N

N

Statistical analysis of a dynamic model for dietary
contaminant exposure

Patrice Bertail, Stéphan Clémencon, Jessica Tressou

» To cite this version:

Patrice Bertail, Stéphan Clémencon, Jessica Tressou. Statistical analysis of a dynamic model
for dietary contaminant exposure. Journal of Biological Dynamics, 2010, 4 (2), pp.212-234.
10.1080/17513750903222960 . hal-00308881v2

HAL Id: hal-00308881
https://hal.science /hal-00308881v2
Submitted on 3 Feb 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00308881v2
https://hal.archives-ouvertes.fr

Statistical analysis of a dynamic model
for dietary contaminant exposure

Patrice Bertail*
MODAL’X - Université Paris X, 200 av. de la République, 92100 Nanterre cedex, France

Stéphan Clémencon!
Telecom ParisTech - UMRS541, 46 rue Barrault, 75634 Paris cedex 13, France

Jessica Tressou *
Unité INRA Met@risk - UR1204, 16 rue Claude Bernard, 75234 Paris cedex 05, France

February 3, 2009

Abstract

This paper is devoted to the statistical analysis of a stochastic model introduced in
Bertail, Clémencon & Tressou (2008) for describing the phenomenon of exposure to a certain
food contaminant. In this modeling, the temporal evolution of the contamination exposure
is entirely determined by the accumulation phenomenon due to successive dietary intakes
and the pharmacokinetics governing the elimination process in between intakes, in such
a way that the exposure dynamic through time is described as a piecewise deterministic
Markov process. Paths of the contamination exposure process are scarcely observable in
practice, therefore intensive computer simulation methods are crucial for estimating the time-
dependent or steady-state features of the process. Here we consider simulation estimators
based on consumption and contamination data and investigate how to construct accurate
bootstrap confidence intervals for certain quantities of considerable importance from the
epidemiology viewpoint. Special attention is also paid to the problem of computing the
probability of certain rare events related to the exposure process path arising in dietary
risk analysis using multilevel splitting or importance sampling techniques. Applications
of these statistical methods to a collection of datasets related to dietary methyl mercury
contamination are discussed thoroughly.

Keywords:Food safety risk analysis; Linear pharmacokinetics model; Piecewise deter-
ministic Markov process; Monte-Carlo techniques; Bootstrap; Rare event analysis.
Classcode: Primary 92D30; Secondary 62D05, 62FE20.

1 Introduction

Food safety is now receiving increasing attention both in the public health community and in
scientific literature. For example, it was the second thematic priority of the 7th European Re-
search Framework Program (refer to http://ec.europa.eu/research/fp7/) and advances in this
field are starting to be reported in international conferences, as attested by the session statistics
in environmental and food sciences in the 25th European Meeting of Statisticians held in Oslo
in 2005, or in the 38émes journées de Statistique held in Clamart, France, in 2006. Addition-
ally, several pluridisciplinary research units dedicated entirely to dietary risk analysis, such as
Met@risk (INRA, http://www.paris.inra.fr/metarisk) in France, Biometris (www.biometris.nl)
in the Netherlands or the Joint Institute for Food Safety and Applied Nutrition in the United
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States (www.foodrisk.org) have recently been created. This rapidly developing field involves
various disciplines across the medical, biological, social and mathematical sciences. The role of
Statistics in this field is becoming more and more widely recognized; see the seminal discus-
sion in Renwick et al. [2003], and consists particularly of developing probabilistic methods for
quantitative risk assessment, refer to Boon et al. [2003], Edler et al. [2002], Gibney and van der
Voet [2003], van der Voet et al. [2007]. Hence, information related to the contamination levels
of an increasing number of food products for a wide range of chemicals on the one hand and to
the dietary behavior of large population samples on the other hand is progressively collected in
massive databases. The study of dietary exposure to food contaminants has raised many stim-
ulating questions and motivated the use and/or development of appropriate statistical methods
for analyzing the data, see Bertail and Tressou [2006], Tressou [2006] for instance. Recent work
focuses on static approaches for modeling the quantity X of a specific food contaminant ingested
over a short period of time and computing the probability that X exceeds a maximum tolerable
dose, eventually causing adverse effects on human health; see Tressou [2005] and the references
therein. One may refer to Bertail et al. [2006], Renwick et al. [2003] for a detailed account
of dose level thresholds such as the Provisional Tolerable Weekly Intake, meant to represent
the maximum contaminant dose one may ingest per week without significant risk. However, as
emphasized in Bertail et al. [2008], it is essential for successful modeling to take account of the
human kinetics of the chemical of interest when considering contaminants such as methyl mer-
cury (MeHg), our running example in this paper, that is not eliminated quickly, with a biological
half-life measured in weeks rather than days, as detailed in section 2. In Bertail et al. [2008], a
dynamic stochastic model for dietary contamination exposure has been proposed, which is driven
by two key components: the accumulation phenomenon through successive dietary intakes and
the kinetics in man of the contaminant of interest that governs the elimination process. While a
detailed study of the structural properties of the exposure process, such as communication and
stochastic stability, has been carried out in Bertail et al. [2008], the aim of the present paper
is to investigate the relation of the model to available data so as to propose suitable statistical
methods.

The rest of the article is organized as follows. In section 2, the dynamic model proposed in
Bertail et al. [2008] and its structural properties are briefly reviewed, with the aim of giving an
insight into how it is ruled by a few key components. In section 3, the relation of the dynamic
exposure model previously described to available data is thoroughly investigated. In particu-
lar, we show how computationally-intensive methods permit the analysis of the data in a valid
asymptotic theoretical framework. Special emphasis is placed on the problem of bootstrap confi-
dence interval construction from simulation estimates of certain features of the exposure process,
which are relevant from the epidemiology viewpoint. Statistical estimation of the probability of
certain rare events, such as those related to the time required for the exposure process to exceed
some high and potentially critical contamination level, for which naive Monte-Carlo methods
obviously fail, is also considered. Multilevel splitting genetic algorithms or importance sampling
techniques are adapted to tackle this crucially important issue in the field of dietary risk assess-
ment. This is followed by a section devoted to the application of the latter methodologies for
analyzing a collection of datasets related to dietary MeHg contamination, in which the eventual
use of the model for prediction and disease control from a public health guidance perspective is
also discussed. Technicalities are deferred to the Appendix.

2 Stochastic Modeling of Dietary Contaminant Exposure

In Bertail et al. [2008] an attempt was made to model the temporal evolution of the total body
burden of a certain chemical present in a variety of foods involved in the diet, when contamination
sources other than dietary, such as environmental contamination for instance, are neglected. As
recalled below, the dynamic of the general model proposed is governed by two key components,
a marked point process (MPP) and a linear differential equation, in order to appropriately
account for the accumulation of the chemical in the human body and its physiological elimination



respectively.

Dietary behavior. The accumulation phenomenon of the food contaminant in the body occurs
according to the successive dietary intakes, which may be mathematically described by a marked
point process. Assume that the chemical is present in a collection of P types of food, indexed
by p=1,---,P. A meal is then modeled as a random vector @ = (QW,---,Q")), the p-
th component Q) indicating the quantity of food of type p consumed during the meal, with
1 < p < P. Suppose that also, for 1 < p < P, food type p eaten during a meal is contaminated
in random ratio C®) in regards to the chemical of interest. For this meal the total contaminant
intake is then

v
U=>Y cPQW =(C,Q), (1)
p=1

of which distribution Fy; is the image of the joint distribution Fgp ® F¢ by the standard inner
product (.,.) on RP. denoting by Fg the distribution of the consumption vector () and by F¢ that
of the contamination vector C' = (C(l), e ,C’(P)), as soon as the r.v.’s @ and C are assumed
to be independent of each other. Although solely the distribution Fy; is of interest from the
perspective of dietary contamination analysis, the random vectors ) and C play an important
role in the description of the model insofar as intakes are not observable in practice and their
distribution is actually estimated from observed consumption and contamination vectors, see
section 3.

