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The paper emphasizes asymptotic behaviors, as stability, instability, dichotomy and trichotomy for skew-evolution semiflows, defined by means of evolution semiflows and evolution cocycles and which can be considered generalizations for evolution operators and skew-product semiflows. The definition are given in continuous time, but the unified treatment for the characterization of the studied properties in the nonuniform case is given in discrete time.

 as a natural generalization for the dichotomy of linear time-varying differential systems, was studied in continuous time and from uniform point of view in [2] and in discrete time and from nonuniform point of view in [3], but for a particular case of one-parameter semiflows.

Notations. Definitions

Let us consider (X, d) a metric space, V a Banach space and B(V ) the space of all bounded linear operators from V into itself. We will denote Y = X ×V , T = (t, t 0 ) ∈ R 2 , t ≥ t 0 ≥ 0 and ∆ = (m, n) ∈ N 2 , m ≥ n . Let R = {R : R + → R + | R nondecreasing, R(0) = 0, R(t) > 0, ∀t > 0}. By I is denoted the identity operator on V . Let P : Y → Y be a projector given by P (x, v) = (x, P (x)v), where P (x) is a projection on Y x = {x} × V and x ∈ X. Definition 1.1 A mapping ϕ : T × X → X is called evolution semiflow on X if following relations hold:

(s 1 ) ϕ(t, t, x) = x, ∀(t, x) ∈ R + × X (s 2 ) ϕ(t, s, ϕ(s, t 0 , x)) = ϕ(t, t 0 , x), ∀t ≥ s ≥ t 0 ≥ 0, x ∈ X.

Definition 1.2 A mapping Φ : T × X → B(V ) is called evolution cocycle over an evolution semiflow ϕ if: (c 1 ) Φ(t, t, x) = I, the identity operator on V , ∀(t, x) ∈ R + × X (c 2 ) Φ(t, s, ϕ(s, t 0 , x))Φ(s, t 0 , x) = Φ(t, t 0 , x), ∀t ≥ s ≥ t 0 ≥ 0, x ∈ X. 

where Φ is an evolution cocycle over an evolution semiflow ϕ, is called skewevolution semiflow on Y .

Example 1.1 Let V = R 3 endowed with the norm

(v 1 , v 2 , v 3 ) = |v 1 | + |v 2 | + |v 3 |.
We denote C = C(R + , R + ) the set of all continuous functions x : R + → R + , endowed with the topology of uniform convergence on compact subsets of R + , metrizable relative to the metric

d(x, y) = ∞ n=1 1 2 n d n (x, y) 1 + d n (x, y) , unde d n (x, y) = sup t∈[0,n]
|x(t)y(t)|.

If x ∈ C then for all t ∈ R + we denote x t (s) = x(t + s), x t ∈ C. Let X the closure in C of the set {f t , t ∈ R + }, where f : R + → R * + is a nondecreasing function with the property lim t→∞ f (t) = l > 0. Then (X, d) is a metric space and the mapping ϕ : T × X → X, ϕ(t, s, x)(τ ) = x(ts + τ ) is an evolution semiflow on X. The mapping Φ : T × X → B(V ), given by Φ(t, s, x)v = e -2(t-s)x(0)+ t 0 x(τ )dτ v 1 , e t-s+ t 0 x(τ )dτ v 2 , e -(t-s)x(0)+2 t 0 x(τ )dτ v 3 is an evolution cocycle. Then C = (ϕ, Φ) is a skew-evolution semiflow.

Remark 1.1 If C = (ϕ, Φ) is a skew-evolution semiflow, then C λ = (ϕ, Φ λ ), where λ ∈ R and Φ λ : T × X → B(V ), Φ λ (t, t 0 , x) = e -λ(t-t 0 ) Φ(t, t 0 , x), (1.2) 
is also a skew-evolution semiflow.

