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Submitted to the Annals of Applied Statistics

STATISTICAL ANALYSIS OF A DYNAMIC MODEL FOR
DIETARY CONTAMINANT EXPOSURE

By Patrice Bertail∗, Stéphan Clémençon and Jessica Tressou†

Université Paris X, Telecom ParisTech and INRA-Mét@risk

This paper is devoted to the statistical analysis of a stochastic
model introduced in Bertail, Clémençon & Tressou (2007) for de-
scribing the phenomenon of exposure to a certain food contaminant.
In this modeling, the temporal evolution of the contamination ex-
posure is entirely determined by the accumulation phenomenon due
to successive dietary intakes and the pharmacokinetics governing the
elimination process in between intakes, in such a way that the ex-
posure dynamic through time is described as a piecewise determinis-
tic Markov process. Paths of the contamination exposure process are
scarcely observable in practice, therefore intensive computer simula-
tion methods are crucial for estimating the time-dependent or steady-
state features of the process. Here we consider simulation estimators
based on consumption and contamination data and investigate how
to construct accurate bootstrap confidence intervals for certain quan-
tities of considerable importance from the epidemiology viewpoint.
Special attention is also paid to the problem of computing the prob-
ability of certain rare events related to the exposure process path
arising in dietary risk analysis using multilevel splitting or impor-
tance sampling techniques. Applications of these statistical methods
to a collection of datasets related to dietary methyl mercury (MeHg)
contamination are discussed thoroughly.

1. Introduction. Food safety is now receiving increasing attention both
in the public health community and in scientific literature. For example,
it was the second thematic priority of the 7th European Research Frame-
work Program (refer to http://ec.europa.eu/research/fp7/) and advances in
this field are starting to be reported in international conferences, as at-
tested by the session statistics in environmental and food sciences in the
25th European Meeting of Statisticians held in Oslo in 2005, or in the
38èmes journées de Statistique held in Clamart, France, in 2006. Addition-
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ally, several pluridisciplinary research units dedicated entirely to dietary risk
analysis, such as Met@risk (INRA, http://metarisk.inapg.inra.fr) in France,
Biometris (www.biometris.nl) in the Netherlands or the Joint Institute for
Food Safety and Applied Nutrition in the United States (www.foodrisk.org)
have recently been created. This rapidly developing field involves various dis-
ciplines across the medical, biological, social and mathematical sciences. The
role of Statistics in this field is becoming more and more widely recognized;
see the seminal discussion in [32], and consists particularly of developing
probabilistic methods for quantitative risk assessment, refer to [5; 14; 20; 41].
Hence, information related to the contamination levels of an increasing num-
ber of food products for a wide range of chemicals on the one hand and to
the dietary behavior of large population samples on the other hand is pro-
gressively collected in massive databases. The study of dietary exposure to
food contaminants has raised many stimulating questions and motivated the
use and/or development of appropriate statistical methods for analyzing the
data, see [4; 37] for instance. Recent work focuses on static approaches for
modeling the quantity X of a specific food contaminant ingested over a
short period of time and computing the probability that X exceeds a max-
imum tolerable dose, eventually causing adverse effects on human health;
see [36] and the references therein. One may refer to [3; 32] for a detailed
account of dose level thresholds such as the Provisional Tolerable Weekly
Intake, meant to represent the maximum contaminant dose one may ingest
per week without significant risk. However, as emphasized in [2], it is es-
sential for successful modeling to take account of the human kinetics of the
chemical of interest when considering contaminants such as methyl mercury
(MeHg), our running example in this paper, that is not eliminated quickly,
with a biological half-life measured in weeks rather than days, as detailed
in section 2. In [2], a dynamic stochastic model for dietary contamination
exposure has been proposed, which is driven by two key components: the ac-
cumulation phenomenon through successive dietary intakes and the kinetics
in man of the contaminant of interest that governs the elimination process.
While a detailed study of the structural properties of the exposure process,
such as communication and stochastic stability, has been carried out in [2],
the aim of the present paper is to investigate the relation of the model to
available data so as to propose suitable statistical methods.
The rest of the article is organized as follows. In section 2, the dynamic
model proposed in [2] and its structural properties are briefly reviewed, with
the aim of giving an insight into how it is ruled by a few key components.
In section 3, the relation of the dynamic exposure model previously de-
scribed to available data is thoroughly investigated. In particular, we show
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how computationally-intensive methods permit the analysis the data in a
valid asymptotic theoretical framework. Special emphasis is placed on the
problem of bootstrap confidence interval construction from simulation esti-
mates of certain features of the exposure process, which are relevant from
the epidemiology viewpoint. Statistical estimation of the probability of cer-
tain rare events, such as those related to the time required for the exposure
process to exceed some high and potentially critical contamination level, for
which naive Monte-Carlo methods obviously fail, is also considered. Mul-
tilevel splitting genetic algorithms or importance sampling techniques are
adapted to tackle this crucially important issue in the field of dietary risk
assessment. This is followed by a section devoted to the application of the
latter methodologies for analyzing a collection of datasets related to dietary
MeHg contamination, in which the eventual use of the model for predic-
tion and disease control from a public health guidance perspective is also
discussed. Technicalities are deferred to the Appendix.

2. Stochastic Modeling of Dietary Contaminant Exposure. In
[2] an attempt was made to model the temporal evolution of the total body
burden of a certain chemical present in a variety of foods involved in the
diet, when contamination sources other than dietary, such as environmental
contamination for instance, are neglected. As recalled below, the dynamic of
the general model proposed is governed by two key components, a marked
point process (MPP) and a linear differential equation, in order to appro-
priately account for the accumulation of the chemical in the human body
and its physiological elimination respectively.

Dietary behavior. The accumulation phenomenon of the food contaminant
in the body occurs according to the successive dietary intakes, which may be
mathematically described by a marked point process. Assume that the chem-
ical is present in a collection of P types of food, indexed by p = 1, · · · , P .
A meal is then modeled as a random vector Q = (Q(1), · · · , Q(P )), the p-th
component Q(p) indicating the quantity of food of type p consumed during
the meal, with 1 ≤ p ≤ P . Suppose that also, for 1 ≤ p ≤ P , food type p
eaten during a meal is contaminated in random ratio C(p) in regards to the
chemical of interest. For this meal the total contaminant intake is then

(1) U =
P∑
p=1

C(p)Q(p) = 〈C,Q〉,

of which distribution FU is the image of the joint distribution FQ ⊗ FC by
the standard inner product 〈., .〉 on RP , denoting by FQ the distribution
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of the consumption vector Q and by FC that of the contamination vector
C = (C(1), · · · , C(P )), as soon as the r.v.’s Q and C are assumed to be
independent of each other. Equipped with this notation, a stochastic process
model that carries information about the times of the successive dietary
intakes of an individual of the population of interest and the quantities
of contaminant ingested, at the same time, may be naturally constructed
by considering the marked point process {(Tn, Qn, Cn)}n∈N, where the Tn’s
denote the successive times when a food of type p ∈ {1, · · · , P} is consumed
by the individual and the second and third components of the MPP, Qn and
Cn, are respectively the consumption vector and the contamination vector
related to the meal eaten at time Tn. One may naturally suppose that the
sequence of quantities consumed (Qn)n∈N is independent from the sequence
(Cn)n∈N of chemical concentrations.

