf
bifurcation threshold slightly changes.

To interpret the generalized stability theory, we per-
form an eigenanalysis of the adjoint (linear transposed)
model. As the theory predicts, the spectrum is the same
but the eigenvectors are different because of the non-
normality of our linear operator (AA† � A†A � 0,
where † denotes the Hermitian operator). The least-

damped eigenvectors are represented in Figs. 2g–l. The
eigenvectors of A† are defined as the biorthogonal vec-
tors of the eigenvectors of A. They have two main prop-
erties—their eigenvalues are complex conjugates and
their contravariant projections are maximum.

4. Maximization method

We now present the method we will use to obtain the
different optimal profiles of sea surface salinity, surface
salinity flux, or stochastic salinity flux, maximizing ei-
ther the meridional overturning circulation intensity or
a thermohaline density norm.

We are looking for a vector that under some con-
straints maximizes some scalar quantity related to the
system state. Let |u� be the state vector; G(|u�) is the
scalar function to be maximized under the n constraints
Ci(|u�) � 0 for i � 1, . . . , n. It is then convenient to
introduce the Lagrangian

L�|u�, �i� � G�|u�� � �
i�0

n

�iCi�|u��, �9�

where the �s are the Lagrangian parameters associated
with the constraints.

The state |u� that maximizes G under these con-
straints verifies

dL�|u�, �i� �
�L

�|u�
d |u� � �

i�0

n
�L

��i
d�i � 0, �10�

that is,

dL

d|u�
�

dG�|u��

d|u�
� �

i�0

n

�i

dCi�|u��

d|u�
� 0 and �11a�

dL

d�i
� �Ci�|u�� � 0, where �i � 1, . . . , n. �11b�

Solving this maximization problem depends on the
kind of scalar function that is being maximized. In the
following we choose two scalar functions that are ap-
propriate for the physical problem we want to address:
a linear function, approximating the meridional over-
turning circulation intensity that we will write as �F |u�;
and a quadratic function, measuring the thermohaline
density norm of the perturbation state �u|S|u�, where S
is a diagonal weight matrix that enforces homogeneity.
This norm is such that all coordinates of the state per-
turbation are summed after being rescaled in terms of
their squared density and their respective volume
(�i):�u|S|u� � �i[(

2T2
i � �2S2

i )�i]/(�i�i); in other words,
it measures the departure from steady-state tempera-
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FIG. 2. The least-damped couple of eigenmodes of the (a)–(f) tangent linear and (g)–(l)
adjoint operators (their biorthogonal vectors): (a), (d), (g), (j) temperature and (b), (e), (h),
(k) salinity in terms of density and (c), (f), (i), (l) associated streamfunction. Their common
eigenvalues are complex conjugates and the mode represents a 150-yr-period oscillation
damped on a 1027-yr time scale, evolving from the real part to the imaginary part, and to their
opposites. The solid, dashed, and dotted lines, respectively, correspond to positive, negative,
and zero anomalies; contour intervals are (a)–(f) 2.5 	 10�6 for temperature and salinity, 0.25
Sv for streamfunction, and (g)–(l) 5 	 10�7 for temperature, 2 	 10�5 for salinity, and 2 Sv for
streamfunction.
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ture and salinity in terms of density. Because the over-
turning intensity is the streamfunction maximum that is
not a differentiable function of the system state, the
maximum is estimated as the mean value of the closest
nine grid points to the real maximum value (actually,
only six of them are nonzero because the maximum of
the overturning streamfunction is very close to the
northern boundary, and it is zero on those grid points to
respect the no-normal-flux boundary conditions). Writ-
ing successively in matrix form (1b), (1a), � as a func-
tion of �, and �max as a function of �:|P� � F1|u�, |�� �
F2|P�, |�� � F3|��, �max � �F4|��, we obtain �max as a
linear function of |u�, that is, �max � �F |u� with �F | �
�F4|F3F2F1. The accuracy of the six-point approxima-
tion is tested on the steady state and the streamfunction
maximum is then underestimated by an amount that
does not exceed 15%.