Equipped with this notation, a stochastic process model that carries information about
the times of the successive dietary intakes of an individual of the population of interest and
the quantities of contaminant ingested, at the same time, may be naturally constructed by
considering the marked point process {(7},, @n, Cpn) }nen, where the T,’s denote the successive
times when a food of type p € {1,---, P} is consumed by the individual and the second and
third components of the MPP, @, and C,,, are respectively the consumption vector and the
contamination vector related to the meal eaten at time 7},. One may naturally suppose that the
sequence of quantities consumed (@), )nen is independent from the sequence (Cy,)nen of chemical
concentrations.

A given dietary behavior may now be characterized by stipulating specific dependence re-
lations for the (7}, @,)’s. When the chemical of interest is present in several types of food of
which consumption is typically alternated or combined for reasons related to taste or nutritional
aspects, assuming an autoregressive structure for the (AT),,@,)’s, with AT, = T,, — T}, for
all n > 1, seems appropriate. In addition, different portions of the same food may be consumed
on more than one occasion, which suggests that, for a given food type p, assuming depen-
dency among their contamination levels C’T(Lp ) may also be pertinent in some cases. However,
in many important situations, it is reasonable to consider a very simple model in which the
marks {(Qn,Cp)}nen form an i.i.d. sequence independent from the point process (T},)nen, the
latter being a pure renewal process, i.e. durations AT, in between intakes are i.i.d. random
variables. This modeling is particularly pertinent for chemicals largely present in one type of
food. Examples include methyl mercury quasi-solely found in seafood products, certain myco-
toxins such as Patulin exclusively present in apple products, see §3.3.2 in FAO/WHO [1995],
or Chloropropanols, see §5.1 in FAO/WHO [2002]. Beyond its relevancy for such crucial cases
in practice, though simple, this framework raises very challenging probabilistic and statistical
questions, as shown in Bertail et al. [2008]. So that the theoretical results proved in this latter
paper may be used for establishing a valid asymptotic framework, we also set ourselves under
this set of assumptions in the present statistical study and leave for further investigation the
issue of modeling more complex situations. Hence, throughout the article the accumulation of
a chemical in the body through time is described thoroughly by the MPP {(7,,, U, ) }nen with
ii.d. marks U, = (Qn, Cy) drawn from Fy(dx) = fy(z)dz, the common (absolutely continuous)
distribution of the intakes, independent from the renewal process (T),)nen. Let G(dt) = g(t)dt
denote the common distribution of the inter-intake durations AT,,, n € N. Then, taking by con-



vention Ty = 0 for the first intake time, the total quantity of chemical ingested by the individual

up to time ¢t > 0 is
N(t)

B(t)=Y_ U, (2)
k=1

where N(t) = > ;cn Iy7, <4y is the number of contaminant intakes up to time ¢, denoting by I 4
the indicator function of any event A.

Pharmacokinetics. Given the metabolic rate of a given organism, physiological elimina-
tion/excretion of the chemical in between intakes is classically described by an ordinary dif-
ferential equation (ODE), the whole human body being viewed as a single compartment phar-
macokinetic model, see Gibaldi and Perrier [1982], Rowland and Tozer [1995] for an account of
pharmacokinetic models. Supported by considerable empirical evidence, one may reasonably
assume the elimination rate to be proportional to the total body burden of the chemical in
numerous situations, including the case of methyl mercury:

dx(t) = —0x(t) - dt, (3)

denoting by z(t) the total body burden of chemical at time ¢. The acceleration parameter
0 > 0 describes the metabolism with respect to the chemical elimination. However in pharma-
cology /toxicology, the elimination rate is classically measured by the biological half-life of the
chemical in the body, log(2)/6, that is the time required for the total body burden z to decrease
by half in the absence of a new intake. One may refer to Brett et al. [1999] for basics on linear
pharmacokinetics systems theory, pharmacokinetics parameters, and standard methodologies
for designing experiments and inferring numerical values for such parameters.

Remark 1 (MODELLING VARIABILITY IN THE METABOLIC RATE) In order to account for vari-
ability in the metabolic rate while preserving monotonicity of the solution x(¢), various exten-
sions of the model above may be considered. A natural way consists of incorporating a ‘biological
noise’ and randomizing the ODE (3), replacing 0dt by dN (t), where {N(t)};>0 denotes a time-
homogeneous (increasing) Poisson process with intensity 6 (and compensator 6t):

dx(t) = —x(t) - dAN(t).

The results recalled below may be easily extended to this more general framework. However,
as raw data related to physiological elimination of dietary contaminants are very seldom in
practice, this prevents us from fitting a sophisticated model in a reliable fashion, therefore we
restrict ourselves to the simple model described by Eq. (3) on the grounds of parsimony.

Let X (t) denote the total body burden of a given chemical at time ¢ > 0. Under the
assumptions listed above, the ezposure process X = { X (t) }+>0 moves deterministically according
to the first order differential equation (3) in between intakes and has the same jumps as (B(t))>0.
A typical cad-lag! sample path of the exposure process is displayed below in Figure 1. Let A(t) =
t — Ty () denote the backward recurrence time at t > 0 (i.e. the time since the last intake at t).
The process {(X (t), A(t)) }+>0 belongs to the class of so-termed piecewise deterministic Markov
(PDM) processes. Since the seminal contribution of Davis [1984], such stochastic processes
are widely used in a large variety of applications in operations research, ranging from queuing
systems to storage models. Refer to Davis [1991] for an excellent account of PDM processes
and their applications. In most cases, the AT),’s are assumed to be exponentially distributed,
making X itself a Markov process and its study much easier to carry out, see Chapter XIV in
Asmussen [2003]. However, this assumption is clearly inappropriate in the dietary context and
PDM models with increasing hazard rates are more realistic in many situations.

'Recall that a mapping z :]0,00[— R is said to be cad-lag if for all t > 0, lims_ s>¢x(s) = z(t) and
lims ¢, s<t 2(s) = z(t—) < 00
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Figure 1: Sample path of the exposure process X (t).

In Bertail et al. [2008], the structural properties of the exposure process X have been thor-
oughly investigated using an embedded Markov chain analysis, namely by studying the behav-
ior of the chain X = (X )nen describing the exposure process immediately after each intake:
X, = X(T,) for all n € N. As a matter of fact, the analysis of such a chain is facilitated
considerably by its autoregressive structure:

{ Xnt1 = Xne_eATn+1 +Unpt1, n €N (4)

XO = Xy.

Such autoregressive models with random coefficients have been widely studied in the litera-
ture, refer to Rachev and Samorodnitsky [1995] for a recent survey of available results on this
topic. The continuous-time process X may be easily related to the embedded chain X: solving
(3) gives for all t > 0

X(t) = Xpy, e 0. (5)

Long-term behavior. Under the conditions (i)-(iii) listed below, the behavior of the exposure
process X in the long run can be determined. In addition, a (geometric) ergodicity rate can be
established when condition (iv) is fulfilled.