A given dietary behavior may now be characterized by stipulating spe-
cific dependence relations for the (Tn, Qn)’s. When the chemical of interest is
present in several types of food of which consumption is typically alternated
or combined for reasons related to taste or nutritional aspects, assuming an
autoregressive structure for the (∆Tn, Qn)’s, with ∆Tn = Tn − Tn−1 for all
n ≥ 1, seems appropriate. In addition, different portions of the same food
may be consumed on more than one occasion, which suggests that, for a
given food type p, assuming dependency among their contamination levels
C

(p)
n ’s may also be pertinent in some cases. However, in many important

situations, it is reasonable to consider a very simple model in which the
marks {(Qn, Cn)}n∈N form an i.i.d. sequence independent from the point
process (Tn)n∈N, the latter being a pure renewal process, i.e. durations ∆Tn
in between intakes are i.i.d. random variables. This modeling is particu-
larly pertinent for chemicals largely present in one type of food. Examples
include methyl mercury quasi-solely found in seafood products, certain my-
cotoxins such as Patulin exclusively present in apple products, see §3.3.2 in
[16], or Chloropropanols, see §5.1 in [17]. Beyond its relevancy for such cru-
cial cases in practice, though simple, this framework raises very challenging
probabilistic and statistical questions, as shown in [2]. So that the theoret-
ical results proved in this latter paper may be used for establishing a valid
asymptotic framework, we also set ourselves under this set of assumptions
in the present statistical study and leave for further investigation the issue
of modeling more complex situations. Hence, throughout the article the ac-
cumulation of a chemical in the body through time is described thoroughly
by the MPP {(Tn, Un)}n∈N with i.i.d. marks Un = 〈Qn, Cn〉 drawn from
FU (dx) = fU (x)dx, the common (absolutely continuous) distribution of the
intakes, independent from the renewal process (Tn)n∈N. Let G(dt) = g(t)dt
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denote the common distribution of the inter-intake durations ∆Tn, n ∈ N.
Then, taking by convention T0 = 0 for the first intake time, the total quan-
tity of chemical ingested by the individual up to time t ≥ 0 is

(2) B(t) =
N(t)∑
k=1

Uk,

where N(t) =
∑
k∈N I{Tk≤t} is the number of contaminant intakes up to time

t, denoting by IA the indicator function of any event A.

Pharmacokinetics. Given the metabolic rate of a given organism, phys-
iological elimination/excretion of the chemical in between intakes is classi-
cally described by an ordinary differential equation (ODE), the whole hu-
man body being viewed as a single compartment pharmacokinetic model, see
[19; 33] for an account of pharmacokinetic models. Supported by consider-
able empirical evidence, one may reasonably assume the elimination rate
to be proportional to the total body burden of the chemical in numerous
situations, including the case of methyl mercury:

(3) dx(t) = −θx(t) · dt,

denoting by x(t) the total body burden of chemical at time t. The accelera-
tion parameter θ > 0 describes the metabolism with respect to the chemical
elimination. However in pharmacology/toxicology, the elimination rate is
classically measured by the biological half-life of the chemical in the body,
log(2)/θ, that is the time required for the total body burden x to decrease
by half in the absence of a new intake. One may refer to [6] for basics on
linear pharmacokinetics systems theory, pharmacokinetics parameters, and
standard methodologies for designing experiments and inferring numerical
values for such parameters.

Remark 1. Modelling variability in the metabolic rate In or-
der to account for variability in the metabolic rate while preserving mono-
tonicity of the solution x(t), various extensions of the model above may be
considered. A natural way consists of incorporating a ‘biological noise’ and
randomizing the ODE (3), replacing θdt by dN (t), where {N (t)}t≥0 denotes
a time-homogeneous (increasing) Poisson process with intensity θ (and com-
pensator θt):

dx(t) = −x(t) · dN (t).

The results recalled below may be easily extended to this more general frame-
work. However, as raw data related to physiological elimination of dietary
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contaminants are very seldom in practice, this prevents us from fitting a so-
phisticated model in a reliable fashion, therefore we restrict ourselves to the
simple model described by Eq. (3) on the grounds of parsimony.

Let X(t) denote the total body burden of a given chemical at time t ≥ 0.
Under the assumptions listed above, the exposure process X = {X(t)}t≥0

moves deterministically according to the first order differential equation (3)
in between intakes and has the same jumps as (B(t))t≥0. A typical càd-làg1

sample path of the exposure process is displayed below in Figure 1. Let
A(t) = t − TN(t) denote the backward recurrence time at t ≥ 0 (i.e. the
time since the last intake at t). The process {(X(t), A(t))}t≥0 belongs to the
class of so-termed piecewise deterministic Markov (PDM) processes. Since
the seminal contribution of [12], such stochastic processes are widely used in
a large variety of applications in operations research, ranging from queuing
systems to storage models. Refer to [13] for an excellent account of PDM
processes and their applications. In most cases, the ∆Tn’s are assumed to be
exponentially distributed, making X itself a Markov process and its study
much easier to carry out, see Chapter XIV in [1]. However, this assumption is
clearly inappropriate in the dietary context and PDM models with increasing
hazard rates are more realistic.

Fig 1. Sample path of the exposure process X(t).

In [2], the structural properties of the exposure process X have been
thoroughly investigated using an embedded Markov chain analysis, namely

1Recall that a mapping x :]0,∞[→ R is said to be càd-làg if for all t > 0,
lims→t, s>t x(s) = x(t) and lims→t, s<t x(s) = x(t−) <∞
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by studying the behavior of the chain X̃ = (Xn)n∈N describing the exposure
process immediately after each intake: Xn = X(Tn) for all n ∈ N. As a
matter of fact, the analysis of such a chain is facilitated considerably by its
autoregressive structure:{

Xn+1 = Xne
−θ∆Tn+1 + Un+1, n ∈ N

X0 = x0.
(4)

Such autoregressive models with random coefficients have been widely
studied in the literature, refer to [30] for a recent survey of available results
on this topic. The continuous-time process X may be easily related to the
embedded chain X̃: solving (3) gives for all t ≥ 0

(5) X(t) = XTN(t)
e−θA(t).

Long-term behavior. Under the conditions listed below, the behavior of
the exposure process X in the long run can be determined.

(i) The inter-intake time distribution G has an infinite tail and either
infx∈]0,ε] g(x) > 0 for some ε > 0 or the intake distribution FU has
infinite tail.

(ii) There exists some γ ≥ 1 such that E[Uγ1 ] <∞.
(iii) The inter-intake time distribution has first and second order finite

moments mG = E[∆T1] <∞ and σ2
G = var[∆T1] <∞.

(iv) There exists some δ > 0 such that E[e−δ∆T1 ] <∞.

These mild hypotheses can easily be checked in practice as we do in sec-
tion 4 for MeHg: assumption (i) stipulates that inter-intake times may be
arbitrarily long with positive probability and they may also either be ar-
bitrarily short with positive probability, which may then also satisfy the
exponential moment condition (iv), or intakes may otherwise be arbitrarily
large with positive probability, but also ’relatively small’ in the case when
(ii) is fulfilled. In the detailed ergodicity study carried out in [2], Theorems
2 and 3 establish in particular that under conditions (i)-(iv), respectively
conditions (i)-(ii), the continuous-time exposure process X(t), respectively
the embedded chain Xn corresponding to successive exposure levels at in-
take times, settles to an equilibrium/steady state as t → ∞, respectively as
n → ∞), described by a governing, absolutely continuous, probability dis-
tribution µ(dx) = f(x)dx, respectively µ̃(dx) = f̃(x)dx for the embedded
discrete chain. The limiting distributions µ and µ̃ are related to one another
by the following equation, see (15) in [2]:

(6) µ([u,∞[) = m−1
G

∫ ∞
x=u

∫ ∞
t=0

t ∧ log(x/u)
θ

µ̃(dx)G(dt).
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These stationary distributions are of vital interest to quantify steady-state
or long term quantities, pertinent to the epidemiology viewpoint, such as

• the steady-state mean exposure

(7) mµ =
∫ ∞
x=0

xµ(dx) = lim
t→∞

E[X(t) | X(0) = x0], for any x0 ≥ 0,

• the limiting average time the exposure process spent above some (pos-
sibly critical) threshold value u > 0,

(8) µ([u,∞[) = lim
T→∞

1
T

∫ T

t=0
I{X(t)≥u}dt.

