
HAL Id: hal-00308882
https://hal.science/hal-00308882

Submitted on 4 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protection in the Think exokernel
Christophe Rippert, Jean-Bernard Stefani

To cite this version:
Christophe Rippert, Jean-Bernard Stefani. Protection in the Think exokernel. 4th CaberNet European
Research Seminar on Advances in Distributed Systems, May 2001, Bertinoro, Italy. �hal-00308882�

https://hal.science/hal-00308882
https://hal.archives-ouvertes.fr


Protection in the Think exokernel

Christophe Rippert∗, Jean-Bernard Stefani†

Christophe.Rippert@imag.fr, Jean-Bernard.Stefani@inrialpes.fr

Introduction

In this paper, we present our preliminary ideas concerning the adaptation of security and protection
techniques in the Think exokernel. Think is our proposition of a distributed adaptable kernel,
designed according to the exokernel architecture.

After summing up the main motivations for using the exokernel architecture, we describe the
Think exokernel as it has been implemented on a PowerPC machine. We then present the major
protection and security techniques that we plan to adapt to the Think environment, and give an
example of how some of these techniques can be combined with the Think model to provide fair and
protected resource management. Finally, we briefly present the iPAQ Pocket PC to which we plan to
port the Think exokernel and explain our interest in this kind of mobile devices.

1 The Think exokernel

Traditional kernels [1, 2] provide the application programmer with abstractions like virtual memory,
processes, or file systems, to ease the development of applications. The programmer can use these
abstractions to avoid coping directly with the hardware, which is usually a tedious work. However,
monolithic kernels are often considered as bulky, poorly evolutive and slow [3] by kernel developers
who have been trying to find alternative solutions for more than 30 years [4].

1.1 Micro-kernels

The micro-kernel architecture [5] has been proposed to improve the portability, the modularity and
the evolutivity of standard kernels. A micro-kernel includes the basic abstractions that all standard
applications should need, such as a memory manager or inter-process communications. A micro-kernel
can be extended with additional abstractions structured as servers outside the micro-kernel itself, that
specific applications requiring them can call using IPC. The micro-kernel architecture offers a better
control over the hardware resources to the application programmer than monolithic kernels, since
it provides only the most basic abstractions and does not force the programmer to use high-level
abstractions including functions that he might not need. However, it has been deemed insufficient for
applications that require a fine-grained control of the hardware resources, to enjoy high performance
or to enforce application specific policies.

1.2 Exokernels

The exokernel architecture [6, 7] is based on the idea that a kernel should not force the programmer
to use any abstractions, even the most basic ones. So an exokernel only propose interfaces which
give the programmer direct access to the hardware resources, without adding any functionality. High-
level abstractions can be provided but their use must remain completely optional to the application
programmer. For instance, a programmer who needs a classic scheduler for his application could use

∗Université Joseph Fourier
†Institut National de Recherche en Informatique et en Automatique



one provided by the system, but nothing should prevent him to implement and use its own scheduler if
he needs to. By providing these optional abstractions as external libraries, the exokernel architecture
offers a complete flexibility to the programmer. Moreover, the modularity of the exokernel architecture
enables the application programmer to choose exactly which libraries his application needs and to
install only these libraries, whereas a monolithic kernel is usually bloated with services that only a
few (if any) applications really need.

1.3 The Think exokernel

The Think architecture is our proposition of a distributed exokernel. As its name implies, THink
Is Not a Kernel. It does not provide any abstractions usually proposed by traditional kernels, like a
process model or a scheduler for example. Instead, it provides interfaces that export the hardware
resources to the applications. It also supplies binding factories to permit communication between the
objects that will compose the application. A configuration tool is proposed to help the programmer
define which interfaces are needed by a given object, and which interfaces it provides, and to check
that all needed interfaces are available at compilation time. Finally, some standard abstractions
(memory or a process models for example) are also provided, but their use is completely optional and
the application programmer can chose to implement its own abstractions if they suit his application
better.

The hardware interfaces provided by Think are completely machine-dependent. They do not
extend the hardware functionalities nor do they try to ease the portability of the architecture by
providing high-level functions common to several machines. Their aim is simply to give access to
hardware resources by wrapping them in software interfaces. For instance, a TrapRegister(id, handler)
function is included in the exception-handling interface. Using this function to register an exception
handler is much easier than manipulating the exception vector table directly, without adding any
functionality to the processor exception model.