(1) The inter-intake time distribution G has an infinite tail and either inf g q g(x) > 0 for
some € > 0 or the intake distribution Fy; has infinite tail.

(ii) There exists some v > 1 such that E[U]] < cc.

(iii) The inter-intake time distribution has first and second order finite moments mg = E[AT}] <
oo and 03 = var[AT}] < co.

(iv) There exists some § > 0 such that E[e?272] < oc.

These mild hypotheses can easily be checked in practice as we do in section 4 for MeHg: as-
sumption (i) stipulates that inter-intake times may be arbitrarily long with positive probability
and they may also either be arbitrarily short with positive probability, which may then also sat-
isfy the exponential moment condition (iv), or intakes may otherwise be arbitrarily large with
positive probability, but also 'relatively small’ in the case when (ii) is fulfilled. In the detailed
ergodicity study carried out in Bertail et al. [2008], Theorems 2 and 3 establish in particular
that under conditions (i)-(iv), respectively conditions (i)-(ii), the continuous-time exposure pro-
cess X (t), respectively the embedded chain X, corresponding to successive exposure levels at



intake times, settles to an equilibrium/steady state as t — oo, respectively as n — o), described
by a governing, absolutely continuous, probability distribution p(dz) = f(z)dz, respectively
fi(dz) = f(x)dx for the embedded discrete chain. The limiting distributions p and i are related
to one another by the following equation, see (15) in Bertail et al. [2008]:

o) =gt [~ [ en BB i Gan), ©)

These stationary distributions are of vital interest to quantify steady-state or long term quan-
tities, pertinent to the epidemiology viewpoint, such as

e the steady-state mean exposure

mye= [ oulde) = Jim BLX(0) | X(0) = aol, for any ap >0, (7)

e the limiting average time the exposure process spent above some (possibly critical) thresh-
old value u > 0,

1T
e = Jim 7 [ Tt (®)

In Bertail et al. [2008], a simulation study was carried out to evaluate the time to steady-
state for women of chilbearing age in the situation of dietary MeHg exposure, that is the time
needed for the exposure process to behave in a stationary fashion, which is also termed burn-in
period in the MCMC method context. It was empirically shown that after 5 to 6 half lives, or
about 30 weeks, the values taken by the exposure process can be considered as drawn from the
stationary distribution, which is a reasonable horizon on the human scale.

3 Statistical Inference via Computer Simulation

We now investigate the relation of the exposure model described in section 2 to existing data.
In the first place, it should be noticed that information related to the contamination exposure
process is scarcely available at the individual level. It seems pointless to try to collect data
for reconstructing individual trajectories: an experimental design measuring the contamination
levels of all food ingested by a given individual over a long period of time would not actually
be feasible. Inference procedures are instead based on data for the contamination ratio related
to any given food and chemical stored in massive data repositories, as well as collected survey
data reporting the dietary behavior of large samples over short periods of time. In the following,
we show how computer-based methods may be used practically for statistical inference of the
exposure process X (t) from this kind of data. A valid asymptotic framework for these procedures
is also established from the stability analysis of the probabilistic model carried out in Bertail
et al. [2008].

3.1 Naive Simulation Estimators

Suppose we are in the situation described above and have at our disposal three sets of i.i.d. data
G, C and Q drawn from G, Fo and F( respectively, as well as noisy half-life data H such as
those described in FAO/WHO [2003]. From these data samples, various estimation procedures
may be used for producing estimators 6, G and Fy of 6, G and Fy, also fulfilling conditions
(1)-(iii), see Remark 6 in the Appendix. One may refer in particular to Bertail and Tressou [2006]
for an account of the problem of estimating the intake distribution Fy from contamination and
consumption data sets C and Q, see also section 4 below. Although the law of the exposure
process X (t) given the initial value X (0) = zp, which is assumed to be fixed throughout this
section, is entirely determined by the pharmacokinetic parameter 6 and the distributions G
and Fy, quantities related to the behavior that are of interest from the toxicology viewpoint



are generally very complex functionals T’ (9 G, Fy) of these parameters, refuting the possibility
of computing plug-in estimates T(9 G FU) explicitly. Apart from the mean-value (7) and the
mean-time spent over some threshold value (8) in steady-state, among relevant quantities one
may also consider for instance:

e the mean-time required for exceeding a threshold level u > 0, given by
ET, = Ey [ru(X)] with 7,(X) = inf{t > 0: X(t) > u}, 9)
denoting by E,, [.] the conditional expectation given X (0) = xo,
e the expected maximum exposure value over a period of time [0,T]

EMp =E.[ sup X(t)], (10)
te[0,7

e the expected overshoot above a level u > 0 in steady-state

o0

EO, =Eu X —u| X >u] = / zf(u+ z)dz/p(ju, oof), (11)

denoting by E,[.] the expectation in steady-state.

Based on the estimate 6 and the probability distributions G’, FU at our disposal, we are then
able to simulate sample paths of the exposure process X = {X (t)}+>0 governed by these in-
strumental estimates. Although computing estimates of certain characteristics such as the ones
mentioned above for X may be carried out straightforwardly via Monte-Carlo simulation, one
should pay careful attention to whether a good approximation of (6, G, Fy7) also induces a good
approximation of the corresponding characteristics of the exposure process, which is far from
trivial. Considering the geometry of exposure trajectories shown in Figure 1, this may be viewed
as a stability/continuity problem in the Skorohod space Dr of cad-lag functions x : (0,7) — R
equipped with an adequate topology (in a way that two exposure paths can possibly be ‘close’,
although their respective jumps do not necessarily happen simultaneously) when 7' < oo (refer
to Whitt [2002] for an excellent account of such topological path spaces). This issue has been
handled in Theorem 5 of Bertail et al. [2008] using a coupling technique (see also Corollary 6
therein). Theorem 1 in the Appendix recapitulates these results from a statistical perspectlve
and establishes the strong consistency of simulation estimators, provided that 9 G and FU are
strongly consistent estimates of 8, G and Fy as the sizes of the datasets H, G, C and Q become
large.

In practice, one might be also interested in the behavior of such estimators as T' — oo, with
the aim of estimating steady-state features such as (7) or (8). The accuracy of simulation esti-
mators not only depends on the closeness between (0, G, Fi7) and the instrumental parameters
(é, G, FU), but also on the runlength T < oo of the simulation. Indeed, a natural way for esti-
mating the probability (8) that exposure exceeds some prescribed threshold w at equilibrium for
instance is to compute a Monte-Carlo approximation of E[T~! ft { X(1) >u}dt] for T adequately
large. By virtue of Theorem 1 in the Appendix, for a ﬁxed T, thls is a consistent estimate of
E[T-! ftzo [{ x(t)>u}dt], which converges in its turn to u([u,o0[) at an exponential rate when
T — o0, see Theorem 3 in Bertail et al. [2008]. Theorem 2 in the Appendix shows that the
inference method based on this heuristic is strongly consistent for estimating steady-state quan-
tities such as (7), (8) or (11), provided that T grows to infinity at a suitable rate. Refer to §4.3
for numerical results in the MeHg exposure context.