In [2], a simulation study was carried out to evaluate the time to steady-
state for women of chilbearing age in the situation of dietary MeHg exposure,
that is the time needed for the exposure process to behave in a stationary
fashion, which is also termed burn-in period in the MCMC method context.
It was empirically shown that after 5 to 6 half lives, or about 30 weeks, the
values taken by the exposure process can be considered as drawn from the
stationary distribution, which is a reasonable horizon on the human scale.

3. Statistical Inference via Computer Simulation. We now inves-
tigate the relation of the exposure model described in section 2 to existing
data. In the first place, it should be noticed that information related to the
contamination exposure process is scarcely available at the individual level.
It seems pointless to try to collect data for reconstructing individual trajec-
tories: an experimental design measuring the contamination levels of all food
ingested by a given individual over a long period of time would not actually
be feasible. Inference procedures are instead based on data for the contam-
ination ratio related to any given food and chemical stored in massive data
repositories, as well as collected survey data reporting the dietary behavior
of large samples over short periods of time. In the following, we show how
computer-based methods may be used practically for statistical inference of
the exposure process X(t) from this kind of data. A valid asymptotic frame-
work for these procedures is also established from the stability analysis of
the probabilistic model carried out in [2].

3.1. Naive Simulation Estimators. Suppose we are in the situation de-
scribed above and have at our disposal three sets of i.i.d. data G, C and Q
drawn from G, FC and FQ respectively, as well as noisy half-life data H such
as those described in [18]. From these data samples, various estimation pro-
cedures may be used for producing estimators θ̂, Ĝ and F̂U of θ, G and FU ,



STATISTICAL ANALYSIS OF DIETARY CONTAMINANT EXPOSURE 9

also fulfilling conditions (i)-(iv), see Remark 6 in the Appendix. One may
refer in particular to [4] for an account of the problem of estimating the in-
take distribution FU from contamination and consumption data sets C and
Q, see also section 4 below. Although the law of the exposure process X(t)
given the initial value X(0) = x0, which is assumed to be fixed throughout
this section, is entirely determined by the pharmacokinetic parameter θ and
the distributions G and FU , quantities related to the behavior that are of
interest from the toxicology viewpoint are generally very complex function-
als T (θ,G, FU ) of these parameters, refuting the possibility of computing
plug-in estimates T (θ̂, Ĝ, F̂U ) explicitly. Apart from the mean-value (7) and
the mean-time spent over some threshold value (8) in steady-state, among
relevant quantities one may also consider for instance:

• the mean-time required for exceeding a threshold level u > 0, given by

(9) ETu = Ex0 [τu(X)] with τu(X) = inf{t ≥ 0 : X(t) > u},

denoting by Ex0 [.] the conditional expectation given X(0) = x0, given
by
• the expected maximum exposure value over a period of time [0,T]

(10) EMT = Ex0 [ sup
t∈[0,T ]

X(t)],

• the expected overshoot above a level u > 0 in steady-state

(11) EOu = Eµ[X − u | X > u] =
∫ ∞
x=0

xf(u+ x)dx/µ(]u,∞[),

denoting by Eµ[.] the expectation in steady-state.

Based on the estimate θ̂ and the probability distributions Ĝ, F̂U at our
disposal, we are then able to simulate sample paths of the exposure pro-
cess X̂ = {X̂(t)}t≥0 governed by these instrumental estimates. Although
computing estimates of certain characteristics such as the ones mentioned
above for X̂ may be carried out straightforwardly via Monte-Carlo simula-
tion, one should pay careful attention to whether a good approximation of
(θ,G, FU ) also induces a good approximation of the corresponding charac-
teristics of the exposure process, which is far from trivial. Considering the
geometry of exposure trajectories shown in Figure 1, this may be viewed
as a stability/continuity problem in the Skorohod space DT of càd-làg func-
tions x : (0, T ) → R equipped with an adequate topology (in a way that
two exposure paths can possibly be ‘close’, although their respective jumps
do not necessarily happen simultaneously) when T < ∞ (refer to [44] for



10 P. BERTAIL, S. CLÉMENÇON & J. TRESSOU

an excellent account of such topological path spaces). This issue has been
handled in Theorem 5 of [2] using a coupling technique (see also Corollary
6 therein). Theorem 1 in the Appendix recapitulates these results from a
statistical perspective and establishes the strong consistency of simulation
estimators, provided that θ̂, Ĝ and F̂U are strongly consistent estimates of
θ, G and FU as the sizes of the datasets H, G, C and Q become large.

In practice, one might be also interested in the behavior of such estima-
tors as T → ∞, with the aim of estimating steady-state features such as
(7) or (8). The accuracy of simulation estimators not only depends on the
closeness between (θ,G, FU ) and the instrumental parameters (θ̂, Ĝ, F̂U ),
but also on the runlength T < ∞ of the simulation. Indeed, a natural way
for estimating the probability (8) that exposure exceeds some prescribed
threshold u at equilibrium for instance is to compute a Monte-Carlo ap-
proximation of E[T−1

∫ T
t=0 I{X̂(t)≥u}dt] for T adequately large. By virtue of

Theorem 1 in the Appendix, for a fixed T , this is a consistent estimate of
E[T−1

∫ T
t=0 I{X(t)≥u}dt], which converges in its turn to µ([u,∞[) at an expo-

nential rate when T →∞, see Theorem 3 in [2]. Theorem 2 in the Appendix
shows that the inference method based on this heuristic is strongly consis-
tent for estimating steady-state quantities such as (7), (8) or (11), provided
that T grows to infinity at a suitable rate. Refer to §4.3 for numerical results
in the MeHg exposure context.

3.2. Bootstrap and Confidence Intervals. Now that consistent inference
procedures have been described in various important estimation settings,
we naturally turn our attention to the problem of assessing statistical accu-
racy for the estimates thus computed. Given the technical difficulties faced
when trying to identify asymptotic distributions of the simulation estima-
tors described in §3.1, we take advantage of bootstrap confidence intervals,
which are built directly from the data, via the implementation of a simplis-
tic computer algorithm; see [22] for an account of the bootstrap theory, and
[15] for a more practice-oriented overview. Here we discuss the application
of the bootstrap-percentile method to our specific setting for automatically
producing confidence intervals from simulation estimators.