2 Nonuniform discrete exponential stability Definition 2.1 A skew-evolution semiflow C is said to be (s) stable if there exists a mapping N : R

+ → R * + such that Φ(t, t 0 , x)v ≤ N (s) Φ(s, t 0 , x)v , (2.1) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y ;

(es) exponentially stable if there exist a constant ν > 0 and a mapping

N : R + → R * + such that Φ(t, t 0 , x)v ≤ N (s)e -ν(t-s) Φ(s, t 0 , x)v , (2.2) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Example 2.1 Let X = R + and V = R. We consider the continuous function

f : R + → [1, ∞), f (n) = e 2n and f n + 1 e n 2 = 1
and the mapping

Φ f : T × R + → B(R), Φ f (t, s, x)v = f (s) f (t) e -(t-s) v. Then C f = (ϕ, Φ f ) is a skew-evolution semiflow Y = R + × R over any evolution semiflow ϕ pe R + . As |Φ f (t, s, x)v| ≤ f (s)e -(t-s) |v|, ∀(t, s, x, v) ∈ T × Y, it follows that C f is exponentially stable. Definition 2.2 A skew-evolution semiflow C has exponential growth if there exist the mappings M , ω : R + → R * + such that Φ(t, t 0 , x)v ≤ M (s)e ω(s)(t-s) Φ(s, t 0 , x)v , (2.3) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

In discrete time, the exponential stability can be described as follows.

Proposition 2.1 A skew-evolution semiflow C with exponential growth is exponentially stable if and only if there exist a constant µ > 0 and a sequence of real numbers (a n ) n≥0 with the property a n ≥ 1, ∀n ≥ 0 such that 

Φ(n, m, x)v ≤ a m e -µ(n-m) v , (2.4 
a m = N (m), m ∈ N and µ = ν > 0,
where the existence of N : R + → R * + and of ν is given be Definition 2.1. Sufficiency. As a first step, if t ≥ t 0 + 1, we denote n = [t] and n 0 = [t 0 ]. Following relations hold

n ≤ t < n + 1, n 0 ≤ t 0 < n 0 + 1, n 0 + 1 ≤ n. We obtain Φ(t, t 0 , x)v ≤ ≤ M (n)e ω(n)(t-n) Φ(n, n 0 + 1, ϕ(n 0 + 1, t 0 , x))Φ(n 0 + 1, t 0 , x)v ≤ ≤ a n M 2 (n)e 2[ω(n)+µ] e -µ(t-t 0 ) v ,
for all (x, v) ∈ Y , where functions M and ω are given by Definition 2.2. As a second step, for t ∈ [t 0 , t 0 + 1) we have

Φ(t, t 0 , x)v ≤ M (t 0 )e ω(t 0 )(t-t 0 ) v ≤ M (t 0 )e ω(t 0 )+µ e -µ(t-t 0 ) v , for all (x, v) ∈ Y .
Hence, C is exponentially stable.

Some characterizations for the exponential stability of skew-evolution semiflows indiscrete time are given by the next results. Theorem 2.1 A skew-evolution semiflow C with exponential growth is exponentially stable if and only if there exist a mapping R ∈ R, a constant ρ > 0 and a sequence of real numbers (α n ) n≥0 with the property

α n ≥ 1, ∀n ≥ 0 such that m k=n R e ρ(k-n) Φ(k, n, x)v ≤ α n R ( v ) , (2.5) 
for all (m, n) ∈ ∆ and all (x, v) ∈ Y .

Proof. Necessity. We consider R(t) = t, t ≥ 0. Proposition 2.1 assures the existence of a constant ν > 0 and of a sequence of real numbers (a n ) n≥0 with the property a n ≥ 1, ∀n ≥ 0. We obtain for ρ = ν 2 > 0 and according to Proposition 2.1

m k=n e ρ(k-n) Φ(k, n, x)v ≤ a n m k=n e ρ(k-n) e -ν(k-n) Φ(n, n, x)v = = a n v m k=n e -ν 2 (k-n) ≤ α n v , ∀m, n ∈ ∆, ∀(x, v) ∈ Y,
where we have denoted

α n = a n e ν 2 , n ∈ N. Sufficiency. Let t ≥ t 0 + 1, t 0 ≥ 0. We define n = [t] and n 0 = [t 0 ]. We consider C -ρ = (ϕ, Φ -ρ ) given as in relation (1.2). It follows that R ( Φ -ρ (t, t 0 , x)v ) = R ( Φ -ρ (t, n, ϕ(n, t 0 , x))Φ -ρ (n, t 0 , x)v ) ≤ ≤ R M (n)e ω(t-n) Φ -ρ (n, t 0 , x)v ≤ R (M (n)e ω Φ -ρ (n, t 0 , x)v ) ,
for all (x, v) ∈ Y , where M and ω are given by Definition 2.2. We obtain further for m ≥ n

t t 0 +1 R ( Φ -ρ (τ, t 0 , x)v ) dτ ≤ m k=[t 0 ]+1 R (M (n)e ω Φ -ρ (k, t 0 , x)v ) ≤ ≤ β n R ( v ) , for all (x, v) ∈ Y , where β n = M (n)α n e ω . Then there exist N ≥ 1 and ν > 0 such that Φ -ρ (t, t 0 , x)v ≤ N e -ν(t-t 0 ) v , ∀t ≥ t 0 + 1, ∀(x, v) ∈ Y.
On the other hand, for t ∈ [t 0 , t 0 + 1) we have