3.2 Bootstrap and Confidence Intervals

Now that consistent inference procedures have been described in various important estimation
settings, we naturally turn our attention to the problem of assessing statistical accuracy for
the estimates thus computed. Given the technical difficulties faced when trying to identify



asymptotic distributions of the simulation estimators described in §3.1, we take advantage of
bootstrap confidence intervals, which are built directly from the data, via the implementation of a
simplistic computer algorithm; see Hall [1997] for an account of the bootstrap theory, and Efron
and Tibshirani [2004] for a more practice-oriented overview. Here we discuss the application of
the bootstrap-percentile method to our specific setting for automatically producing confidence
intervals from simulation estimators.

Let us suppose that the parameter of interest is in the form of F(®) = E[®(X (t)}¢cpo,1)],
where T' < oo and ® : Dp — R is a given function defined in the exposure path space. As
previously noted, typical choices are x +— fOT [{o@)>uydt and = +— fOT(a;(t) — u)lp)>yuydt for
u > 0. We consider the problem of estimating the sampling distribution of a simulation estimator
F(®) =E[®({X (t)}tepo,r))] of F(®) computed using instrumental parameter estimates 0, G and
Fy fitted from data samples H, G, C and Q: Fp(z) = P(F(®) — F(®) < z). Note that here the
probability refers to the randomness in the samples H, G, C and Q. The ’simulated bootstrap’
algorithm is performed in five steps as follows.

Algorithm 1 - ‘Simulated Bootstrap’

1. Make i.i.d. draws with replacement in each of the four datasets H, G, C and Q, yielding
the bootstrap samples H*, G*, C* and Q*, with the same sizes as the original samples,
respectively.

2. From data samples generated in step 1, compute bootstrap versions é*, G* and F,j of the
instrumental estimates 6, G and Fy.

3. From the bootstrap parameters é*, G* and FL*,, simulate the bootstrap exposure process:
{X*(0) hepo,m-

4. Compute the bootstrap estimate of the sampling distribution of F'(®)
FEOOT (z) = P* (5 (@) — F(®) < ), (12)
where P* denotes the conditional probability given the original datasets.

5. A bootstrap confidence interval at level 1—a € (1/2,1) for the parameter F/(®) is obtained
using the bootstrap root’s quantiles ¢, /2 and q7_ /20 of orders «/2 and 1—a/2 respectively:

Iikfa = [F((I)) + QZ/27 F((I)) + QTfa/2]' (13)

Here the redundant designation ’simulated bootstrap’ simply emphasizes the fact that a path
simulation stage follows the data resampling and parameter recomputing steps. Asymptotic
validity of this bootstrap procedure may be established at length by refining the proof of Theorem
1, based on the Fréchet differentiability notion. Owing to space limitations, technicalities here
are omitted.

Remark 2 (MONTE-CARLO APPROXIMATIONS) The bootstrap distribution estimate (12) may
be practically approximated by iterating B times the resampling step and averaging then over
the B resulting bootstrap trajectory replicates: {X;(t)}icpo,7] with b € {1, ..., B}.

3.3 Rare Event Analysis

The statistical study of the extremal behavior of the exposure process is also of crucial impor-
tance in practice. Indeed, accurately estimating the probability of reaching a certain possibly
critical level u within a lifetime is an essential concern from the public health perspective (see
the discussion in section 4). When the toxicological threshold level u of interest is ‘very high’,
when compared to the mean behavior of the exposure process X, crude Monte-Carlo (CMC)
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Figure 2: Examples of trajectories in the French adult female population compared to a reference
exposure process (Unit: ug/kg bw). The solid red curves are different trajectories with the same
initial state zop = 0. The dashed green curve stabilizes at a critical threshold of reference u, see
section 4 for details on its construction.

methods, as those proposed in §3.1, completely fail; see Figure 3.3 for an illustration of this phe-
nomenon. We are then faced with computational difficulties inherent to the issue of estimating
the probability of a rare event related to X’s law. In this paper, we leave aside the question
of fully describing the extremal behavior of the exposure process X in an analytical fashion
and infering values for related theoretical parameters such as the extremal index, measuring
to what extent extreme values tend to come in ‘small clusters’. Attention is rather focused
on practical simulation-based procedures for estimating probabilities of rare events of the form
Eur = {mu(X) < T}, where T is a reasonable horizon on the human scale, and level u is very
large in comparison with the long term mean exposure m, for instance. Here, two methods
are proposed for carrying out such a rare event analysis in our setting, each having its own
advantages and drawbacks, see Glasserman et al. [1999] for a review of available methods for
estimating the entrance probability into a rare set. In the first approach, a classical importance
sampling procedure is implemented, while our second strategy, based on an adequate factor-
ization of the rare event probability P, (&, 1) relying on the Markov structure of the process
(X (t),A(t)) (i.e. a Feynman-Kac representation), consists of using a multilevel splitting algo-
rithm, see Cérou et al. [2006]. In the latter, simulated exposure trajectories getting close to the
target level u are ‘multiplied’, while we let the others die, in the spirit of the popular ReSTART
(Repetitive Simulated Trials After Reaching Thresholds) method; refer to Villén-Altamirano and
Villén-Altamirano [1991] for an overview. In section 4, both methodologies are applied in order
to evaluate the risk related to dietary MeHg exposure, namely the probability that the total
body burden rises above a specific dose of reference.

3.3.1 Importance Sampling

Importance sampling (1S) is a standard tool in rare event simulation. It relies on simulating
exposure paths from a different probability, P say, equivalent to the original along a suitable
filtration, chosen in a way that the event of interest &, r is much less rare, or even frequent, under
the latter distribution, refer to Bucklew [2004] for a recent account of IS techniques and their
applications. The rare event probability estimate is then computed by multiplying the empirical
quantity output by the simulation algorithm using the new distribution by the corresponding
likelihood ratio (importance function).



In our setting, a natural way of speeding up the exceedance of level u by process X is to
consider an intake distribution FU(dx) fU( )dx equivalent to Fyr though much larger in
the stochastic ordering sense (i.e. Fy(z) << Fy(x) for all £ > 0), so that large intakes may
occur more frequently, and, simultaneously, an inter-intake time distribution G(dt) = g(t)dt
with same support as G(dt) but stochastically much smaller (namely, G(t) << G(t) for all
t > 0), in order that the intake frequency is increased (see section 4 for specific choices in the
MeHg case). In contrast, the elimination process cannot be slowed down, i.e. the biological
half-life log 2/60 cannot be increased, at the risk of no longer preserving equivalence between
P and P. To be more specific, let ]P’xO be the probability measure on the same underlying
measurable space as the one on which the original probability P,, has been defined, making
X the process described in section 2. Under f?’mo, the intakes {Uj}r>1, respectively the inter-
intake times {AT}}g>1, are i.i.d. r.v.’s drawn from Fyy, respectively from G, and Xy = z¢ > 0.
The distribution P, is absolutely continuous with respect to the IS distribution I@’wo along the
filtration F; = o((Ug, ATy); 1 <k < N(t)), t > 0, that is the collection of o-fields generated by
the intakes and inter-intake times until time ¢. In addition, on F7, the likelihood ratio is given
by

N(T)
G(T — Tn(r))

1-— k gAT)
Ly=—— Tk 14
TG - Ty H Uk 9(AT}) )

Hence, denoting by INEmO[] the I@xo—expectation, we have the relationship

Py, (gu,T) = ]ECEO (L7 - ng,T]’ (15)

From a practical angle, the expectation on the right hand side of (15) is estimated by simulating
a large number of exposure trajectories of length 7" under the IS probability measure P, and
then applying a CMC approximation, which yields an unbiased estimate of the target Py, (€, 7).