In the Think architecture, software and hardware resources are seen as objects, as defined in the
ODP Reference Model [8]. These objects export interfaces that define their behavior to other objects.
Each interface has a name in a given naming context, and is linked with others by bindings. A binding
is basically a communication channel between objects. Bindings can take many forms, as simple as
the association between a variable name and its value in memory, or more complex like a network
connection between objects on different machines. Bindings are created by dedicated objects, called
binding factories, which basic functionality (i.e. creating a binding between the calling object and an
interface identified by its name) can be freely extended to ensure a given behavior. Finally, objects
are grouped in domains according to a common property (e.g. security domains, fault domains, ...).

These various concepts are represented as a minimal software framefork, described in the Figure
1 below. We use Java as the interface description language in Think.

interface Top { interface NamingContext {

} Name toName(String name);

Name export(Top itf);

}

interface Name {

NamingContext getDefaultNamingContext(); interface BindingFactory {

String toString(); Top bind(Name name);

} }

Figure 1: The core software framework in Think

The Top interface is the greatest element in the Think type lattice, the common type from which
all interfaces derive. The Name interface is the common type for all names in Think. The method
NamingContext getDefaultNamingContext() returns the current naming context and the method
String toString() provides a serialized form of the name. The NamingContext interface is the



common type for all naming contexts in Think. Its method Name toName(String name) deserializes
a name known as a String. The method Name export(Top itf) provides a name for a given inter-
face. As a side effect, it also creates a binding between the returned name and the given interface.
The BindingFactory interface is the common type for all binding factories in Think. The method
Top bind(Name name) creates a binding between the calling object and the object those name is given
to the method.

The Think architecture has been implemented by Jean-Philippe Fassino from France Télécom
R&D on a PowerPC computer. More details about this experiment, including benchmarks, can be
found in [9].

2 Security issues

The exokernel architecture seems to be much less secure that a monolithic kernel. Indeed, allowing
the application programmer to directly access the hardware resources opens the way to all sorts of
abuses. Thus, some exokernel specific security techniques have been devised, like the secure bindings
presented in [6]. We plan to further this work by adapting existing security techniques used in standard
operating systems and virtual machines to the exokernel architecture. We give below an example of
how to use some of these techniques in the Think environment to implement a fair scheduler.

2.1 Existing security techniques

Our definition of security threats is the same as in [14]: an application should not be able to access
private data belonging to another application without permission, and no application should monop-
olize the system resources in a way that would compromise the quality of the service offered to other
applications.

Much work has been conducted around the isolation of applications (or processes) to prevent unau-
thorized accesses. Security techniques usually exploit the hardware to implement efficient isolation
[15]. However, some processors do not offer these kinds of facilities, and basing a system security on
them reduces the portability of this system. So software isolation techniques have been devised to
provide machine-independent security [16, 17], without penalizing IPC too heavily.

Apart from preventing unauthorized accesses, processes isolation is also a way to prevent a faulty
process from compromising the whole system. Once again, this isolation is often achieved by using
hardware facilities, but efficient software-based isolation techniques have also been devised [18].

However, the most challenging security problem is the fair allocation of resources between the
various applications running in the system. A process should not be able to use all the memory space
or monopolize the processor, even without malign intentions. The main difficulty lies in counting
exactly the amount of resources allocated to a process (for example, should each process using an
area of shared memory be charged for the whole area or for a fraction of it?). Isolating the processes
can be a way to ease the count of resources allocated, though it usually complicate IPC (forbidding
shared memory usually complicate data exchange between processes, for example) [19]. Solutions have
been proposed to enforce fair resources allocation without compromising IPC [20, 21], though these
propositions are centered on the Java environment. A Java interpret could be implemented in Think

as an optional abstraction, but not in the exokernel itself. Moreover, language-based security has been
deemed less effective than operating system based protection [22], since the former implies that the
language compilation chain must be trusted. Operating system based security has been studied too
[23, 24] concerning the fair allocation of resources. Adaptation of security has also been studied in
the Gandiva system, which provides configuration support for applications written in C++ [25] and
Java [26].