R ( Φ -ρ (t, t 0 , x)v ) ≤ R M e ω(t-t 0 ) v ≤ R (M e ω v ) , ∀(x, v) ∈ Y.
We obtain that C -ρ is stable, where

Φ -ρ (m, n, x) = e ρ(m-n) Φ(m, n, x) , (m, n, x) ∈ ∆ × X.
Hence, there exists a sequence (a n ) n≥0 with the property a n ≥ 1, ∀n ≥ 0, such that

e ρ(m-n) Φ(m, n, x)v ≤ a n v , ∀(m, n, x, v) ∈ ∆ × Y,
which implies the exponential stability of C and ends the proof.

If we consider R(t) = t p , t ≥ 0, p > 0 we obtain Corollary 2.1 Let p > 0. A skew-evolution semiflow C is exponentially stable if and only if there exist a constant ρ > 0 and a sequence of real numbers (α n ) n≥0 with the property

α n ≥ 1, ∀n ≥ 0 such that m k=n e pρ(k-n) Φ(k, n, x)v p ≤ α n v p , (2.6 
)

for all (m, n) ∈ ∆ and all (x, v) ∈ Y . Theorem 2.2 A skew-evolution semiflow C is exponentially stable if and only if there exist a function R ∈ R, a constant γ > 0 a sequence of real numbers (β n ) n≥0 with the property β n ≥ 1, ∀n ≥ 0 such that m k=n R e γ(m-k) Φ(m, k, ϕ(k, n, x)) * v * ≤ β n R ( v * ) , (2.7 
)

for all (m, n) ∈ ∆ and all (x, v * ) ∈ X × V * .
Proof. Necessity. For R(t) = t, t ≥ 0 and γ = ν 2 > 0 we obtain, according to Definition 2.1 and Proposition 2.1,

m k=n e ν 2 (m-k) Φ(m, k, ϕ(k, n, x)) * v * ≤ a n v * m k=n e -ν 2 (m-k) ≤ β n v * ,
where we have denoted

β n = a n 1 -e -ν 2 , n ∈ N,
where ν > 0 and the sequence of real numbers (a n ) n≥0 with the property a n ≥ 1, ∀n ≥ 0 are given by Definition 2.1.

Sufficiency. Let C -γ = (ϕ, Φ -γ ) be given as in relation (1.2). For all (k, n 0 ) ∈ ∆ we obtain

R ( Φ -γ (k, n 0 , x)v * ) ≤ β n R ( v * ) , ∀x ∈ X, ∀v * ∈ V * .

Further we have

m k=n 0 R ( Φ -γ (m, n 0 , x) ) ≤ m k=n 0 R ( Φ -γ (m, k, x) Φ -γ (k, n 0 , x) ) ≤ ≤ M m k=n 0 R ( Φ -γ (m, k, x) ) ≤ M 2 , which implies R ( Φ -γ (m, n 0 , x) ) ≤ M 2 m -n 0 + 1 , ∀(m, n 0 , x) ∈ ∆ × X.
There exist n 1 > n 0 + 1 such that

M 2 n 1 -n 0 + 1 ≤ R 1 2 .
We obtain that C -γ is stable. According to the proof of Theorem 2.1 it follows that C is exponentially stable.

For R(t) = t p , t ≥ 0, p > 0 we obtain Corollary 2.2 Let p > 0. A skew-evolution semiflow C is exponentially stable if and only if there exist a constant γ > 0 and a sequence of real numbers

(β n ) n≥0 with β n ≥ 1, ∀n ≥ 0 such that m k=n e pγ(m-k) Φ(m, k, ϕ(k, n, x)) * v * p ≤ β n v * p , (2.8) for all (m, n) ∈ ∆ and all (x, v * ) ∈ X × V * .
3 Nonuniform discrete exponential instability Definition 3.1 A skew-evolution semiflow C is said to be (is) instable if there exists a mapping N : R + → R * + such that

N (t) Φ(t, t 0 , x)v ≥ Φ(s, t 0 , x)v , (3.1) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y ;