Let us now define the constraints we use. First, we
only allow perturbations of surface salinity satisfying
salinity conservation. This is coherent with the salt con-
servation equation of the model; otherwise, the trend in
the total salt may induce a perpetual drift. This con-
straint is made implicit by using the projection |u� �
P|u��, where |u�� is a vector of the subspace of surface
salinity–conserving salt (dimension ny � 1), and P is the
associated projection operator (dimension 2nynz, ny �
1). For instance, P is zero everywhere except for one 1
on each line of (ny � 1) surface salinity points for the
corresponding surface salinity value, and a full line of
(�1) on the remaining surface salinity point. Second,
because we deal with a linear problem, all of the optima
are computed up to a multiplicative factor. To remove
this degeneracy we seek normed perturbations using
the weight matrix �u|S|u� � 1. The associated constraint
is explicitly stated and an associated Lagrange param-
eter is introduced.

Because the same kind of algebra is used for different
investigations, the recurrent Lagrangian is written in
the following form: L y

x, x ∈ {ini, cst, sto}, y ∈ {N, C},
where the subscript indicates the type of the optimal
being computed (optimal initial surface salinity pertur-
bation, optimal constant and stochastic surface salinity
flux) and the superscript is the quantity being maxi-
mized (N for the thermohaline density norm and C for
the circulation intensity).

5. Optimal initial surface salinity perturbation

In this section, we address our first question: what is
the optimal initial perturbation of the SSS that induces
the largest variation of the thermohaline circulation?
This variation is measured successively in two different
manners, through the quadratic thermohaline density

norm and the meridional overturning circulation
(MOC) intensity.

We first seek the initial SSS perturbation inducing
the maximum change within the finite time scale � in
terms of the thermohaline density norm. The
Lagrangian is

L ini
N � �u���|S|u���� � � �u�0�|S|u�0�� � 1�, �12�

where � is the Lagrange parameter associated with the
norm constraint. The initial surface salinity perturba-
tion vector [|u(0)� � P|u�0�] must satisfy the following:

dL ini
N � d�u0 |P†M†���SM���P|u0� � �d�u0|P†SP|u0� � 0,

�13�

which can be rewritten as an eigenvalue problem,

N�1Hini
N ���|u0� � � |u0�, (14)

where N � P†SP and Hini
N ��� � P†M†���SM���P.

�15�

Note that although P is rectangular, S defines a scalar
product; hence, N is Hermitian and has an inverse. The
optimal solution, that is, the surface salinity perturba-
tion inducing the largest finite-time growth of the per-
turbation density norm, corresponds to the eigenmode
whose associated eigenvalue has the largest real part.
The optima were computed in our 2D model for differ-
ent growth times �, and a local maximum growth ap-
pears for � � 96 yr (Fig. 3); its linear time integration
reveals nonnormal decay. The initial SSS profile corre-
sponding to this maximum growth and its associated
perturbation of temperature, salinity, and overturning
circulation after 96 yr are shown in Fig. 3.

We now seek the initial SSS perturbation inducing
the largest finite-time growth of the overturning circu-
lation intensity. The Lagrangian function is now ex-
pressed as

L ini
C ��� � �F |u���� � � ��u�0�|S|u�0�� � 1�. �16�

The optimal SSS perturbation vector must satisfy

dL ini
C ��� � d�F |M���P |u0� � �d�u0 |P†SP |u0� � 0, �17�

whose solution can be explicitly written as

|u0� � �2�N��1Hini
C ���|F�, �18�

where N � P†SP, Hini
C ��� � P†M†���, and

� � �
1
2
��F |Hini

C †���N�1Hini
C ���|F�. �19�

This optimum is computed for different growth time �.
The largest values of the MOC intensity are obtained
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for very small � (Fig. 4), but these short time scales are
not relevant in our 2D model and were ignored. An-
other maximum appears for � � 67 yr, which is in the
time scale range that our model resolves. The transient
growth results from both the nonnormality of the ocean
dynamics and the quantity to be maximized. Actually,
there is a measure that is always decaying with time and
can be defined through the eigenmodes of the adjoint
model (see below for its explicit formulation).