3.3.2 Multilevel Splitting

The approach described above involves specifying an appropriate change of measure (adequate
df’s Fy and G) so as to simulate a random variable Ly - I¢, ;. with reduced variance under the

new distribution P, see Chapter 14 in Bucklew [2004]. This delicate tuning step is generally
based on large-deviations techniques when tractable. Although encouraging results have been
obtained for estimating the probability of exceedance of large thresholds (in long time asymp-
totics) for random walks through IS techniques (for instance refer to Chapter VI in Asmussen
and Glynn [2000], where both the light-tailed and heavy-tailed cases are considered), no method
for choosing a nearly optimal change of measure is currently available in our setup, where time
T is fixed. For this reason, the so-termed multilevel splitting technique has recently emerged
as a serious competitor to the IS methodology, see Glasserman et al. [1999]. This approach is
indeed termed non-intrusive, insofar as it does not require any modification of the instrumen-
tal simulation distributions. Here, it boils down to represent the distribution of the exposure
process exceeding the critical threshold w in terms of a Feynman-Kac branching particle model,
see Moral [2004] for an account of Feynman-Kac formulae and their genealogical and interacting
particle interpretations. Precisely, the interval [0,u] in which the exposure process X evolves
before crossing the level x = u is split into sub-intervals corresponding to intermediary sublevels
0 <wuy <...<upy < utheexposure path must pass before reaching the rare set [u, co[ and parti-
cles, in this case exposure paths, branch out as soon as they pass the next sublevel. Connections
between such a physical approach of rare event simulation and approximations of Feynman-Kac
distributions based on interacting particle systems are developed at length in Cérou et al. [2006].
We now recall the principle of the multilevel splitting algorithm used in section 4. Suppose that
m intermediary sub-levels 0 < u; < ... < Uy, < Upmt1 = u, are specified by the user (see Remark
3), as well as instrumental simulation parameters (Fy7,G,0) and xo > 0. Let N > 1 be fixed
and denote the cardinal of any finite set X by | X |. The algorithm is then performed in m + 1
steps as follows.
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Algorithm 2 - ‘Multi-level Splitting’

1. Simulate N exposure paths from xy < u; of runlength 7', indexed by k € {1, ..., N} and
denoted by X® = (X"}, o, 1 <k <N,

2. Forj=1,..., m:

(a) Let Z; ; be the index subset corresponding to the exposure trajectories having reached
level u; before endtime T', i.e. such that Tg;] = inf{t > 0; X}k] > uj} < T. Define
Zy,; as the index subset corresponding to the other sample paths.

(b) For each path indexed by k' in Zp ;, randomly draw k in Z; ; and redefine X K1 as

K] until time TL’;], and prolongated until time T by

simulation from the state X [¥] (TL’j]) Note that hitting times TL’?

intake times.

the trajectory confounded with X

necessarily occur at

(c) Compute P; =|Z;; | /N and pass onto the next level u; .

3. Output the estimate of the probability Py, w1 = Pay(Eur):

~

on,u,T = Pl XX Pm+1a (16)

where P,,11 is defined as the proportion of particles that have reached the final level u
among those which have reached the previous sublevel w,,, that is | Zj y,41|/N.

Before illustrating how the procedure works on a toy example, below are two relevant re-
marks.

Remark 3 (ON PRACTICAL CHOICE OF THE TUNING PARAMETERS) Although a rigorous asymp-
totic validity framework has been established in Cérou et al. [2006] for Algorithm 2 when the
number N of particles gets arbitrarily large, the intermediary sublevels uq, ..., u, must be se-
lected by the user in practice. As noticed in Lagnoux [2006], an optimal choice would consist
of choosing the sublevels so that the probability to pass from [u;, 00 to [uj41,00] should be the
same, whatever the sublevel j. Here we mention the fact that, in the numerical experiments
carried out in section 4, the sublevels have been determined by using the adaptive variant of
Algorithm 2 proposed in Cérou and Guyader [2007], where the latter are picked in such a way
that all probabilities involved in the factorization (16) are approximately of the same order of
magnitude.

Remark 4 (‘VALIDATION’) Stating the truth, estimating the probability of rare events such as
&y, is a difficult task in practice and, when feasible, the numerical results provided by different
possible methods should be compared for assessing the order of magnitude of the rare event
probability of interest. It should also be mentioned that, in a very specific case, namely when
Fy and G are both exponential distributions, the distribution of the hitting time 7, may be
explicitly computed through its Laplace transform using Dynkin’s formula, see Kella and Stadje
[2001]. As an initial attempt, the latter may be thus used for computing a preliminary rough
estimate of Py .7

A toy example. Figure 3 illustrates the way Algorithm 2 works in the case of N = 5
trajectories starting from xg = 3 with m = 2 intermediary levels (u = (4,5,6)) and a horizon
T equal to one year in the model with exponential intake and inter-intake times distributions.
Initially, all curves have reached the first intermediary level (u = 4) except the blue curve as
shown in Figure 3(a). It is then restarted from the red curve at the exact point where it first
reached u = 4 in Figure 3(b). Now, only the blue and black curves have reached the second
intermediary level (u = 5). In Figure 3(c), all the other curves are thus restarted from one of
these at the exact point where they first reached v = 5. Eventually, only the blue curve reached
the level of interest u = 6. The probability of reaching 6 in less than one year is estimated by
4/5x2/5 x 1/5 = 6.4%.
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(b) Iteration 1: u =4 (c) Iteration 2: u =25

Figure 3: Multilevel Splitting: an illustration for N = 5 particles starting from xg = 3 with
m = 2 intermediary levels (u € {4,5,6}) and a horizon T" equal to 1 year.
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4 Numerical results for MeHg exposure

In this section, we apply the statistical techniques presented in the preceding section for analyzing
how a population of women of childbearing age (who are female between 15 and 45, for the
purpose of this study) are exposed to dietary MeHg, based on the dynamic model described in
section 2. The group suffering the highest risk from this exposure is actually the unborn child
as mentioned in the hazard characterization step described in FAO/WHO [2003]: the MeHg
present in the seafood of the mother’s diet will certainly pass onto the developing foetus and
may cause irreversible brain damage.

From the available datasets related to MeHg contamination and fish consumption, essential
features of the exposure process are inferred using the simulation-based estimation tools previ-
ously described. Special attention is now paid to the probability of exceeding a specific dose
derived from a toxicological level of reference in the static setup, namely the Provisional Tol-
erable Weekly Intake (PTWI), which represents the contaminant dose an individual can ingest
weekly over an entire lifetime without appreciable risk, as defined by the international expert
committee of FAO/WHO, see FAO/WHO [2003]. This means it is crucial to implement the rare
event analysis methods reviewed in §3.3.

Eventually, the impact of the choice of the statistical methods used for fitting the instrumen-
tal distributions is empirically quantified and discussed from the perspective of public health
guidelines.

4.1 Description of the datasets

We start off with a brief description of the datasets used in the present quantitative risk assess-
ment. Note that fish and other seafood are the only source of MeHg.

Contamination data C. Here we use the contamination data related to fish and other seafoods
available on the French market that have been collected by accredited laboratories from official
national surveys performed between 1994 and 2003 by the French Ministry of Agriculture and
Fisheries MAAPAR [1998-2002] and the French Research Institute for Exploitation of the Sea
IFREMER [1994-1998]. This dataset comprises 2832 observations.