(eis) exponentially instable if there exist a mapping N : R + → R * + and a constant ν > 0 such that

N (t) Φ(t, t 0 , x)v ≥ e ν(t-s) Φ(s, t 0 , x)v , (3.2) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Example 3.1 Let X = R + and V = R. We consider the function

f : R + → [1, ∞), f (n) = 1 and f n + 1 e n 2 = e 2n
and the mapping

Φ f : T × R + → B(R), Φ f (t, s, x)v = f (s) f (t) e (t-s) v. Then C f = (ϕ, Φ f ) is a skew-evolution semiflow on Y = R + × R over every evolution semiflow ϕ on R + . As |Φ f (t, s, x)v| ≥ 1 f (t) e (t-s) |v|, ∀(t, s, x, v) ∈ T × Y,
it follows that C f is exponentially instable. Definition 3.2 A skew-evolution semiflow C has exponential decay if there exist the mappings M , ω : R

+ → R * + such that Φ(s, t 0 , x)v ≤ M (t)e ω(t)(t-s) Φ(t, t 0 , x)v , (3.3) 
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

In order to describe the instability of skew-evolution semiflows in discrete time, we will consider first the next Proposition 3.1 A skew-evolution semiflow with exponential decay C is exponentially instable if and only if there exist a constant µ > 0 and a sequence of real numbers (a n ) n≥0 with the property

a n ≥ 1, ∀n ≥ 0 such that Φ(n, n 0 , x)v ≤ a m e -µ(m-n 0 ) Φ(m, n 0 , x)v , (3.4) 
for all (m, n), (n, n 0 ) ∈ ∆ and all (x, v) ∈ Y .

Proof. Necessity. It is obtained if we consider in relation (3.2) t = m, s = n, t 0 = n 0 and if we define

a m = N (m), m ∈ N şi µ = ν > 0,
where the existence of function N : R + → R * + and of constant ν is given by Definition 3.1.

Sufficiency. As a first step, we consider t ≥ t 0 + 1 and we denote n = [t] respectively n 0 = [t 0 ]. We obtain

n ≤ t < n + 1, n 0 ≤ t 0 < n 0 + 1, n 0 + 1 ≤ n. It follows that Φ(t, t 0 , x)v = = Φ(t, n, ϕ(n, n 0 + 1, x))Φ(n, n 0 + 1, ϕ(n 0 + 1, t 0 , x))Φ(n 0 + 1, t 0 , x)v ≥ ≥ [M (t)] -1 e -ω(t-n) [M (t)] -1 e -ω(n 0 +1-t 0 ) Φ(n, n 0 + 1, x)v ≥ ≥ [M (t)] -2 N e -2ω e ν(n-n 0 +1) v ≥ e ν [M (t)] 2 N e 2ω e ν(t-t 0 ) v ,
for all (x, v) ∈ Y , where the existence of function M and of constant ω is assured by Definition 3.2. As a second step, if we consider t ∈ [t 0 , t 0 + 1) we obtain

M Φ(t, t 0 , x)v ≥ e -ω(t-t 0 ) v ≥ e -( ν+ω) e ν(t-t 0 ) v , for all (x, v) ∈ Y . Hence N Φ(t, t 0 , x)v ≥ e ν(t-t 0 ) v ,
for all (t, t 0 , x, v) ∈ T × Y , where we have denoted

N = M e ( ν+ω) + M 2 N e (-ν+2ω) şi ν = ν,
which proves the exponential instability of C.

Theorem 3.1 A skew-evolution semiflow C is exponentially instable if and only if there exist a function R ∈ R, a constant ρ < 0 and a sequence of real numbers (α n ) n≥0 with the property

α n ≥ 1, ∀n ≥ 0 such that m k=n R e -ρ(m-k) Φ(k, n, x)v ≤ R (α m Φ(m, n, x)v ) , (3.5) 
for all (m, n) ∈ ∆ and all (x, v) ∈ Y .

Proof. Necessity. Let R(t) = t, t ≥ 0. Proposition 3.1 assures the existence of a constant ν > 0 and of a sequence of real numbers (a n ) n≥0 with the property a n ≥ 1, ∀n ≥ 0. We obtain for ρ

= -ν 2 > 0 m k=n e -ρ(m-k) Φ(k, n, x)v ≤ a m m k=n e -ρ(m-k) e -ν(m-k) Φ(m, n, x)v = = a m Φ(m, n, x)v m k=n e -ν 2 (k-n) ≤ α m Φ(m, n, x)v ,
for all (m, n) ∈ ∆ and all (x, v) ∈ Y , where we have denoted

α m = 1 1 -e ρ a m , m ∈ N.