The optimal initial salinity profile and the corre-
sponding perturbation of temperature, salinity, and
overturning circulation after 67 yr are similar to those
from the thermohaline density norm (Fig. 4). A linear
time integration with the dipolar SSS perturbation used
for initial conditions permits us to describe and under-
stand the mechanisms leading to this strong finite-time
growth, that is, the increase of the overturning intensity
by a factor of 56 after 67 yr. Its physical mechanism is
analogous to the one described in Sévellec et al. (2006)
and consists of two ingredients. First, any salinity per-
turbation will be enhanced at the surface by a positive
feedback occurring between the salinity forcing and the
intensity of the circulation. Second, the initial salinity
profile induces a reduction of the density meridional
gradient, which decreases the circulation (1a), and the
increase of the circulation only appears when the per-
turbation gradient reverses after having been advected,
that is, after a delay of 67 yr. The conjunction of these
two mechanisms explains why this perturbation profile
is the most effective to modify the overturning circula-

tion. Moreover, this study enables the determination of
an upper bound of the impact of SSS perturbation on
the overturning circulation: no other 1-psu perturbation
could have an impact greater than 7.7 Sv in a linear
approximation. Observed interannual SSS anomalies in
the Atlantic reach 0.2–0.3 psu in zonal average (Levitus
1989), for instance, within great salinity anomalies (Bel-
kin et al. 1998). Our linear model would predict asso-
ciated changes on the order of 2 Sv in the maximum
overturning.

To better understand the two last analyses we pro-
pose an examination of the form of the solution in
terms of the eigenmodes of the linearized tangent
model |ui� (with associated eigenvalues �i), and of its
adjoint |u†

i � (with associated eigenvalues �†
i ). Using the

property �†
i � �*i (the asterisk denotes the complex

conjugate) and the normalization convention �ui |u
†
j �

�ij (�ij is the Kronecker function), we can decompose
the two operators A and A† as

A � �
i

|ui��i�ui
†| and A† � �

i

|ui
†��*i �ui |. �20�

This very practical notation highlights the importance
of each eigenmode. Removing the projection constraint
as a first application, a norm maximization yields an
eigenvalue problem like (14), S�1M†(�)SM(�) |u� �
�|u�. Now, let us use the always-decaying norm briefly
introduced previously and its inverse, which can be
written, respectively, �i |u

†
i � �u†

i | and �i|ui� �ui|. The
eigenvalue problem is then

�
ij

|ui��ui |M
†���|uj

†��uj
†|M��� � �

ijkl

|ui��ui |uj
†�e�*j��uj |uk

†��uk
†|ul�e�l��ul

†|

��
ijkl

|ui��ije
�*j ��jk�kle

�l��ul
†|

��
i

|ui�e
2ℜ��i���ui

†|.

The choice of this norm leads to an operator with eigen-
modes |ui� and respective eigenvalues exp[2ℜ(�)�]. In
this case the eigenvalues problem solution (14) exhibits

maximum growth at time � � 0 only, because the steady
state is stable; hence, all �i have negative real parts.
This computation leads to two results—first, the inter-

←

FIG. 3. (a) Maximum growth of the thermohaline density norm [�u(�)|S|u(�)�]/[�u(�)|S|u(�)�] for initial salinity perturbations as a
function of growth time �. The thick, solid, and dashed lines correspond, respectively, to the tangent linear operator, and its truncation
to 50 and 2 eigenvectors. The vertical solid line corresponds to the maximal growth at � � 96 yr, detailed in (b)–(f). (b) The optimal
initial sea surface salinity profile, rescaled so that its absolute maximum equals 1 psu; and (c) time evolution of the density norm
amplification [�u(t)|S|u(t)�]/[�u(0)|S|u(0)�] in the linear model integration initialized with the optimal SSS perturbation; and (d) the
temperature, (e) salinity (both scaled in terms of density), and (f) overturning (Sv) perturbation after 96 yr. The solid, dashed, and
dotted lines, respectively, correspond to positive, negative, and zero anomalies; contour intervals are 2 	 10�5 in (d) and (e) and 1 Sv
in (f).
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FIG. 4. As in Fig. 3, but for the maximization of the overturning circulation intensity. (a)
Optimal MOC intensity �F |u(�)� for normalized initial SSS perturbation �u(0)|S|u(0)� � 1; the
maximum growth appears at � � 67 yr, detailed in (b). (c) Time evolution of the MOC
intensity amplification [�F |u(t)�]/[�F |u(0)�] in the linear model integration is initialized with
the optimal SSS perturbation. Contour intervals are 10�5 in (d) and (e) and 2 Sv in (f).
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est of such a decomposition notation in understanding
the maximization problem, and second, the existence of
a (although physically irrelevant) norm that is always
decaying. This last result demonstrates that generalized
stability analyses are measure dependent, and that the
possible transient growth is only due to the choice of
the measure. In the same way, we can rewrite the op-
erators HN