Consumption data G, Q. The national individual consumption survey INCA CREDOC-
AFSSA-DGAL [1999] provides the quantity consumed of an extensive list of foods over a week,
among which fish and other seafoods, as well as the time consumption occurred with at least
the information about the nature of the meal, whether it be breakfast, lunch, dinner or ‘snacks’.
It is surveys 1985 adults aged 15 years or over, including 639 adult females between 15 and 45.
From these observations, the dataset G consists of the actual durations between consecutive
intakes, when properly observed, together with right censored inter-intake times, when only the
information that the duration between successive intakes is larger than a certain time can be
extracted from the observations. Inter-intake times are expressed in hours.

As in Bertail et al. [2008], Verger et al. [2007], MeHg intakes are computed at each observed
meal through a so-termed deterministic procedure currently used in national and international
risk assessments. From the INCA food list, 92 different fish or seafood species are determined
and a mean level of contamination is computed from the contamination data, as in Crépet et al.
[2005], Tressou et al. [2004]. Intakes are then obtained through Eq. (1) based on these mean
contamination levels: this is a simplifying approach that bears the advantage that fish species
can be taken into account as extensively explained in Tressou et al. [2004]. For comparison
sake, all consumptions are divided by the associated individual body weight, also provided in
the INCA survey, so that intakes are expressed in micrograms per kilogram of body weight per
meal (pug/kgbw/meal).

As previously mentioned, raw data related to the biological half-life of contaminants such as
MeHg are scarcely available. Refering to the scientific literature devoted to the pharmacokinetics
of MeHg in the human body (see Rahola et al. [1972], Smith et al. [1994], Smith and Farris
[1996], IPCS [1987]), the biological half-life fluctuates at around 44 days. This numerical value,
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converted in hours, is thus retained for performing simulations, leading to pick log2/(44 x 24)
for the acceleration parameter estimate 6.

4.2 Estimation of the instrumental distributions F;; and G

In order to estimate the cumulative distribution functions (cdf) of the intakes and inter-intake
times, various statistical techniques have been considered, namely parametric and semi-parametric
approaches.

Estimating the intake distribution. By generating intake data as explained in §4.1, we
dispose of a sample U of np, = 1088 intakes representative of the subpopulation consisting of
women of childbearing age, on which the following cdf estimates are based.

Parametric modeling. We first considered two simple parametric models for the intake dis-
tribution: the first one stipulates that Fy takes the form of an exponential distribution with
parameter Ap, = 1/mp,, while the other assumes it is a heavy-tailed Burr type distribution
(with cdf (1 — (14 2¢)7%) for ¢ > 0 and k > 0) in order to avoid underestimating the probability
that very large intakes have occured. For both statistical models, related parameters have been
set by the maximum likelihood estimation (MLFE). It can be easily established that ML esti-
mates are consistent and asymptotically normal in such regular models and, furthermore, that
the cdf corresponding to the MLE parameter is also consistent in the L'- sense, see Remark
6 in the Appendix. Numerically, based on U we found that S\FU = 4.06 by simply inverting
the sample mean in the exponential model, whereas in the Burr distribution based model, MLE
yields ¢ = 0.95 and k = 4.93. Recall that, in the Burr case, E[U]] = T'(k—~/c) x T(14+/¢)/T (k)
is finite as soon as ck > 7. One may thus check that the intake distribution estimate fulfills
condition (i7) with v = 4; see section 2.

Semi-parametric approach. In order to allow for more flexibility and accuracy on the one hand
and to obtain a resulting instrumental cdf well-suited for worst case risk analysis on the other
hand, a semi-parametric estimator has also been fitted the following way: the piecewise linear left
part of the cdf corresponds to a histogram-based density estimator, while the tail is modelled by
a Pareto distribution, with a continuity constraint at the change point xx. Precisely, a number
K of extreme intakes is used to determine the tail parameter a of the Pareto cdf 1 — (72)~¢,
7> 0 and o > 0, 7 being chosen to ensure the continuity constraint. The value of K is fixed
through a bias-variance trade-off, following exactly the methodology proposed in Tressou et al.
[2004]. Numerically, we have o = 2.099, 7 = 5.92, and zx = 0.355.

Probability plots are displayed in Figure 4(a). The semi-parametric estimator clearly pro-
vides the best fit to the data. The Burr distribution is nevertheless a good parametric choice. It
is preferred to the Exponential distribution based on the AIC criteria, whereas the BIC criteria
advocates for the Exponential distribution.

Estimating the inter-intake time distribution. We dispose of a sample G of ng = 1214
right censored inter-intake times.

Parametric models. In this censored data setup, MLE boils down to maximizing the log likeli-
hood given by

nag
Wa,6,v) => (1 =) log[f, (z:)] + 6 In[1 — F, (z;)],

i=1
where the (z;,0;)’s are the observations, d; denotes the censorship indicator, f, is the density
candidate, and F, the corresponding cdf. Four parametric distributions, widely used in sur-
vival analysis, have been considered here: Exponential, Gamma, Weibull and Log Normal. It is
noteworthy that conditions (¢)- (i) listed in section 2 are satisfied for such distributions. One
may also find that the cdf corresponding to the MLE parameter is Li- strongly consistent for
each of these regular statistical models. The resulting MLE estimators are: Ae = 0.0078 for
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the Exponential distribution Fzp(Ag), & = 1.06 and B = 117.2 for the Gamma distribution
such that 1 — G(t) oc t* Lexp(—t/3), @ = 128.7 and & = 0.999 for the Weibull distribution such
that 1 — G(t) = exp(—(t/a)°), and a = 4.41 and b = 1.31 for the Log Normal distribution, with
parametrization such that log[(AT> — a)/b)] follows a standard normal.

Semi-parametric modeling. Using a semi-parametric approach, a cdf estimate is built from a
smoothed Kaplan-Meier estimator Fkyr for the left part of the distribution and an exponential
distribution for the tail behavior, with a continuity constraint at the change point. To be exact,
the change point corresponds to the largest uncensored observation xx and the parameter of the
exponential distribution to —log[1—Fxkm(z )]/ K, in a way that continuity at x is guaranteed.
The resulting parameter of the exponential distribution is 0.0073, and xx = 146 hours.

Figure 4(b) displays the corresponding probability plots. Again, the semi-parametric esti-
mator provides the best fit, except naturally for the tail part because of the right censorship.
Based on AIC or BIC criteria, the Exponential distributions is chosen among the proposed para-
metric distributions. However, the fitted Gamma distribution is marginally more accurate than
the Weibull and Exponential distributions, since it offers the advantage of having an increasing
hazard rate (here, a > 1), which is a realistic feature in the dietary context.
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Figure 4: Probability plots (empirical cdf versus fitted cdf), comparison of the different adjust-
ments.

4.3 Estimation of the main features of the exposure process

From the perspective of food safety, we now compute several important summary statistics
related to the dietary MeHg exposure process of French females of childbearing age using the
simulation estimators proposed in section 3. In chemical risk assessment, once a hazard has been
identified, meaning that the potential adverse effects of the compound have been described, it
is then characterized, using the notion of threshold of toxicological concern. This pragmatic
approach for chemical risk assessment consists of specifying a threshold value, below which
there is a very low probability of observing adverse effects on human health. In practice, one
experimentally determines the lowest dose that may be ingested by animals or humans, daily or
weekly, without appreciable effects. The Tolerable Intake is then established by multiplying this
experimental value, known as the Non Observed Adverse Effect Level (NOAEL) by a relevant
safety factor, taking into account both inter-species and inter-individual variabilities. This
approach dates from the early sixties, see Truhaut [1991], and is internationally recognized in
Food Safety, see IPCS. The third and fourth steps of risk assessment consists of assessing the
exposure to the chemical of interest for the studied population, and comparing it to the daily
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Table 1: Estimation of the steady state mean and median for the 15 models with 95% confidence
intervals (unit: pg/kgbw, M = 1000, B = 200).