Sufficiency. According to the hypothesis, if we consider

k = n we obtain R e -ρ(m-n) Φ(n, n, x)v ≤ R (a m Φ(m, n, x)v ) ,
for all (m, n, x, v) ∈ ∆ × Y , which implies, by means of the properties of function R, the exponential instability of C and ends the proof.

For R(t) = t p , t ≥ 0, p > 0 it is obtained Corollary 3.1 Let p > 0. A skew-evolution semiflow C is exponentially instable if and only if there exist a constant ρ < 0 and a sequence of real numbers (α n ) n≥0 with the property α n ≥ 1, ∀n ≥ 0 such that

m k=n e -pρ(m-k) Φ(k, n, x)v p ≤ α m Φ(m, n, x)v p , (3.6) 
for all (m, n) ∈ ∆ and all (x, v) ∈ Y .

4 Nonuniform discrete exponential dichotomy 

(x)v ≤ N 1 (s) Φ(s, t 0 , x)P 1 (x)v (4.2) Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t) Φ(t, t 0 , x)P 2 (x)v , (4.3)
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y ;

(ed)exponentially dichotomic if there exist functions N 1 , N 2 : R + → R * + , constants ν 1 , ν 2 > 0 and two projectors P 1 and P 2 compatible with C such that e ν 1 (t-s) Φ(t, t 0 , x)P 1 (x)v ≤ N 1 (s) Φ(s, t 0 , x)P 1 (x)v (4.4)

e ν 2 (t-s) Φ(s, t 0 , x)P 2 (x)v ≤ N 2 (t) Φ(t, t 0 , x)P 2 (x)v (4.5)
for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 4.1 An exponentially dichotomic skew-evolution semiflow is dichotomic.

Example 4.1 Let X = R + and V = R 2 endowed with the norm

(v 1 , v 2 ) = |v 1 | + |v 2 |, v = (v 1 , v 2 ) ∈ V.
The mapping Φ : T × X → B(V ), given by Φ(t, s, x)(v 1 , v 2 ) = (e t sin t-s sin s-2t+2s v 1 , e 2t-2s-3t cos t+3s cos s v 2 ) is an evolution cocycle over every evolution semiflow ϕ. We consider the projectors

P 1 (x)(v 1 , v 2 ) = (v 1 , 0) and P 2 (x)(v 1 , v 2 ) = (0, v 2 ).
As t sin ts sin s -2t + 2s ≤ -t + 3s, ∀(t, s) ∈ T, we obtain that

Φ(t, s, x)P 1 (x)v ≤ e 2s e -(t-s) |v 1 |, ∀(t, s, x, v) ∈ T × Y.
Similarly, as 2t -2s -3t cos t + 3s cos s ≥ -t -5s, ∀(t, s) ∈ T it follows that

e 6t Φ(t, s, x)P 2 (x)v ≥ e 5(t-s) |v 2 |, ∀(t, s, x, v) ∈ T × Y.
The skew-evolution semiflow C = (ϕ, Φ) is exponentially dichotomic with characteristics N (u) = e 6u and ν = 1.

In what follows, let us denote

C k (t, s, x, v) = (ϕ(t, s, x), Φ k (t, s, x)v), ∀(t, t 0 , x, v) ∈ T × Y, ∀k ∈ {1, 2},
where

Φ k (t, t 0 , x) = Φ(t, t 0 , x)P k (x), ∀(t, t 0 ) ∈ T, ∀x ∈ X, ∀k ∈ {1, 2}.
In discrete time, we will describe the property of exponential dichotomy as given in the next Proposition 4.1 A skew-evolution semiflow C = (ϕ, Φ) is exponentially dichotomic if and only if there exist two projectors {P k } k∈{1,2} , compatible with C, constants ν 1 ≤ 0 ≤ ν 2 and a sequence of real positive numbers

(a n ) n≥0 such that (d ′ 1 ) Φ(m, n, x)P 1 (x)v ≤ a n P 1 (x)v e ν 1 (m-n) (4.6) (d ′ 2 ) P 2 (x)v ≤ a m Φ(m, n, x)P 2 (x)v e -ν 2 (m-n) (4.7)
for all (m, n) ∈ ∆ and all (x, v) ∈ Y . Hence, C is exponentially dichotomic.