ini(�) and HC
ini(�) as

Hini
N ��� � P†�

ij

e��*i ��j��|ui
†��ui |S|uj��uj

†|P| and �21a�

Hini
C ��� � P†�

i

|ui
†�e�*i ��ui |. �21b�

The last two sums reveal that the weight of each eigen-
mode is controlled by the product exp(�r�). Because
our focus is on long time scales, we can truncate the
sum, keeping only the leading eigenvalues to represent
the linear tangent operator and its transpose. The com-
plete sum corresponds to N � 840 (discretization of the
salinity and temperature fields yields N � 2nynz). We
now provide the results from truncations to N � 50 and
N � 2; both truncations correctly reproduce the long-
time-scale results (Figs. 3a and 4a). At the time scales of
the maximum growth (96 and 67 yr), the relative error
does not exceed 5% for both truncations. In conclusion,
only a couple of eigenmodes and their biorthogonals
determine the effect of initial perturbations on long
time scales. Consequently, the finite growth for both
the thermohaline density norm and the MOC intensity
is determined by the 150-yr oscillatory mode (Fig. 2).
The finite-time growth is due to the projection of the
least-damped oscillatory eigenmode of A† on the least-

damped oscillatory eigenmode of A. We verified that
the optimal perturbation corresponds to the surface sa-
linity signature of a phase of the biorthogonal of the
150-yr oscillatory mode. Maximum growth appears ev-
ery 75 yr, which corresponds to the half-period delay
between most efficient phases of the perturbation (op-
posite perturbations yield identical growth).

To confirm these results, we integrate in time the
linearized model initialized by the optimal perturbation
with varying amplitudes. Moreover, to validate a pos-
teriori the linear approach, we also conduct a time in-
tegration of the nonlinear model initialized by the same
optimal perturbations (for both the thermohaline den-
sity norm and for the MOC intensity analysis). The
optimal growth for the theoretical computation is very
close to both the linear and nonlinear time integration
for SSS perturbations up to 0.1 psu (Fig. 5). This last
result somehow confirms the validity of our approxi-
mations for time scales of the order of a few centuries,
and shows the legitimacy range of the linear study.
However, we only validate the growth of our optimal
initial SSS here; we do not check whether this optimal
initial SSS is the optimal perturbation in the nonlinear
model (Mu and Zhang 2006).

6. Optimal constant surface salinity flux

On our way to investigate the response of a stable
steady state to a perturbation, we now study a constant
surface salinity flux (SSF) perturbation. Thus, we ad-
dress the second question: what is the optimal constant
perturbation of the surface salinity flux that induces the

FIG. 5. Optimal growth of (a) the thermohaline density norm and (b) the overturning circulation intensity, as a function of the initial
optimal perturbation amplitude, according to the theoretical computation (solid line), the linear (dashed line), and the nonlinear
(crosses) time integrations.
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largest variation of the thermohaline circulation? Again
we will consider both the thermohaline norm and the
meridional overturning intensity. The time evolution of
the perturbation now reads

dt |u� � A|u� � |f�, �22�

where | f � is the permanent forcing perturbation. After
integration, this equation leads to

|u���� � M���|u�0�� � �
0

�

ds M�� � s�|f� � �
0

�

ds M�� � s�|f�,

�23�

where we assume, without loss of generality, that the
initial perturbation verifies |u(0)� � 0 (the optimal ini-
tial perturbation is computed in the previous section).
The Lagrangian function can then be written

L cst
N � �u���|S|u���� � ���f |S |f� � 1�. �24�

Because we are interested in permanent modifications,
the algebra is conducted in the limit � → �. Using the
following notations with |f� � P|f��:

Hcst
N ��� � lim

�→�
�

0

�

ds �
0

�

ds P†M†�� � s�SM�� � s�P

�25�

and

N � P†SP, �26�

the maximization problem leads to the eigenvalue
problem,

N�1Hcst
N ��� |f�� � � |f��. �27�

The eigenmode with the largest real part corresponds
to the optimal SSF profile (Fig. 6). The linear tempera-
ture, salinity, and overturning circulation perturbations
in the permanent regime are computed from a linear
time integration forced by this profile over 10 000 yr,
at which time all of the transient growth is damped
(Fig. 6).