2.2 Example: implementing a fair and protected scheduler in Think

In a standard operating system, the kernel is responsible for resource allocations, so it is easy to
implement a security system in it. On the other hand in the exokernel architecture, resources are allo-
cated by applications, not by the kernel, which greatly complicates the implementation of a protection



system to enforce fair allocation of resources for example. We believe that the binding factories can
be used to enforce this security, as we shall see in the following example.

The Figure 2 describes the basic architecture for a fair and protected scheduler abstraction in
Think. We suppose that the programmer’s application is composed of three processes (this model
can of course be extended to any number of processes). Each one is executed in its own security
domain (D1, D2, D3). These domains can be defined using software-based fault isolation techniques
as presented in [18] for example. The scheduler itself is executed in its own domain. To share the
processor between the processes, the scheduler needs to access the system clock, which is considered
as a hardware resource in Think. So the scheduler must register a new trap-handler for the clock
interruption, using the TrapRegister function described above. By doing this, the scheduler creates a
binding between itself and the trap object located in the exokernel. This binding is represented by the
solid line in the Figure 2 (the dashed lines represents the fact that the three processes are scheduled
by the scheduler object). So the scheduler is able to start and stop the processes according to its own
policy. Obviously, the three processes must not be able to modify the clock trap handler. Hence, the
binding factory that creates the binding between the scheduler and the system clock must check that
any binding requests for the system clock come from a scheduler object and not a standard process.

This architecture can easily be provided as an optional library. Then the application programmer
only needs to implement his own scheduler and instantiate the library with his scheduler and processes.
Therefore, this abstraction can easily be adapted to provide fair resource allocation techniques such
as those presented in [21] for example. The binding factory responsible for providing bindings to
the system clock object can easily be extended to deny bindings with non-scheduler objects, thus
providing a secure binding mechanism as presented in [6]. We believe that this protection scheme can
be generalized to other resources allocation.

Figure 2: An fair and protected scheduler in Think

3 Porting Think to a mobile computer

As an application of our work on exokernels and protection, we plan to port Think and its associated
libraries to the iPAQ Pocket PC [10]. This mobile device includes a 206 MHz Intel StrongARM
processor [11], 32 megabytes of SDRAM and 16 megabytes of flash memory, which make it powerful
enough to run interesting applications. The Windows Pocket PC operating system [12] is initially
installed in the flash memory, but a port of Linux has been implemented by volunteers supporting
the Open Source Software movement on handheld computers [13]. This will enable us to reuse some



of the existing Linux code (especially the device drivers), which will be easier than programming the
libraries from scratch.

Our main interest in porting the Think architecture to the iPAQ lies in the inherent limitations
of this type of mobile devices. Even if the iPAQ is powerful enough for a mobile device (a 200 MHz
processor and 32 MB of RAM was a good configuration for a standard PC five years ago), it cannot
compete with modern machines with processor speeds approaching the GHz and memory sizes of 256
or 512 MB. Therefore, using an exokernel on this kind of devices can help the application programmer
to optimize his applications to use efficiently the available resources. Considering the small amount
of memory available (32 MB of RAM can be considered a small amount nowadays), it should not be
wasted by including unnecessary services in the kernel, for example. Likewise, the processor should
work more on the application code than on the kernel code, and it should never work on unnecessary
code. This is especially important since the power consumption is directly linked to the activity of
the processor, and power is a precious resource on a battery-powered device like a Pocket PC. We
think that using an exokernel on this type of devices can increase its efficiency (i.e. speed up the
execution of applications and lengthen the battery life), which we shall try and prove by monitoring
the performances of our architecture and comparing it with the same machine running Linux and
Windows Pocket PC OS.

Conclusion

We are interested in building a secure and efficient kernel on a mobile computer such as the iPAQ
Pocket PC. We chose the exokernel architecture since we consider it to be the best-suited environment
to provide the application programmer with a fine-grained control over the hardware resources. More-
over, the modularity of the Think exokernel permits to restrict the proposed services to those that
the applications really need. By using secure bindings to implement the security techniques used in
standard operating systems, we plan to provide the same level of security in the exokernel architecture
that in a classical monolithic kernel. We believe that the exokernel is a good architecture to build
secure, adaptable, and efficient kernels and we hope to contribute to its promotion by porting Think

to different kinds of devices.