Fy @ Exponential

Fy o Burr

Fy @ Semi-Parametric

G :Exponential

3.01 € [2.68,3.32
2.92 € [2.53,3.38

2.96 € [2.67, 3.23
2.97 € [2.67,3.24

2.98 € [2.67,3.39
2.89 € [2.53,3.31

G :Gamma

3.07 € [2.69, 3.42
2.99 € [2.57,3.34

3.03 € [2.73,3.34
3.04 € [2.70,3.31

3.05 € [2.69, 3.40
2.96 € [2.57,3.53

G :Weibull

2.98 € [2.63,3.33

2.97 € [2.60, 3.29

2.99 € [2.67,3.29

G :Log-Normal

2.28 € [2.02,2.57
1.95 € [1.63,2.36

2.25 € [1.99, 2.54
2.45 € [2.23,2.70

2.26 € [1.95, 2.61
1.92 € [1.56,2.34

G : Semi-Parametric

2.95 € [2.67,3.23

2.90 € [2.62, 3.25

2.93 € [2.58, 3.26

] [ ] ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

2.94 € [2.54,3.38]  2.96 € [2.67,3.23]  2.92 € [2.47,3.49)
[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

3.03 € |2.71,3.37) 2.83 € [2.48,3.16 2.82 €(2.42,3.29

or weekly tolerable intake. The first two steps are known as hazard identification and hazard
characterization, while the last two are called exposure assessment and risk characterization. In
a static setup, when considering chemicals that are not accumulated in the human body and
describing exposure by the supposedly i.i.d. sequence of intakes, this boils down to evaluating the
probability that weekly intakes exceed the reference dose d, termed the Provisionary Tolerable
Weekly Intake (PTWI), see Tressou [2005]. Considering compounds with longer biological half-
lives, we propose comparing the stochastic exposure process to the limit of a deterministic process
of reference {x, } nen. Mimicking the experiment carried out in the hazard characterization step,
the latter is built up by considering intakes exactly equal to the PTWI d occuring every week
(Fy is a point mass at d, and G is a point mass at one week, that is 7 x 24). The reference
level is thus given by the affine recurrence relationship z, = exp(—log(2)/HL X 1)x,—1 + d,
yielding a reference level Xyerq = limy oo zp, = d/(1 — 21/ HL) " where the half-life HL is
expressed in weeks. For MeHg, the value d = 0.7 ug/kgbw/w corresponds to the reference dose
established by the U.S. National Research Council currently in use in the United States, see
NRC [National Research Council], whereas the PTWI has been set to d = 1.6 pg/kgbw/w
by the international expert committee of FAO/WHO, see FAO/WHO [2003]. Numerically, this
yields Xier0.7 = 6.42 pg/kgbw and Xyer1.6 = 14.67 pg/kgbw when MeHg’s biological half-life is
fixed to HL = 6 weeks, as estimated in Smith and Farris [1996]. We termed this reference dose
as ‘Tolerable Body Burden’ (TBB), which is more relevant than the previous 'Kinetic Tolerable
Intake’ (KTI) determined in Verger et al. [2007].

In the dynamic setup, several summarizing quantities can be considered for comparison
purposes. We first estimated two important features of the process of exposure to MeHg, for
all combinations of input distributions: the long-term mean exposure m,, the median exposure
value in the stationary regime, and the probability of exceeding the threshold X,f.7 in steady-
state p1([Xyef,0.7, 00[); see Table 1 and Figure 5. Computation is conducted as follows: M = 1000
trajectories are simulated over a run length of 1 year after a burn-in period of 5 years, quantities
of interest are then averaged over the M trajectories and this is repeated B = 200 times to build
the bootstrap CI’s, as described in section 3.2. The major differences among the 15 models
for the stationary mean arise when using the Log Normal distribution for the inter-intake times
with a lower estimation for this model presenting a heavy tail (longer inter-intake times are more
frequent). All the other models for G lead to similar results in terms of confidence intervals for
the mean and median exposures in the long run, whatever the choice for Fy, refer to Table 1.
When estimating a tail feature such as the probability of exceeding u = X, 0.7 in steady-state,
the choice of Fyy becomes of prime importance, since its tail behavior is the same as that of
the stationary distribution p, see Theorem 3.2 in Bertail et al. [2008]. As illustrated by the
notion of PTWI, risk management in food safety is generally treated in the framework of worst-
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Figure 5: Estimation of the steady state probability of exceeding u = 6.42 for the 15 models
with 95% confidence intervals (unit: %, M = 1000, B = 200)

case design. In the subsequent analysis, we thus focus on the Burr-Gamma model. Due to its
‘conservative’ characteristics, it is unlikely that it leads to an underestimation of the risk. It
indeed stipulates heavy tail behavior for the intakes and light tail behavior for the inter-intake
times.

Another interesting statistic is the expected overshoot over a safe level u. In the case of the
‘Burr-Gamma’ model and for © = Xief0.7, the estimated expected overshoot is 0.101 ug/kgbw
with 95% bootstrap confidence interval [0.033,0.217], which corresponds to barely less than one
average intake. Before turning to the case of level u = Xt 1.6, Figure 6 illustrates the fact that
the exposure process very seldomly reaches such high thresholds displaying the estimation of
the expected maximum over [0, 7] for different values of T

Let us now turn to the main risk evaluation, that is, inference of the probability of reaching
u = Xier1.6 = 14.67 within a reasonable time horizon. This estimation problem is considered
for several time horizons, T" = 5, 10, 15, and 20 years, in the "heavy-tailed” Burr-Gamma
model. Close numerical results, obtained through crude Monte-Carlo and Multi-level Splitting,
are shown in Figure 7.

In order to implement the Multilevel Splitting methodology, a first simulation has been
conducted according to the adaptive version proposed by Cérou and Guyader [2007] using
N = 1000 particles, so as to determine the intermediary levels w1, ..., u;, such that half the
particles reach the next sublevel. When T = 20 years for instance, the resulting levels are
7.85,8.65,9.47,10.16,11.07,11.97, and 13.08 for an estimated probability of 0.52%.

Because they turned out to be inconsistent, empirical results based on the IS methodology are
not presented here. This illustrates well the difficulty of choosing the IS distribution properly,
as previously discussed.

Eventually, we considered the case of the ”light-tailed” Exponential-Gamma model, with
Exponential intakes and Gamma inter-intake times. In this situation, the crude Monte-carlo
procedure is totally inefficient and yields estimates of the probability of reaching the threshold
within any of the four time horizons all equal to zero (even if we increase the size of the simulation
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Figure 6: Estimation of the expected maximum of the exposure process over [0, 7] as a function
of the horizon T' (M = 1000, and B = 200).
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Figure 7: Estimation of the probability of reaching u = X,¢f1.6 = 14.67 within a reasonable time
horizon (Burr-Gamma model, M = 1000 is the size of the crude Monte carlo simulation, and
95% simulation intervals are computed over B = 100 iterations and shown as error bars in the
graphic).
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Figure 8: Estimation of the probability of reaching u = X166 = 14.67 within a reasonable
time horizon (Exponential-Gamma model, 95% simulation intervals are computed over B = 100
iterations and shown as error bars in the graphic).

to M = 10,000 or 100,000), whereas, in contrast, the Multilevel Splitting methodology allows
to quantify the probability of occurence of these rare events, as shown in Figure 8.