We now seek the optimal permanent surface salinity
flux leading to the largest change of the overturning
circulation intensity. The Lagrangian reads

L cst
C � �F |u���� � ���f |S|f� � 1�. �28�

Using the notation

Hcst
C ��� � lim

�→�
�

0

�

ds P†M†�� � s�, �29�

we find

� � �
1
2
�Hcst

C †���N�1Hcst
C ���, �30�

where N � P†SP. The explicit solution reads | f�� �
(2�N)�1HC

cst(�)|F�. The optimal SSF profile, as well as
the linear temperature, salinity, and overturning circu-
lation perturbations in the permanent regime strongly
differ from the previous norm (Fig. 6). This linear
analysis provides an upper bound of the SSF impact on
the overturning intensity: a modification of 1 psu yr�1,
equivalent to a freshwater flux perturbation of 1.43 m
yr�1, leads to a response of 6.5 Sv, impeding the exist-
ence of any greater modification. For instance, global
warming is expected to increase the hydrological cycle
on the order of 4% within the next century (Held and
Soden 2006); such changes would result in a 3 cm yr�1

freshwater flux change in our model, and hence an im-
pact on the order of 0.14 Sv in the overturning within
our linear framework. We understand this perturbation
mechanism as follows: the constant SSF counterbal-
ances the salinity forcing of the steady state and so
indirectly increases the effect of temperature gradient
on the circulation, which is accordingly intensified. As
seen in Fig. 6a, the strong local gradient in the north,
just at the top of the overturning streamfunction maxi-
mum of the steady state, is a very effective way for a
perturbation to modify the circulation intensity.

As done before we rewrite the tangent linear opera-
tor and its adjoint in terms of their eigenmodes,

Hcst
N ���P†�

ij

1
�*i �j

|ui
†��ui|S|uj��uj

†|P �31a�

for the thermohaline density norm and

Hcst
C ��� � �P†�

i

|ui
†��ui |
�*i

�31b�

for the maximum overturning circulation function.
Note that every eigenmode is weighted by the inverse
of its eigenvalue (1/�), which is less discriminating than
the factor exp(��) derived for the optimal initial per-
turbation. As one can thus expect, the truncation is a
very bad approximation in this context; actually, all of
the eigenmodes have an impact on the solution of the
optimal forcing perturbation.

We also compare the theoretical result with the out-
come of both linear and nonlinear 10 000-yr-long time
integrations for varying amplitude perturbations (Fig.
7). The three results are in good agreement for the
thermohaline density norm. A difference appears in the
MOC intensity, however, the relative error remains
lower than 12%. This discrepancy may come from the
relatively crude approximation that we use to estimate
the MOC intensity averaged over several grid points.
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FIG. 6. (a), (e) Optimal constant surface salinity flux perturbation inducing the largest
modification of the (a)–(d) thermohaline density norm and (e)–(h) overturning circulation
intensity in a stationary regime (� → �). Perturbations have been scaled for a maximum
absolute value of 1 psu. (b), (f) Temperature, (c), (g) salinity (both scaled in terms of density),
and (d), (h) overturning (Sv) perturbations after 10 000 yr (stationary regime). The solid,
dashed, and dotted lines, respectively, correspond to positive, negative, and zero anomalies;
contour intervals are 1.5 	 10�4 in (b), (c), (f), and (g) and 0.5 Sv in (d) and (h). A logarithmic
scale is used on the vertical.
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7. Optimal stochastic surface salinity flux