Let us suppose that the parameter of interest is in the form of F (Φ) =
E[Φ(X(t)}t∈[0,T ])], where T < ∞ and Φ : DT → R is a given function
defined in the exposure path space. As previously noted, typical choices
are x 7→

∫ T
0 I{x(t)≥u}dt and x 7→

∫ T
0 (x(t) − u)I{x(t)≥u}dt for u ≥ 0. We

consider the problem of estimating the sampling distribution of a simulation
estimator F̂ (Φ) = E[Φ({X̂(t)}t∈[0,T ])] of F (Φ) computed using instrumental
parameter estimates θ̂, Ĝ and F̂U fitted from data samples H, G, C and
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Q: FΦ(x) = P(F̂ (Φ) − F (Φ) ≤ x). Note that here the probability refers to
the randomness in the samples H, G, C and Q. The ’simulated bootstrap’
algorithm is performed in five steps as follows.

Algorithm 1 - ‘Simulated Bootstrap’

1. Make i.i.d. draws with replacement in each of the four datasets H, G,
C and Q, yielding the bootstrap samples H∗, G∗, C∗ and Q∗, with
the same sizes as the original samples, respectively.

2. From data samples generated in step 1, compute bootstrap versions
θ̂∗, Ĝ∗ and F̂ ∗U of the instrumental estimates θ̂, Ĝ and F̂U .

3. From the bootstrap parameters θ̂∗, Ĝ∗ and F̂ ∗U , simulate the bootstrap
exposure process: {X̂∗(t)}t∈[0,T ].

4. Compute the bootstrap estimate of the sampling distribution of F̂ (Φ)

(12) FBOOTΦ (x) = P∗(F̂ ∗(Φ)− F̂ (Φ) ≤ x),

where P∗ denotes the conditional probability given the original datasets.
5. A bootstrap confidence interval at level 1 − α ∈ (1/2, 1) for the pa-

rameter F̂ (Φ) is obtained using the bootstrap root’s quantiles q∗α/2 and
q∗1−α/2, of orders α/2 and 1− α/2 respectively:

(13) I∗1−α = [F̂ (Φ) + q∗α/2, F̂ (Φ) + q∗1−α/2].

Here the redundant designation ’simulated bootstrap’ simply emphasizes the
fact that a path simulation stage follows the data resampling and parameter
recomputing steps. Asymptotic validity of this bootstrap procedure may
be established at length by refining the proof of Theorem 1, based on the
Fréchet differentiability notion. Owing to space limitations, technicalities
here are omitted.

Remark 2. Monte-Carlo approximations The bootstrap distribu-
tion estimate (12) may be practically approximated by iterating B times the
resampling step and averaging then over the B resulting bootstrap trajectory
replicates: {X̂∗b (t)}t∈[0,T ] with b ∈ {1, . . . , B}.

3.3. Rare Event Analysis. The statistical study of the extremal behav-
ior of the exposure process is also of crucial importance in practice. Indeed,
accurately estimating the probability of reaching a certain possibly critical
level u within a lifetime is an essential concern from the public health per-
spective (see the discussion in section 4). When the toxicological threshold
level u of interest is ‘very high’, when compared to the mean behavior of the



12 P. BERTAIL, S. CLÉMENÇON & J. TRESSOU

Fig 2. Examples of trajectories in the French adult female population compared to a ref-
erence exposure process (Unit: µg/kg bw). The solid red curves are different trajectories
with the same initial state x0 = 0. The dashed green curve stabilizes at a critical threshold
of reference u, see Section 4 for details on its construction.

exposure process X, crude Monte-Carlo (CMC) methods, as those proposed
in §3.1, completely fail; see Figure 3.3 for an illustration of this phenomenon.
We are then faced with computational difficulties inherent to the issue of
estimating the probability of a rare event related to X’s law. In this paper,
we leave aside the question of fully describing the extremal behavior of the
exposure process X in an analytical fashion and infering values for related
theoretical parameters such as the extremal index, measuring to what extent
extreme values tend to come in ‘small clusters’. Attention is rather focused
on practical simulation-based procedures for estimating probabilities of rare
events of the form Eu,T = {τu(X) ≤ T}, where T is a reasonable horizon
on the human scale, and level u is very large in comparison with the long
term mean exposure mµ for instance. Here, two methods are proposed for
carrying out such a rare event analysis in our setting, each having its own
advantages and drawbacks, see [21] for a review of available methods for
estimating the entrance probability into a rare set. In the first approach, a
classical importance sampling procedure is implemented, while our second
strategy, based on an adequate factorization of the rare event probability
Px0(Eu,T ) relying on the Markov structure of the process (X(t), A(t)) (i.e.
a Feynman-Kac representation), consists of using a multilevel splitting algo-
rithm, see [9]. In the latter, simulated exposure trajectories getting close to
the target level u are ‘multiplied’, while we let the others die, in the spirit of
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the popular ReSTART (Repetitive Simulated Trials After Reaching Thresh-
olds) method; refer to [43] for an overview. In section 4, both methodologies
are applied in order to evaluate the risk related to dietary MeHg exposure,
namely the probability that the total body burden rises above a specific dose
of reference.

3.3.1. Importance Sampling. Importance sampling (IS ) is a standard
tool in rare event simulation. It relies on simulating exposure paths from
a different probability, P̃ say, equivalent to the original along a suitable fil-
tration, chosen in a way that the event of interest Eu,T is much less rare, or
even frequent, under the latter distribution, refer to [7] for a recent account
of IS techniques and their applications. The rare event probability estimate
is then computed by multiplying the empirical quantity output by the simu-
lation algorithm using the new distribution by the corresponding likelihood
ratio (importance function).

In our setting, a natural way of speeding up the exceedance of level u by
process X is to consider an intake distribution F̃U (dx) = f̃U (x)dx equivalent
to FU though much larger in the stochastic ordering sense (i.e. F̃U (x) <<
FU (x) for all x > 0), so that large intakes may occur more frequently, and,
simultaneously, an inter-intake time distribution G̃(dt) = g̃(t)dt with same
support as G(dt) but stochastically much smaller (namely, G(t) << G̃(t)
for all t > 0), in order that the intake frequency is increased (see section
4 for specific choices in the MeHg case). In contrast, the elimination pro-
cess cannot be slowed down, i.e. the biological half-life log 2/θ cannot be
increased, at the risk of no longer preserving equivalence between P and P̃.
To be more specific, let P̃x0 be the probability measure on the same un-
derlying measurable space as the one on which the original probability Px0

has been defined, making X the process described in section 2. Under P̃x0 ,
the intakes {Uk}k≥1, respectively the inter-intake times {∆Tk}k≥1, are i.i.d.
r.v.’s drawn from F̃U , respectively from G̃, and X0 = x0 ≥ 0. The distri-
bution Px0 is absolutely continuous with respect to the IS distribution P̃x0

along the filtration Ft = σ((Uk,∆Tk); 1 ≤ k ≤ N(t)), t ≥ 0, that is the
collection of σ-fields generated by the intakes and inter-intake times until
time t. In addition, on FT , the likelihood ratio is given by

(14) LT =
1−G(T − TN(T ))

1− G̃(T − TN(T ))
×
N(T )∏
k=1

fU (Uk)
f̃U (Uk)

· g(∆Tk)
g̃(∆Tk)

.

Hence, denoting by Ẽx0 [.] the P̃x0-expectation, we have the relationship

(15) Px0(Eu,T ) = Ẽx0 [LT · IEu,T
].
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From a practical angle, the expectation on the right hand side of (15) is
estimated by simulating a large number of exposure trajectories of length
T under the IS probability measure P̃x0 and then applying a CMC approx-
imation, which yields an unbiased estimate of the target Px0(Eu,T ).