Theorem 4.1 A skew-evolution semiflow C = (ϕ, Φ) is exponentially dichotomic if and only if there exist two projectors {P k } k∈{1,2} , compatible with C such that (ed ′ 1 ) there exist a constant ρ 1 > 0 and a sequence of real positive numbers

(α n ) n≥0 such that m k=n e ρ 1 (k-n) Φ(k, n, x)P 1 (x)v ≤ α n P 1 (x)v (4.8) N 2 (t) Φ(t, t 0 , x)P 3 (x)v ≥ Φ(s, t 0 , x)P 3 (x)v e ν 2 (t-s)
(5.7) Φ(t, t 0 , x)P 3 (x)v ≤ N 3 (s) Φ(s, t 0 , x)P 3 (x)v e ν 3 (t-s) (5.8) for all (t, s), (s, t 0 ) ∈ T and all (x, v) ∈ Y .

Remark 5.1 An exponentially trichotomic skew-evolution semiflow is trichotomic.

Example 5.1 Let us consider the example of C given in Example 1.1. We consider the projections

P 1 (x)(v) = (v 1 , 0, 0), P 2 (x)(v) = (0, v 2 , 0), P 3 (x)(v) = (0, 0, v 3 ).
The skew-evolution semiflow C = (ϕ, Φ) is exponentially trichotomic with characteristics

ν 1 = ν 2 = -x(0), ν 3 = x(0) and ν 4 = 1, N 1 (u) = e ux(0) , N 2 (u) = e -2lu , N 3 (u) = e 2ux(0) and N 4 (u) = e -lu .
As in the case of dichotomy, we denote

C k (t, s, x, v) = (ϕ(t, s, x), Φ k (t, s, x)v), ∀(t, t 0 , x, v) ∈ T × Y, ∀k ∈ {1, 2, 3},
where Φ k (t, t 0 , x) = Φ(t, t 0 , x)P k (x), ∀(t, t 0 ) ∈ T, ∀x ∈ X, ∀k ∈ {1, 2, 3}.

In discrete time, the trichotomy of a skew-evolution semiflow can be described as in the next Proposition 5.1 A skew-evolution semiflow C = (ϕ, Φ) is exponentially trichotomic if and only if there exist three projectors {P k } k∈{1,2,3} compatible with C, constants ν 1 , ν 2 , ν 3 , ν 4 with the property ν 1 ≤ ν 2 ≤ 0 ≤ ν 3 ≤ ν 4 and a sequence of positive real numbers (a n ) n≥0 such that (t 1 ) Φ(m, n, x)P 1 (x)v ≤ a p Φ(p, n, x)P 1 (x)v e ν 1 (m-p) (5.9)

(t 2 ) Φ(p, n, x)P 2 (x)v ≤ a m Φ(m, n, x)P 2 (x)v e -ν 4 (m-p) (5.10) (t 3 ) Φ(p, n, x)P 3 (x)v ≤ a m Φ(m, n, x)P 3 (x)v e -ν 2 (m-p) (5.11) (t 4 )
a p Φ(p, n, x)P 3 (x)v ≥ Φ(m, n, x)P 3 (x)v e -ν 3 (m-p) (5.12) for all (m, p), (p, n) ∈ ∆ and all (x, v) ∈ Y . Sufficiency. Let t ≥ t 0 + 1. We denote n = [t], n 0 = [t 0 ] and we obtained the relations

n ≤ t < n + 1, n 0 ≤ t 0 < n 0 + 1, n 0 + 1 ≤ n.
According to (t 1 ), we have

Φ 1 (t, t 0 , x)v ≤ ≤ M (n)e ω(n)(t-n) Φ(n, n 0 + 1, ϕ(n 0 + 1, t 0 , x))Φ(n 0 + 1, t 0 , x)P 1 (x)v ≤ ≤ a n M 2 (n)e 2[ω(n)+µ] e -µ(t-t 0 ) P 1 (x)v ,
for all (x, v) ∈ Y , where functions M and ω are given as in Definition 2.2. For t ∈ [t 0 , t 0 + 1) we have