In the last step of this study, we investigate the influ-
ence of stochastic time-dependent perturbations induc-
ing variability around the stable steady state (Farrell
and Ioannou 1993). We thus address the last question:
what is the optimal spatial structure of the stochastic
surface salinity flux, which induces the largest response
of the thermohaline circulation in terms of variance?
The time evolution of the perturbations now reads

dt |u�t�� � A|u�t�� � |f�t��, �32�

where |f(t)� is the stochastic time-dependent forcing.
The time integration leads to

|u���� � M���|u�0�� � �
0

�

ds M�� � s�|f�s��. �33�

Without loss of generality, we can assume |u(0)� � 0. It
is convenient to assume a separable form for the forc-
ing, |f(t)� � a(t)|g�, where a(t) is the stochastic part of
our perturbation and |g� is the time-independent me-

ridional profile. Because the thermohaline circulation
time scales are much longer than the atmospheric ones,
the forcing variations can reasonably be approximated
by white noise. The autocorrelation function of the sto-
chastic forcing intensity is thus the classical delta func-
tion E[a(t)a(t�)] � �(t � t�), where E denotes the ex-
pected value. We can then rewrite the time perturba-
tion dependence as

|u���� � �
0

�

ds a�s�M�� � s�|g�. �34�

We seek the two spatial profiles of the optimal stochas-
tic forcing perturbation that maximize the variance of
the state vector and the variance of the MOC intensity.
For the first case, the Lagrangian is

L sto
N � var�|u����� � ���g|S|g� � 1�. �35�

With the variance of the state vector being norm de-
pendent, as before we use the thermohaline norm in
terms of density,

var�|u����� � E ��u���|S|u����� � �E[u����|S|E�u�����

� E ��u���|S|u�����

� �g|�
0

x

ds �
0

x

ds E�a�s�a�s��M†�� � s�SM�� � s�|g�
� �g|�

0

x

ds M†�� � s�SM�� � s�|g� . �36�

FIG. 7. As in Fig. 5, but for the constant surface salinity flux perturbation of (a) the thermohaline density norm and (b) the
thermohaline circulation intensity. The relative error between the different computations remains lower than 12%.
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Using the following notations and |g� � P|g��:

Hsto
N ��� � lim

�→�
�

0

�

ds P†M†�� � s�SM�� � s�P and

�37�

N � P†SP, �38�

the maximization problem results in the eigenvalue
problem,

N�1Hsto
N ��� |g�� � � |g��. �39�

The eigenmode with the largest real part corresponds
to the optimal stochastic profile (Fig. 8a); it varies lin-
early with latitude and conserves the total salt, with the
same shape as the ones found for the optimal initial
salinity perturbations (section 5). A linear time integra-
tion forced by this profile with a white-noise amplitude
reveals the variability of the state vector norm as rep-
resented in Fig. 8b. The power spectral density of this
variability (Fig. 9a), which is norm dependent, reveals a
red noise with a peak of around 150 yr; as expected, this
spectral peak coincides exactly with the period of the
least-damped internal mode. To better understand this

power spectral density we compute it analytically (Io-
annou 1995), defining | û(�)� as the Fourier transform
of |u(t)� and �û(�)| as its complex conjugate transpose
(which is different from the Fourier transform of �u(t)|),
and we obtain [using (32)] the following relation:

i�|û���� � A |û���� � |g�. That is,

|û���� � �i� I � A��1|g�. �40�

We are now able to derive the analytical expression of
the power spectral density,

psdN��� � �û���|S|û����

� �g|��i�I � A†��1S�i�I � A��1|g�. �41�

This theoretical result corresponds exactly to the power
spectrum numerically computed from the direct time
integration (Fig. 9a).

Proceeding to the variance of the overturning circu-
lation intensity, the function to maximize becomes

L sto
C � var��F |u����� � ���g |S |g� � 1�. �42�

This variance can be rewritten as

var��F |u����� � E ��F |u����2� � �F | �u�����2 � E ��F |u����2�

� �g |�
0

�

ds �
0

�

ds E �a�s�a�s��M†�� � s�|F��F |M�� � s�|g�

� �g |�
0

�

M†�� � s�|F��F |M�� � s� ds |g�. �43�

Using the following notations:

Hsto
C ��� � lim

�→�
�

0

�

ds P†M†�� � s� |F��F |M�� � s�P, and

N � P†SP, �44�

the maximization problem reduces to the eigenvalue
problem:

N�1Hsto
C ��� |g�� � � |g��. �45�

The optimal stochastic profile is the eigenmode with
the largest real part (Fig. 8c) and is identical to the one
with the previous norm. This profile is the same as the
one for the optimal initial SSS perturbations. It is the
most efficient initial structure to provide the largest
circulation intensity change; then, when stochastically
forced, one can expect that it remains the most efficient
structure to continuously sustain the largest circulation

intensity variability. As verified in a linear time inte-
gration (Fig. 8d), the optimal stochastic surface salinity
(freshwater) flux profile for a 1 psu yr�1 (1.43 m yr�1)
standard deviation induces a standard deviation of 133
Sv; this is the upper bound of the circulation intensity
response to stochastic salinity forcing in the linear ap-
proximation. Subannual variability of the freshwater
flux zonally averaged over the Atlantic Ocean may be
roughly estimated from atmospheric reanalysis such as
either the National Centers for Environmental Predic-
tion–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis or the 40-yr European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA-40); it is of the order of 5 cm yr�1 in
midlatitudes. In our model this would lead to a standard
deviation of the overturning intensity of 4.6 Sv.

The power spectral density of this variability (Fig.
9b) reveals a red noise and a peak around 150 yr, co-
inciding exactly with the period of the least-damped
internal mode. As done above, we derive an analytical
expression for the power spectral density,
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FIG. 8. Optimal stochastic surface salinity flux perturbation inducing the largest variance (a)
defined by the thermohaline density norm, and (c) of the overturning circulation intensity, in
a permanent regime (� → �). Stochastic perturbations have been scaled such that the standard
deviation is 1 psu yr�1. (b), (d) Thermohaline density norm and overturning circulation
intensity during a linear time integration forced by their respective stochastic optimals.
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psdC��� � �û���|��F | û����

� �g|��i�I � A†��1|F��F |��i�I � A†��1|g�.

�46�

This theoretical result confirms a peak corresponding
to the least-damped mode (Fig. 8a,b).

Again, it is convenient to rewrite the tangent linear
operator and its adjoint in terms of their eigenmodes,
leading to the following expressions:

Hsto
N ��� � P†�

ij

�1
�*i � �j

|ui
†��ui |S|uj��uj

†|P �47a�

for the thermohaline density norm and

Hsto
C ��� � P†�

ij

�1
�*i � �j

|ui
†��ui |F��F |uj��uj

†|P

�47b�

for the overturning circulation intensity. Every couple
of eigenmodes is associated with the inverse of its re-
spective eigenvalue sum. When a truncation of the sum
to the leading two eigenmodes is performed, the error
of the expected variance is only about 5.5% for both the
density norm and maximum overturning circulation
function. Using the same decomposition, the power
spectral densities (41) and (46) can be rewritten as

psdN��� � �
ij

�g|uj
†�

1
�i� � �*i

�ui|S|uj��uj
†|g�, �48a�

psdC��� � �
ij

�g |uj
†�

1
�i� � �*i

�ui|�

	 �F |uj�
1

i� � �j
�uj

†|g�, and �48b�

|û���� � �
i

|ui�
1

i� � �i
�ui

†|g�. �49�

These power spectral densities are represented in Fig. 9
for a truncation to 50 and 2 eigenmodes. It appears that
the dynamics of the variance are mainly controlled by a
few eigenmodes, moreover the peak is explained by
only two eigenmodes corresponding to the weakly
damped 150-yr oscillation.

We finally repeat the comparison of the theoretical
solution with linear and nonlinear direct time integra-
tions forced by stochastic perturbations of varying am-
plitudes for 12 000 yr (Fig. 10). The three results are in
good agreement for the thermohaline density norm.
However, while some differences appear in the over-
turning circulation intensity, the relative error in stan-
dard deviation remains lower than 20%.

8. Conclusions

In the context of the ocean response to climate
warming, we investigated the influence of perturbations

FIG. 9. Power spectral density (a) defined by the density norm and (b) of the overturning circulation intensity. The theoretical
spectrum (thick line) is compared with the truncation at 50 (solid line) and 2 (dashed line) eigenmodes and to the perturbed linear time
integration spectrum (gray line). In both cases the weakly damped 150-yr oscillation eigenmode controls the intensity of the spectrum.
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of sea surface salinity and freshwater flux on the ther-
mohaline circulation, the slow component of the cli-
mate system transporting heat poleward. Three types of
optimal perturbations are addressed: initial sea surface
salinity perturbation, and constant and stochastic salin-
ity forcing perturbations. Numerical solutions are
found using a 2D latitude–depth model. The solutions
provide upper bounds for the amplitude of the thermo-
haline circulation response.