3.3.2. Multilevel Splitting. The approach described above involves spec-
ifying an appropriate change of measure (adequate df’s F̃U and G̃), so as
to simulate a random variable LT · IEu,T

with reduced variance under the
new distribution P̃, see Chapter 14 in [7]. Avoiding this delicate tuning step
generally based on large-deviations techniques when tractable, the so-termed
multilevel splitting technique has recently emerged as a serious competitor to
the IS methodology, see [21]. This approach is indeed termed non-intrusive,
insofar as it does not require any modification of the instrumental simulation
distributions. Here, it boils down to represent the distribution of the expo-
sure process exceeding the critical threshold u in terms of a Feynman-Kac
branching particle model, see [29] for an account of Feynman-Kac formulae
and their genealogical and interacting particle interpretations. Precisely, the
interval [0, u] in which the exposure process X evolves before crossing the
level x = u is split into sub-intervals corresponding to intermediary sublevels
0 < u1 < . . . < um < u the exposure path must pass before reaching the rare
set [u,∞[ and particles, in this case exposure paths, branch out as soon as
they pass the next sublevel. Connections between such a physical approach
of rare event simulation and approximations of Feynman-Kac distributions
based on interacting particle systems are developed at length in [9]. We now
recall the principle of the multilevel splitting algorithm used in section 4.
Suppose that m intermediary sub-levels 0 < u1 < . . . < um < um+1 = u,
are specified by the user (see Remark 3), as well as instrumental simulation
parameters (FU , G, θ) and x0 > 0. Let N ≥ 1 be fixed and denote the car-
dinal of any finite set X by | X |. The algorithm is then performed in m+ 1
steps as follows.

Algorithm 2 - ‘Multi-level Splitting’

1. Simulate N exposure paths from x0 < u1 of runlength T , indexed by
k ∈ {1, . . . , N} and denoted by X [k] = {X [k]

t }t∈[0,T ], 1 ≤ k ≤ N .
2. For j = 1, . . . , m:

(a) Let I1,j be the index subset corresponding to the exposure tra-
jectories having reached level uj before endtime T , i.e. such that
τ

[k]
uj = inf{t ≥ 0; X [k]

t ≥ uj} < T . Define I0,j as the index subset
corresponding to the other sample paths.
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(b) For each path indexed by k′ in I0,j , randomly draw k in I1,j and
redefine X [k′] as the trajectory confounded with X [k] until time
τ

[k]
uj , and prolongated until time T by simulation from the state
X [k](τ [k]

uj ). Note that hitting times τ [k]
uj necessarily occur at intake

times.
(c) Compute Pj =| I1,j | /N and pass onto the next level uj+1.

3. Output the estimate of the probability Px0,u,T = Px0(Eu,T ):

P̂x0,u,T = P1 × . . .× Pm+1,(16)

where Pm+1 is defined as the proportion of particles that have reached
the final level u among those which have reached the previous sublevel
um, that is | I1,m+1|/N .

Before illustrating how the procedure works on a toy example, below are
two relevant remarks.

Remark 3. On practical choice of the tuning parameters
Although a rigorous asymptotic validity framework has been established in [9]
for Algorithm 2 when the number N of particles gets arbitrarily large, the
intermediary sublevels u1, . . . , um must be selected by the user in practice.
As noticed in [27], an optimal choice would consist of choosing the sublevels
so that the probability to pass from [uj ,∞[ to [uj+1,∞[ should be the same,
whatever the sublevel j. Here we mention the fact that, in the numerical
experiments carried out in section 4, the sublevels have been determined by
using the adaptive variant of Algorithm 2 proposed in [8], where the latter
are picked in such a way that all probabilities involved in the factorization
(16) are approximately of the same order of magnitude.

Remark 4. ‘Validation’ Stating the truth, estimating the probability
of rare events such as Eu,T is a difficult task in practice and, when feasible,
the numerical results provided by different possible methods should be com-
pared for assessing the order of magnitude of the rare event probability of
interest. It should also be mentioned that, in a very specific case, namely
when FU and G are both exponential distributions, the distribution of the
hitting time τu may be explicitly computed through its Laplace transform us-
ing Dynkin’s formula, see [26]. As an initial attempt, the latter may be thus
used for computing a preliminary rough estimate of Px0,u,T .

A toy example. Figure 3 illustrates the way Algorithm 2 works in the
case of N = 5 trajectories starting from x0 = 3 with m = 2 intermediary
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levels (u = (4, 5, 6)) and a horizon T equal to one year in the model with
exponential intake and inter-intake times distributions. Initially, all curves
have reached the first intermediary level (u = 4) except the blue curve as
shown in Figure 3(a). It is then restarted from the red curve at the exact
point where it first reached u = 4 in Figure 3(b). Now, only the blue and
black curves have reached the second intermediary level (u = 5). In Figure
3(c), all the other curves are thus restarted from one of these at the exact
point where they first reached u = 5. Eventually, only the blue curve reached
the level of interest u = 6. The probability of reaching 6 in less than one
year is estimated by 4/5× 2/5× 1/5 = 6.4%.

(a) Initialization: N = 5

(b) Iteration 1: u = 4 (c) Iteration 2: u = 5

Fig 3. Multilevel Splitting: an illustration for N = 5 particles starting from x0 = 3 with
m = 2 intermediary levels (u ∈ {4, 5, 6}) and a horizon T equal to 1 year.
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4. Numerical results for MeHg exposure. In this section, we ap-
ply the statistical techniques presented in the preceding section for analyzing
how women of childbearing age (who are female between 15 and 45, for the
purpose of this study) are exposed to dietary MeHg, based on the dynamic
model described in section 2. The group suffering the highest risk from this
exposure is actually the unborn child as mentioned in the hazard charac-
terization step described in [18]: the MeHg present in the seafood of the
mother’s diet will certainly pass onto the developing foetus and may cause
irreversible brain damage.

From the available datasets related to MeHg contamination and fish con-
sumption, essential features of the exposure process are inferred using the
simulation-based estimation tools previously described. Special attention is
now paid to the probability of exceeding a specific dose derived from a
toxicological level of reference in the static setup, namely the Provisional
Tolerable Weekly Intake (PTWI), which represents the contaminant dose
an individual can ingest weekly over an entire lifetime without appreciable
risk, as defined by the international expert committee of FAO/WHO, see
[18]. This means it is crucial to implement the rare event analysis methods
reviewed in §3.3.

Eventually, the impact of the choice of the statistical methods used for
fitting the instrumental distributions is empirically quantified and discussed
from the perspective of public health guidelines.

4.1. Description of the datasets. We start off with a brief description of
the datasets used in the present quantitative risk assessment.

Contamination data C. Here we use the contamination data related to
fish and other seafoods available on the French market that have been col-
lected by accredited laboratories from official national surveys performed
between 1994 and 2003 by the French Ministry of Agriculture and Fisheries
[28] and the French Research Institute for Exploitation of the Sea [23]. This
dataset comprises 2832 observations.
Consumption data G, Q. The national individual consumption survey
INCA [10] provides the quantity consumed of an extensive list of foods over
a week, among which fish and other seafoods, as well as the time consump-
tion occurred with at least the information about the nature of the meal,
whether it be breakfast, lunch, dinner or ‘snacks’. It is surveys 1985 adults
aged 15 years or over, including 639 adult females between 15 and 45. From
these observations, the dataset G consists of the actual durations between
consecutive intakes, when properly observed, together with right censored
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inter-intake times, when only the information that the duration between
successive intakes is larger than a certain time can be extracted from the
observations. Inter-intake times are expressed in hours.