Φ 1 (t, t 0 , x)v ≤ M (t 0 )e ω(t 0 )(t-t 0 ) P 1 (x)v ≤ ≤ M (t 0 )e ω(t 0 )+µ e -µ(t-t 0 ) P 1 (x)v , for all (x, v) ∈ Y . Hence, relation (5.5) is obtained. Let t ≥ t 0 + 1 and n = [t] respectively n 0 = [t 0 ]. It follows n ≤ t < n + 1, n 0 ≤ t 0 < n 0 + 1, n 0 + 1 ≤ n. From (t 2 ), it is obtained Φ 2 (t, t 0 , x)v = = Φ(t, n, ϕ(n, n 0 + 1, x))Φ(n, n 0 + 1, ϕ(n 0 + 1, t 0 , x))Φ(n 0 + 1, t 0 , x)P 2 (x)v ≥ ≥ [M (t)] -1 e -ω(t-n) [M (t)] -1 e -ω(n 0 +1-t 0 ) Φ 2 (n, n 0 + 1, x)v ≥ ≥ [M (t)] -2 N e -2ω e ν(n-n 0 +1) P 2 (x)v ≥ e ν
[M (t)] 2 N e 2ω e ν(t-t 0 ) P 2 (x)v , for all (x, v) ∈ Y , where M and ω are given by Definition 3.2. For t ∈ [t 0 , t 0 + 1) we have

M Φ 2 (t, t 0 , x)v ≥ e -ω(t-t 0 ) P 2 (x)v ≥ e -( ν+ω) e ν(t-t 0 ) P 2 (x)v , for all (x, v) ∈ Y . It follows that N Φ 2 (t, t 0 , x)v ≥ e ν(t-t 0 ) P 2 (x)v ,
for all (t, t 0 , x, v) ∈ T × Y , where we have denoted ν+2ω) and ν = ν and which implies relation (5.6). By a similar reasoning, from (t 3 ) relation (5.7) is obtained, and from (t 4 ) relation (5.8) follows.

N = M e ( ν+ω) + M 2 N e (-
Hence, the skew-evolution semiflow C is exponentially trichotomic.

Some characterizations in discrete time for the exponential trichotomy for skew-evolution semiflows are given in what follows.

Theorem 5.1 A skew-evolution semiflow C = (ϕ, Φ) is exponentially trichotomic if and only if there exist three projectors {P k } k∈{1,2,3} compatible cu C such that C 1 has exponential growth, C 2 has exponential decay and such that following relations hold (t ′ 1 ) there exist a constant ρ 1 > 0 and a sequence of positive real numbers

(α n ) n≥0 such that m k=n e ρ 1 (k-n) Φ(k, n, x)P 1 (x)v ≤ α n P 1 (x)v (5.13) (t ′ 2 )
there exist a constant ρ 2 > 0 and a sequence of positive real numbers

(β n ) n≥0 such that m k=n e -ρ 2 (k-n) Φ(k, n, x)P 2 (x)v ≤ β m e -ρ 2 (m-n) Φ(m, n, x)P 2 (x)v (5.14) (t ′
3 ) there exist a constant ρ 3 > 0 and a sequence of positive real numbers (γ n ) n≥0 such that m k=p e -ρ 3 (k-n) Φ(k, n, x)P 3 (x)v ≤ γ n e -ρ 3 (p-n) Φ(p, n, x)P 3 (x)v

(5.15) (t ′ 4 ) there exist a constant ρ 4 > 0 and a sequence of positive real numbers (δ n ) n≥0 such that m k=p e ρ 4 (k-n) Φ(k, n, x)P 3 (x)v ≤ δ m e ρ 4 (m-n) Φ(m, n, x)P 3 (x)v (5.16) for all (m, p), (p, n) ∈ ∆ and all (x, v) ∈ Y .

Proof. (t 1 ) ⇔ (t ′ 1 ) Necessity. As C is exponentially trichotomic, Proposition 5.1 assures the existence of a projector P , of a constant ν 1 ≤ 0 and of a sequence of positive real numbers (a n ) n≥0 such (t 1 ) holds. Let Sufficiency. We consider the projectors

P 1 = R 1 , P 2 = R 2 , P 3 = R 3 R 4 .
These are compatible with C. The statements of Proposition 5.1 follow if we consider ν 1 = ν 2 = -ν < 0, ν 3 = ν 4 = µ > 0 and a n = α n , n ∈ N.

Hence, C is exponentially trichotomic, which ends the proof.

Definition 1 . 3

 13 The mapping C : T × Y → Y defined by the relationC(t, s, x, v) = (ϕ(t, s, x), Φ(t, s, x)v),

Proof.