To evaluate the change of the thermohaline circula-
tion we have compared two measures—a thermohaline
density norm and the intensity of the thermohaline cir-
culation. Analytical solutions for the optimal profiles
read as an eigenvalue problem in the former case, but
an explicit solution for the latter. Although the second
measure is not accurately defined, it induces more in-
teresting results because it has more physical meaning
for the ocean role in climate than the thermohaline
density norm. The optimal response is intrinsically re-
lated to the quantity we maximize. Actually, the norm
based on the eigenvalues of the adjoint model cannot
exhibit finite-time growth. We stress here that such
studies are strongly dependent on the choice of the
measure.

The initial sea surface salinity perturbation maximiz-
ing the thermohaline circulation intensity is simply a
linear profile with latitude. We found a maximum tran-
sient growth after 67 yr due to a positive feedback be-
tween surface salinity forcing and advection inducing a
reinforcement of salinity perturbation at the surface
(Marotzke 1996). For the salinity forcing perturbation
maximizing the same measure, the classical way to
modify the circulation is confirmed, that is, a decrease

in the amplitude of the freshwater flux enhances the
temperature-dominated density gradient and thus in-
creases the circulation intensity. The optimal stochastic
salinity forcing perturbation shows the same large-scale
structure as that of the optimal initial SSS perturbation;
this result is not inconsistent because this profile, sto-
chastically forced, continuously provides the largest
variability of the circulation intensity. This analysis
highlights the preponderance of the most weakly
damped 150-yr-period linear mode to explain the major
part of the variability spectrum of the circulation inten-
sity response, and more particularly the apparition of a
150-yr frequency peak. Each of these three analyses of
optimal salinity perturbations provides upper bounds
for the oceanic response in a linear approximation: a
0.2-psu maximum initial surface salinity perturbation
cannot modify the overturning intensity by more than 2
Sv; a 3 cm yr�1 maximum freshwater flux cannot
change the overturning by more than 0.14 Sv; and a
stochastic freshwater flux with a 5 cm yr�1 maximum
standard deviation induces an overturning intensity
standard deviation of 4.6 Sv. Given such observed or
expected perturbations of surface salinity and freshwa-
ter flux, the variability of the thermohaline circulation
in this 2D model appears plausible for upper bounds.

Moreover, the first and the third analysis can be
largely explained by a few damped eigenmodes pro-
vided by the linear and adjoint stability analysis of our
reference stable steady state. This approximation has
been theoretically computed and numerically con-
firmed. This last result means that only a finite number
of the least-damped eigenmodes and their biorthogo-
nals contributes effectively to the low-frequency vari-

FIG. 10. As in Fig. 5, but for the optimal stochastic surface salinity flux of (a) the thermohaline density norm and (b) the thermohaline
circulation intensity. The relative error in standard deviation between the different computations remains lower than 20%.
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ability, which suggests the feasibility of further applica-
tions in more realistic models.

The application of the maximization method to this
idealized 2D model is seen as a first methodological
step that is now being extended to a 3D realistic global
model to obtain optimal structures and associated up-
per bounds of the ocean circulation response. The ex-
plicit optimal solutions for the initial and constant forc-
ing perturbations should be especially tractable in more
complex models. Another possible extension is to ad-
dress nonlinear behavior, because several recent papers
(Mu et al. 2004; Sun et al. 2005; Mu and Zhang 2006)
suggest that the linear approximation may be a strong
limitation in a such study. Actually, even if the linear
evolution of the optimal perturbation is close to its non-
linear evolution for weak perturbations, this does not
mean that the optimal pattern found through the tan-
gent linear model is close to the one found with the
fully nonlinear model. Last, dealing with sea surface
salinity perturbations may require a better representa-
tion of the water cycle through the coupling to atmo-
sphere and ice models; such an implementation can be
a very interesting continuation to this work.
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