As in [2; 42], MeHg intakes are computed at each observed meal through
a so-termed deterministic procedure currently used in national and interna-
tional risk assessments. From the INCA food list, 92 different fish or seafood
species are determined and a mean level of contamination is computed from
the contamination data, as in [11; 38]. Intakes are then obtained through
Eq. (1). For comparison sake, all consumptions are divided by the asso-
ciated individual body weight, also provided in the INCA survey, so that
intakes are expressed in migrograms per kilogram of body weight per meal
(µg/kgbw/meal).

As previously mentioned, raw data related to the biological half-life of
contaminants such as MeHg are scarcely available. Refering to the scientific
literature devoted to the pharmacokinetics of MeHg in the human body
(see [31; 34; 35; 25]), the biological half-life fluctuates at around 44 days.
This numerical value, converted in hours, is thus retained for performing
simulations, leading to pick log 2/(44 × 24) for the acceleration parameter
estimate θ̂.

4.2. Estimation of the instrumental distributions FU and G. In order to
estimate the cumulative distribution functions (cdf) of the intakes and inter-
intake times, various statistical techniques have been considered, namely
parametric and semi-parametric approaches.

Estimating the intake distribution. By generating intake data as ex-
plained in §4.1, we dispose of a sample U of nFU

= 1088 intakes representa-
tive of the subpopulation consisting of women of childbearing age, on which
the following cdf estimates are based.
Parametric modeling. We first considered two simple parametric models for
the intake distribution: the first one stipulates that FU takes the form of
an exponential distribution with parameter λFU

= 1/mFU
, while the other

assumes it is a heavy-tailed Burr type distribution (with cdf (1− (1+xc)−k)
for c > 0 and k > 0) in order to avoid underestimating the probability that
very large intakes have occured. For both statistical models, related param-
eters have been set by the maximum likelihood estimation (MLE ). It can
be easily established that ML estimates are consistent and asymptotically
normal in such regular models and, furthermore, that the cdf corresponding
to the MLE parameter is also consistent in the L1- sense, see Remark 6 in
the Appendix. Numerically, based on U we found that λ̂FU

= 4.06 by simply
inverting the sample mean in the exponential model, whereas in the Burr
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distribution based model, MLE yields ĉ = 0.95 and k̂ = 4.93. Recall that,
in the Burr case, E[Uγ1 ] = Γ(k − γ/c) × Γ(1 + γ/c)/Γ(k) is finite as soon
as ck > γ. One may thus check that the intake distribution estimate fulfills
condition (ii) with γ = 4; see section 2.
Semi-parametric approach. In order to allow for more flexibility and accu-
racy on the one hand and to obtain a resulting instrumental cdf well-suited
for worst case risk analysis on the other hand, a semi-parametric estimator
has also been fitted the following way: the piecewise linear left part of the cdf
corresponds to a histogram-based density estimator, while the tail is mod-
elled by a Pareto distribution, with a continuity constraint at the change
point xK . Precisely, a number k of extreme intakes is used to determine the
tail parameter α of the Pareto cdf 1 − (τx)−α, τ > 0 and α > 0, τ being
chosen to ensure the continuity constraint. The value of k is fixed through a
bias-variance trade-off, as in [38]. Numerically, we have α = 2.099, τ = 5.92,
and xK = 0.355.

Probability plots are displayed in Figure 4(a). The semi-parametric es-
timator clearly provides the best fit to the data. The Burr distribution is
nevertheless a good parametric choice.

Estimating the inter-intake time distribution. We dispose of a sample
G of nG = 1214 right censored inter-intake times.

Parametric models. In this censored data setup, MLE boils down to maxi-
mizing the log likelihood given by

l(x, δ, ν) =
nG∑
i=1

(1− δi) log [fν (xi)] + δi ln [1− Fν (xi)] ,

where the (xi, δi)’s are the observations, δi denotes the censorship indica-
tor, fν is the density candidate, and Fν the corresponding cdf. Four para-
metric distributions, widely used in survival analysis, have been consid-
ered here: Exponential, Gamma, Weibull and Log Normal. It is notewor-
thy that conditions (i)-(iv) listed in section 2 are satisfied for such dis-
tributions, except (iv) that is not fulfilled in the Log Normal case. One
may also find that the cdf corresponding to the MLE parameter is L1-
strongly consistent for each of these regular statistical models. The re-
sulting MLE estimators are: λ̂G = 0.0078 for the Exponential distribution
Exp(λG), α̂ = 1.06 and β̂ = 117.2 for the Gamma distribution such that
1 −G(t) ∝ tα−1 exp(−t/β), â = 128.7 and ĉ = 0.999 for the Weibull distri-
bution such that 1−G(t) = exp(−(t/a)c), and â = 4.41 and b̂ = 1.31 for the
Log Normal distribution, with parametrization such that log[(∆T2 − a)/b)]
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follows a standard normal.
Semi-parametric modeling. Using a semi-parametric approach, a cdf estimate
is built from a smoothed Kaplan-Meier estimator FKM for the left part of
the distribution and an exponential distribution for the tail behavior, with
a continuity constraint at the change point. To be exact, the change point
corresponds to the largest uncensored observation xK and the parameter
of the exponential distribution to − log[1 − FKM(xK)]/xK , in a way that
continuity at xK is guaranteed. The resulting parameter of the exponential
distribution is 0.0073, and xK = 146 hours.

Figure 4(b) displays the corresponding probability plots. Again, the semi-
parametric estimator provides the best fit, except naturally for the tail part
because of the right censorship. The fitted Gamma distribution is marginally
more accurate than the Weibull and Exponential distributions, since it offers
the advantage of having an increasing hazard rate (here, α > 1), which is a
realistic feature in the dietary context.

(a) FU : Intake distribution (b) G : Inter-intake time distribution

Fig 4. Probability plots, comparison of the different adjustments.

4.3. Estimation of the main features of the exposure process. From the
perspective of food safety, we now compute several important summary
statistics related to the dietary MeHg exposure process of French females
of childbearing age using the simulation estimators proposed in section 3.
In chemical risk assessment, once a hazard has been identified, meaning
that the potential adverse effects of the compound have been described, it
is then characterized, using the notion of threshold of toxicological concern.
This pragmatic approach for chemical risk assessment consists of specifying
a threshold value, below which there is a very low probability of observing
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Table 1
Estimation of the steady state mean and median for the 15 models with 95% confidence

intervals (unit: µg/kgbw, M = 1000, B = 200).