4.4 Some concluding remarks

Here we have endeavoured to explain how to exploit the data at our disposal, using a simple
mathematical model, in order to compute a variety of statistical dietary risk indicators at the
population level, as well as their degree of uncertainty. This premier work can be improved in
several directions. If more consumption data were available for instance, the inference procedure
should take into account the possible heterogeneity of the population of interest in regards to
dietary habits: a preliminary task would then consist of adequately stratifying the population in
homogeneous classes using clustering or mixture estimation techniques. Considering long term
exposure, it could also be pertinent to account for possible temporal heterogeneities and model
the evolution of the diet of an individual through time.

Although we showed how to evaluate the fit of various statistical models to the data by
means of visual tools or model selection techniques, our present contribution solely aims at
providing a general framework and guiding principles for constructing a quantitative dietary
risk model. Indeed, certain modelling issues must be left to the risk assessor’s choice, like using
extreme value theory for possibly modeling the intake’s tail out beyond the sample (refer to the
discussion in Tressou et al. [2004]) or incorporating features accounting for the metabolic rate’s
variability to the model for instance, according to the availability and quality of the data they
require.

A Technical details

Though formulated in a fairly abstract manner at first glance, the conver-gence-preservation
results stated in Theorem 1 below are essential from a practical perspective. They automatically
ensure, under mild conditions, consistency of simulation-based estimators associated to various
functions of statistical interest. Recall that a sequence of estimators (Fn)neN of a cumulative
distribution function (cdf) F on R is said to be ’strongly consistent in the L;-sense’ when
M, (F,,F) = Jier |E,(t) — F(t)|dt — 0 almost surely, as n — co. Convergence in distribution is
denoted by ¢ =’ in the sequel and we suppose that the Skorohod space Dy = D([0, T]) is equipped
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with the Hausdorff metric dp, the euclidean distance between cad-lag curves (completed with
line segments at possible discontinuity points), and with the related My topology.

Theorem 1 (CONSISTENCY OF SIMULATION ESTIMATORS, BERTAIL ET AL. [2008]) Let 0 <
T < o0 and for all n € N, consider a triplet of (random) parameters (0, Gy, Fu,) that almost
surely fylﬁll:s’ conditions (i)-(iv) and defines a stochastic exposure process X0 Assume further
that {(Gn, Fun)tnen forms an Ly-strongly consistent sequence of estimators of (G, Fyr) and that
0, is a strongly consistent estimator of the pharmacokinetics parameter 6.

(i) Let U : (Dp,dr) — R be any measurable function with a set of discontinuity points Disc(¥)
such that P({X (t) }reo,r) € Disc(V)) = 0. Then, we almost surely have the convergence
in distribution:

YAXM Oheor) = YEX (D heon), asn — oo (17)

(i) Let ® : (Dr,dr) — R be a Lipschitz mapping. Then, the expectations F(®) = E[®({X (t) }e0,1))]
and F,(®) = E[Q)({X(”)}te(oj))] are both finite. Besides, if sup,cyE[f,] < oo and

SUP,eN Jé < 00, then the following convergence in mean holds almost surely:

F,(®) — F(®), as n — oo. (18)

Before showing that this result applies to all functionals considered in this paper, a few remarks
are in order.

Remark 5 (MONTE-CARLO APPROXIMATION) When 7" < oo, estimates of the mean F'(®) may
be obtained in practice by replicating trajectories {X (”)’m}te(o,T), m =1, ..., M independently
from the distribution parameters (én, Gn, FU,n) and computing the Monte-Carlo approximation
to the expectation F,(®), that is

M
FOD@) = 2 57 S((XO™) o)) (19)

m=1

Remark 6 (CONDITIONS FULFILLED BY THE DISTRIBUTION ESTIMATES) Practical implemen-
tation of the simulation-based estimation procedure proposed above involve computing estimates
of the unknown df’s, G and Fy;, according to a Li-strongly consistent method. These also have
to be instrumental probability distributions on R, preferably convenient for simulation by cdf
inversion. This may be easily carried out in most situations. In the simple case when the con-
tinuous cdf on R, F,, to estimate belongs to some parametric class {F,},er with parameter
set I' C R? such that v — [ |z|dF,(x) and v — F,(t) for all ¢ > 0 are continuous mappings,
a natural choice is to consider the cdf F corresponding to a strongly consistent estimator 4 of
o (computed by MLE for instance). In a nonparametric setup, adequate cdf estimators may
be obtained using various regularization-based statistical procedures. For instance, under mild
hypotheses, the cdf F, associated to a simple histogram density estimator based on an i.i.d.
data sample of size n may be shown to classically satisfy, as n — oo, Fj,(z) — F(z) for all z
and [ |z|F,,(dz) — [ |z|F(dz) almost surely by straightforward SLLN arguments.

Remark 7 (RATES OF CONVERGENCE) If the estimator G, converges to G (resp. Fyy,, con-
verges to Fyr, resp. 6, converges to 0) at the rate v (resp. vV, resp. v%) in probability as
n — oo, careful examination of Theorem 2’s proof in Bertail et al. [2008] actually shows that
convergence (18) takes place in probability at the rate v, = min{vS, vV 91

For all T' < oo, the mapping z € Dr +— supg<;<p x(t) is Lipschitz with respect to the
Hausdorff distance, strong consistency of simulation estimators of (10) is thus guaranteed under

the assumptions of Theorem 1.
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Besides, 7, : * € Do +— inf{t > 0: z(t) > u} is a continuous mapping in the My topology.
Thus, we almost surely have 7,(X™) = 7,(X) as n — oo in the situation of Theorem 1.
Furthermore, it may be easily shown that {Tu(X (")},en is uniformly integrable under mild
additional assumptions, so that convergence in mean also holds almost surely.

Similarly, for fixed 7" > 0, the mapping on (D7, dr) that assigns to each trajectory z the
temporal mean 71 ft o z(t)dt (respectively, the ratio T~ ft 0 Lz(t)>uydt of time spent beyond
some threshold u) is continuous. Hence, we almost surely have the convergence in distribu-
tion (respectively, in mean by uniform integrability arguments) of the corresponding simulation
estimators as n — oo.

The next result guarantees consistency for simulation estimators of steady-state parameters,
provided that the runlength 7" increases to infinity at a suitable rate, compared to the accuracy
of the instrumental distributions.

Theorem 2 (CONSISTENCY FOR STEADY-STATE PARAMETERS, Bertail et al. [2008]) Let ¢ :
R — R be any of the three Junctions y — y, y = Igsyy ory — (y — u)]l{y>u}, with u > 0. Set

Op(z) -1 ft 0 @(x(t))dt for any x € Dy. Assume that Theorem 1’s conditions are fulfilled.

When T — oo and n — oo so that both T? x (My(G™,G) + |6,, — 0]) and T x Ml(F[(J ),FU)
almost surely tend to zero, then the following convergences take place almost surely:

Or(X ) = £,(9) and Fo(1) — E,u[o(X)), (20)

denoting by L,(¢) the distribution of ¢(X) when X is drawn from p.
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