References

[1] David A. Rusling. The Linux Kernel. January 1998, http://www.linuxdoc.org.

[2] David A. Solomon and Mark Russinovich. Inside Microsoft Windows 2000, Third Edition. Mi-
crosoft Press, August 2000.

[3] Dawson R. Engler and M. Frans Kaashoek. Exterminate All Operating System Abstractions.
Workshop on Hot Topics in Operating Systems, May 1995.

[4] B. W. Lampson. On reliable and extendable operating systems. State of the Art Report, Vol.1,

Infotech Ltd, 1971.

[5] Michel Gien. Micro-Kernel Architecture, Key to Modern Operating Systems Design. Unix Review,

Vol. 8, No 11, November 1990.

[6] Dawson R. Engler, M. Frans Kasshoek and James O’Toole Jr. Exokernel: An Operating Sys-
tem Architecture for Application-Level Resource Management. ACM Symposium on Operating

Systems Principles, 1995.

[7] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño, Russell Hunt,
David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti and Kenneth Mackenzie. Ap-
plication Performance and Flexibility on Exokernel Systems. ACM Symposium on Operating

Systems Principles, 1997.



[8] ODP Reference Model. Fundations. ITU-T ISO/IEC Recommendation X.902 - International
Standard 10746-2, 1995.

[9] Jean-Philippe Fassino and Jean-Bernard Stefani. Think : un noyau d’infrastructure répartie
adaptable. 2ème Conférence Française sur les Systèmes d’Exploitation, Avril 2001.

[10] iPAQ Pocket PC home page. http://www.compaq.com.

[11] Intel StrongARM SA-1110 Microprocessor Developer’s Manual. June 2000.
http://developer.intel.com.

[12] Microsoft Corporation Pocket PC home page. http://www.microsoft.com.

[13] Handhelds.org home page. http://www.handhelds.org.

[14] Butler W. Lampson. Protection. ACM Operating Systems Review, January 1974.

[15] Tzi-cker Chiueh and Ganesh Venkitachalam and Prashant Pradhan. Integrating Segmentation
and Paging Protection for Safe Efficient and Transparent Software Extensions. ACM Symposium

on Operating Systems Principles, 1999.

[16] Dan S. Wallach and Dirk Balfanz and Drew Dean and Edward W. Felten. Extensible Security
Architectures for Java. ACM Symposium on Operating Systems Principles, 1997.

[17] Jeffret S. Chase and Henry M. Levy and Michael J. Feeley and Edward D. Lazowska. Sharing
and Protection in a Single Address Space Operating System. ACM Transactions on Computer

Systems, May 1994.

[18] Robert Wahbe and Steven Lucco and Thomas E. Anderson and Susan L. Graham. Efficient
Software-Based Fault Isolation. ACM Special Interest Group on OPerating Systems, 1993.

[19] Godmar Back and Wilson Hsieh. Drawing the Red Line in Java. IEEE Workshop on Hot Topics

in Operating Systems, March 1999.

[20] Godmar Back and Patrick Tullmann and Leigh Stoller and Wilson C. Hsieh and Jay Lepreau.
Java Operating Systems: Design and Implementation. University of Utah, School of Computing,
Technical report UUCS-98-015, August 1998.

[21] Godmar Back and Wilson C. Hsieh and Jay Lepreau. Processes in KaffeOS: Isolation, Resource
Management, and Sharing in Java. ACM Symposium on Operating Systems Design and Imple-

mentation, October 2000.

[22] Trent Jaeger and Jochen Liedtke and Nayeem Islam. Operating System Protection for Fine-
Grained Programs. USENIX Security Symposium, January 1998.

[23] David R. Cheriton and Kenneth J. Duda. A Caching Model of Operating System Kernel Func-
tionality. ACM Symposium on Operating Systems Design and Implementation, November 1994.

[24] Bryan Ford and Sai Susarla. CPU Inheritance Scheduling. ACM Symposium on Operating Systems

Design and Implementation, October 1996.

[25] Stuart M. Wheater, Mark C. Little. The Design and Implementation of a Framework for Con-
figurable Software. IEEE International Conference on Configurable Distributed Systems, May
1996.

[26] Mark C. Little, Stuart M. Wheater. Building Configurable Applications in Java. IEEE Interna-

tional Conference on Configurable Distributed Systems, May 1998.