FU : Exponential FU : Burr FU : Semi-Parametric

G :Exponential 3.01 ∈ [2.68, 3.32] 2.96 ∈ [2.67, 3.23] 2.98 ∈ [2.67, 3.39]
2.92 ∈ [2.53, 3.38] 2.97 ∈ [2.67, 3.24] 2.89 ∈ [2.53, 3.31]

G :Gamma 3.07 ∈ [2.69, 3.42] 3.03 ∈ [2.73, 3.34] 3.05 ∈ [2.69, 3.40]
2.99 ∈ [2.57, 3.34] 3.04 ∈ [2.70, 3.31] 2.96 ∈ [2.57, 3.53]

G :Weibull 2.98 ∈ [2.63, 3.33] 2.97 ∈ [2.60, 3.29] 2.99 ∈ [2.67, 3.29]
2.94 ∈ [2.54, 3.38] 2.96 ∈ [2.67, 3.23] 2.92 ∈ [2.47, 3.49]

G :Log-Normal 2.28 ∈ [2.02, 2.57] 2.25 ∈ [1.99, 2.54] 2.26 ∈ [1.95, 2.61]
1.95 ∈ [1.63, 2.36] 2.45 ∈ [2.23, 2.70] 1.92 ∈ [1.56, 2.34]

G : Semi-Parametric 2.95 ∈ [2.67, 3.23] 2.90 ∈ [2.62, 3.25] 2.93 ∈ [2.58, 3.26]
3.03 ∈ [2.71, 3.37] 2.83 ∈ [2.48, 3.16] 2.82 ∈ [2.42, 3.29]

adverse effects on human health. In practice, one experimentally determines
the lowest dose that may be ingested by animals or humans, daily or weekly,
without appreciable effects. The Tolerable Intake is then established by mul-
tiplying this experimental value, known as the Non Observed Adverse Effect
Level (NOAEL) by a relevant safety factor, taking into account both inter-
species and inter-individual variabilities. This approach dates from the early
sixties, see [39], and is internationally recognized in Food Safety, see [24].
The third and fourth steps of risk assessment consists of assessing the expo-
sure to the chemical of interest for the studied population, and comparing
it to the daily or weekly tolerable intake. The first two steps are known
as hazard identification and hazard characterization, while the last two are
called exposure assessment and risk characterization. In a static setup, when
considering chemicals that are not accumulated in the human body and de-
scribing exposure by the supposedly i.i.d. sequence of intakes, this boils
down to evaluating the probability that weekly intakes exceed the reference
dose d, termed the Provisionary Tolerable Weekly Intake (PTWI), see [36].
Considering compounds with longer biological half-lives, we propose com-
paring the stochastic exposure process to the limit of a deterministic process
of reference {xn}n∈N. Mimicking the experiment carried out in the hazard
characterization step, the latter is built up by considering intakes exactly
equal to the PTWI d occuring every week (FU is a point mass at d, and G
is a point mass at one week, that is 7×24). The reference level is thus given
by the affine recurrence relationship xn = exp(− log(2)/HL × 1)xn−1 + d,
yielding a reference level Xref,d = limn→∞ xn = d/(1 − 2−1/HL), where the
half-life HL is expressed in weeks. For MeHg, the value d = 0.7 µg/kgbw/w
corresponds to the reference dose established by the U.S. National Research
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Council currently in use in the United States, see [40], whereas the PTWI
has been set to d = 1.6 µg/kgbw/w by the international expert committee
of FAO/WHO, see [18]. Numerically, this yields Xref,0.7 = 6.42 µg/kgbw and
Xref,1.6 = 14.67 µg/kgbw when MeHg’s biological half-life is fixed to HL = 6
weeks, as estimated in [35]. We termed this reference dose as ‘Tolerable Body
Burden’ (TBB), which is more relevant than the previous ’Kinetic Tolerable
Intake’ (KTI) determined in [42].

0 0.5 1 1.5 2 2.5 3

Exponential-Exponential

Exponential-Gamma

Exponential-Weibull

Exponential-LogNormal

Exponential-KMexp

Burr-Exponential

Burr-Gamma

Burr-Weibull

Burr-LogNormal

Burr-KMexp

EmpPareto-Exponential

EmpPareto-Gamma

EmpPareto-Weibull

EmpPareto-LogNormal

EmpPareto-KMexp

Fig 5. Estimation of the steady state probability of exceeding u = 6.42 for the 15 models
with 95% confidence intervals (unit: %, M = 1000, B = 200)

In the dynamic setup, several summarizing quantities can be considered
for comparison purposes. We first estimated two important features of the
process of exposure to MeHg, for all combinations of input distributions: the
long-term mean exposure mµ, the median exposure value in the stationary
regime, and the probability of exceeding the threshold Xref,0.7 in steady-
state µ([Xref,0.7,∞[); see Table 1 and Figure 5. Computation is conducted
as follows: M = 1000 trajectories are simulated over a run length of 1 year
after a burn-in period of 5 years, quantities of interest are then averaged
over the M trajectories and this is repeated B = 200 times to build the
bootstrap CI’s, as described in section 3.2. The major differences among
the 15 models for the stationary mean arise when using the Log Normal
distribution for the inter-intake times with a lower estimation for this model
presenting a heavy tail (longer inter-intake times are more frequent). All the
other models for G lead to similar results in terms of confidence intervals
for the mean and median exposures in the long run, whatever the choice for
FU , refer to Table 1. When estimating a tail feature such as the probability
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Fig 6. Estimation of the expected maximum of the exposure process over [0, T ] as a function
of the horizon T (M = 1000, and B = 200).

of exceeding u = Xref,0.7 in steady-state, the choice of FU becomes of prime
importance, since its tail behavior is the same as that of the stationary
distribution µ, see Theorem 3.2 in [2]. As illustrated by the notion of PTWI,
risk management in food safety is generally treated in the framework of
worst-case design. In the subsequent analysis, we thus focus on the Burr-
Gamma model. Due to its ‘conservative’ characteristics, it is unlikely that
it leads to an underestimation of the risk. It indeed stipulates heavy tail
behavior for the intakes and light tail behavior for the inter-intake times.

Another interesting statistic is the expected overshoot over a safe level u.
In the case of the ‘Burr-Gamma’ model and for u = Xref,0.7, the estimated
expected overshoot is 0.101 µg/kgbw with 95% bootstrap confidence interval
[0.033, 0.217], which corresponds to barely less than one average intake. Be-
fore turning to the case of level u = Xref,1.6, Figure 6 illustrates the fact that
the exposure process very seldomly reaches such high thresholds displaying
the estimation of the expected maximum over [0, T ] for different values of
T .

Let us now turn to the main risk evaluation, that is, the estimation of
the probability of reaching u = Xref,1.6 = 14.67 within a reasonable time
horizon. The application of the two methodologies described in section 3.3
are investigated for several time horizons, T = 5, 10, 15, and 20 years, in the
Burr-Gamma model. Results are shown in Figure 7.

The application of the IS clearly illustrates the difficulty of choosing the
right IS distribution. Indeed, in the present application, identifying the best
Burr-Gamma model is not an easy task even though it is clear that one
should select a Burr distribution stochastically greater than the original,
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Fig 7. Estimation of the probability of reaching u = Xref,1.6 = 14.67 within a reasonable
time horizon (the importance distribution for IS is Burr(0.9, 4.5)-Gamma(1.01, 115); M =
1000 is the size of the Monte carlo simulation used to approach the importance ratio, and
95% simulation intervals are computed over B = 100 iterations).

and a Gamma distribution stochastically lower than the original one. For
both distributions, we applied a mean translation to respectively increase
the intakes and their frequency, as suggested in [7]. For example, if T =
20 years, if P̃x0 is a Burr(0.9, 4.5)-Gamma(1.01, 115) model, then only 63
trajectories out of M = 1000 exceed the threshold u = Xref,1.6 = 14.67 so
that Px0(Eu,T ) is estimated at 2.91e − 04, with variance 4.40e − 05 (this is
a median result over 100 iterations of the same simulation). Several other
importance distributions were tested but the one presented here seems to
be the more efficient in reducing the variance of the estimations, which are
still quite large as shown in Figure 7.

We next consider the application of the Multilevel Splitting algorithm. A
first simulation is conducted according to the adaptive multilevel algorithm
proposed by [8] using N = 1000 particles to determine the intermediary
levels u1, . . . , um such that half the particles reach the next sublevel. For
T = 20 years, the resulting levels are 7.85, 8.65, 9.47, 10.16, 11.07, 11.97, and
13.08 for an estimated probability of 0.52%. Then running Algorithm 2 with
these intermediary levels and N = 500 particles, we obtain an estimation
of Px0(Eu,T ) close to 1%. This result does not seem in coherence with our
estimation of the maximum over [0, T ] with T = 20 years where the maxi-
mum reached over 1000 trajectories is much lower than 14.67 (less than 10)
while it should be above 14.67 if this level has 1% chance to be reached. This
suggests that additional work remains to be done in order to determine how
to tune N as a function of T , when implementing this promising approach.
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Nevertheless, for smaller time horizons T , Figure 7 shows that even though
it certainly overestimates the rare event probability, the multilevel approach
results in the probability of the rare event occurence increasing with the
time horizon T contrary to IS.
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APPENDIX A: TECHNICAL DETAILS

Though formulated in a fairly abstract manner at first glance, the conver-
gence-preservation results stated in Theorem 1 below are essential from a
practical perspective. They automatically ensure, under mild conditions,
consistency of simulation-based estimators associated to various functions
of statistical interest. Recall that a sequence of estimators (F̂n)n∈N of a cu-
mulative distribution function (cdf) F on R is said to be ’strongly consistent
in the L1-sense’ when M1(F̂n, F ) =

∫
t∈R |F̂n(t)− F (t)|dt→ 0 almost surely,

as n→∞. Convergence in distribution is denoted by ‘⇒′ in the sequel and
we suppose that the Skorohod space DT = D([0, T ]) is equipped with the
Hausdorff metric dT , the euclidean distance between càd-làg curves (com-
pleted with line segments at possible discontinuity points), and with the
related M2 topology.

Theorem 1. (Consistency of simulation estimators, [2]) Let
0 ≤ T ≤ ∞ and for all n ∈ N, consider a triplet of (random) parame-
ters (θ̂n, Ĝn, F̂U,n) that almost surely fulfills conditions (i)-(iv) and defines a
stochastic exposure process X̂(n). Assume further that {(Ĝn, F̂U,n)}n∈N forms
an L1-strongly consistent sequence of estimators of (G,FU ) and that θ̂n is a
strongly consistent estimator of the pharmacokinetics parameter θ.

(i) Let Ψ : (DT , dT ) → R be any measurable function with a set of dis-
continuity points Disc(Ψ) such that P({X(t)}t∈(0,T ) ∈ Disc(Ψ)) = 0.
Then, we almost surely have the convergence in distribution:

(17) Ψ({X̂(n)(t)}t∈(0,T ))⇒ Ψ({X(t)}t∈(0,T )), as n→∞.
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(ii) Let Φ : (DT , dT ) → R be a Lipschitz mapping. Then, the expectations
F (Φ) = E[Φ({X(t)}t∈(0,T ))] and F̂n(Φ) = E[Φ({X̂(n)}t∈(0,T ))] are both
finite. Besides, if supn∈N E[θ̂n] < ∞ and supn∈N σ

2
Ĝn

< ∞, then the
following convergence in mean holds almost surely:

(18) F̂n(Φ)→ F (Φ), as n→∞.

Before showing that this result applies to all functionals considered in this
paper, a few remarks are in order.

Remark 5. Monte-Carlo approximation When T <∞, estimates
of the mean F (Φ) may be obtained in practice by replicating trajectories
{X̂(n),m}t∈(0,T ), m = 1, . . . , M independently from the distribution param-
eters (θ̂n, Ĝn, F̂U,n) and computing the Monte-Carlo approximation to the
expectation F̂n(Φ), that is

(19) F̂ (M)
n (Φ) =

1
M

M∑
m=1

Φ({X̂(n),m}t∈[0,T ])).

Remark 6. Conditions fulfilled by the distribution estimates
Practical implementation of the simulation-based estimation procedure pro-
posed above involve computing estimates of the unknown df’s, G and FU , ac-
cording to a L1-strongly consistent method. These also have to be instrumen-
tal probability distributions on R+, preferably convenient for simulation by
cdf inversion. This may be easily carried out in most situations. In the simple
case when the continuous cdf on R, Fγ0, to estimate belongs to some para-
metric class {Fγ}γ∈Γ with parameter set Γ ⊂ Rd such that γ 7→

∫
|x|dFγ(x)

and γ 7→ Fγ(t) for all t ≥ 0 are continuous mappings, a natural choice is
to consider the cdf Fγ̂ corresponding to a strongly consistent estimator γ̂
of γ0 (computed by MLE for instance). In a nonparametric setup, adequate
cdf estimators may be obtained using various regularization-based statistical
procedures. For instance, under mild hypotheses, the cdf F̂n associated to a
simple histogram density estimator based on an i.i.d. data sample of size n
may be shown to classically satisfy, as n→∞, F̂n(x)→ F (x) for all x and∫
|x|F̂n(dx)→

∫
|x|F (dx) almost surely by straightforward SLLN arguments.

Remark 7. Rates of convergence If the estimator Ĝn converges to
G (resp. F̂U,n converges to FU , resp. θ̂n converges to θ) at the rate vGn (resp.
vFU
n , resp. vθn) in probability as n→∞, careful examination of Theorem 2’s

proof in [2] actually shows that convergence (18) takes place in probability
at the rate vn = min{vGn , vFU

n , vθn}.
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For all T <∞, the mapping x ∈ DT 7→ sup0≤t≤T x(t) is Lipschitz with re-
spect to the Hausdorff distance, strong consistency of simulation estimators
of (10) is thus guaranteed under the assumptions of Theorem 1.

Besides, τu : x ∈ D∞ 7→ inf{t > 0 : x(t) > u} is a continuous mapping in
theM2 topology. Thus, we almost surely have τu(X̂(n))⇒ τu(X) as n→∞
in the situation of Theorem 1. Furthermore, it may be easily shown that
{τu(X̂(n))}n∈N is uniformly integrable under mild additional assumptions,
so that convergence in mean also holds almost surely.

Similarly, for fixed T > 0, the mapping on (DT , dT ) that assigns to
each trajectory x the temporal mean T−1

∫ T
t=0 x(t)dt (respectively, the ratio

T−1
∫ T
t=0 I{x(t)≥u}dt of time spent beyond some threshold u) is continuous.

Hence, we almost surely have the convergence in distribution (respectively,
in mean by uniform integrability arguments) of the corresponding simulation
estimators as n→∞.

The next result guarantees consistency for simulation estimators of steady-
state parameters, provided that the runlength T increases to infinity at a
suitable rate, compared to the accuracy of the instrumental distributions.

Theorem 2. (Consistency for Steady-State Parameters, [2])
Let φ : R → R be any of the three functions y 7→ y, y 7→ I{y≥u} or y 7→
(y − u)I{y≥u}, with u > 0. Set ΦT (x) = T−1

∫ T
t=0 φ(x(t))dt for any x ∈ DT .

Assume that Theorem 1’s conditions are fulfilled. When T →∞ and n→∞
so that both T 2×(M1(Ĝ(n), G)+|θ̂n−θ|) and T×M1(F̂ (n)

U , FU ) almost surely
tend to zero, then the following convergences take place almost surely:

(20) ΦT (X̂(n))⇒ Lµ(φ) and F̂n(ΦT )→ Eµ[φ(X)],

denoting by Lµ(φ) the distribution of φ(X) when X is drawn from µ.
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