  Necessity. If we consider for C 1 in relation (4.4) of Definition 4.3 t = m, s = t 0 = n and if we define a n = N (n), n ∈ N, relation (d ′ 1 ) is obtained. Statement (d 2 ) ′ results from Definition 4.3 for C 2 if we consider in relation (4.5) t = m, s = t 0 = n and a m = N (m), m ∈ N. Sufficiency. It is obtained by means of Proposition 2.1 for C 1 , respectively of Proposition 3.1 for C 2 .

Proof. Necessity. (t 1 )

 1 is obtain if we consider for C 1 in relation (2.2) of Definition 2.1 t = n, s = t 0 = m and if we define a p = N (p), p ∈ N and ν 1 = -ν < 0. (t 2 ) follows according to Definition 3.1 for C 2 if we consider in relation (3.2) t = m, s = n, t 0 = n 0 and a m = N (m), m ∈ N and ν 4 = ν > 0. (t 3 ) is obtained for C 3 out of relatiom (2.3) of Definition 2.2 for t = m, s = p, t 0 = n and if we define a m = M (m) and ν 2 = -ω(m) < 0, m ∈ N. (t 4 ) follows for C 3 from relation (3.3) of Definition 3.2 for t = m, s = p, t 0 = n and if we consider a p = M (p) and ν 3 = ω(p) > 0, p ∈ N.

P 1 =ρ 1 a n m k=n e ρ 1 1 Projectors R 1 ,

 11111 (k-n) Φ(k, n, x)P 1 (x)v ≤ ≤ (k-n) e ν 1 (k-n) Φ(n, n, x)P 1 (x)v = = a n P 1 (x)v m k=n e (ρ 1 +ν 1 )(k-n) ≤ α n P 1 (x)v , ∀m, n ∈ N, ∀(x, v) ∈ Y,where we have denotedα n = a n e -ν 1 2 , n ∈ N.Sufficiency. As C 1 has exponential growth, there exist constants M ≥ 1 and r > 1 such that relationΦ(n + p, n, x)v ≤ M r p v ,(5.17)holds for all n, p ∈ N and all (x, v) ∈ Y . If we denote ω = ln r > 0 the inequality can be written as followsΦ(m, n, x) ≤ M e ω(m-k) Φ(k, n, x) , ∀(m, k), (k, n) ∈ ∆, x ∈ X.We consider successively the mn + 1 relations. By denoting P = P 1 , we obtainΦ(m, n, x)P (x)v ≤ M e ω(m-n) 1 + e ρ 1 + ... + e ρ 1 (m-n) α n P (x)v ,for all (m, n) ∈ ∆ and all (x, v) ∈ Y . If we define the constantν 1 = ωρ 1 pentru ω < ρ R 2 , R 3 şi R 4 are compatible with C. Let us define µ = ν 3 = ν 4 > 0, ν = -ν 1 = -ν 2 > 0 and α n = a n , n ∈ N.Hence, relations (5.18)-(5.21) hold.

  Definition 4.3 A skew-evolution semiflow C = (ϕ, Φ) is called (d) dichotomic if there exist some functions N 1 , N 2 : R + → R * + , two projectors P 1 and P 2 compatible with C such that Φ(t, t 0 , x)P 1

	Definition 4.2 Two projectors P 1 and P 2 are said to be compatible with a
	skew-evolution semiflow C = (ϕ, Φ) if
	(d 1 ) projectors P 1 and P 2 are invariant on Y ;
	(d

Definition 4.1 A projector P on Y is called invariant relative to a skewevolution semiflow C = (ϕ, Φ) if following relation

P (ϕ(t, s, x))Φ(t, s, x) = Φ(t, s, x)P (x),

(4.1)

holds for all (t, s) ∈ T and all x ∈ X. 2 ) for all x ∈ X, the projections P 1 (x) and P 2 (x) verify the relations P 1 (x) + P 2 (x) = I and P 1 (x)P 2 (x) = P 2 (x)P 1 (x) = 0.

(ed ′

2 ) there exist a constant ρ 2 < 0 and a sequence of real positive numbers (β n ) n≥0 such that m k=n e -ρ 2 (m-k) Φ(k, n, x)P 2 (x)v ≤ β m Φ(m, n, x)P 2 (x)v (4.9)

for all (m, p), (p, n) ∈ ∆ and all (x, v) ∈ Y .

Proof. It is obtained by means of Theorem 2.1 and Theorem 3.1, by considering R(t) = t, t ≥ 0.

5 Nonuniform discrete exponential trichotomy (t 2 ) for all x ∈ X, the projections P 0 (x), P 1 (x) and P 2 (x) verify the relations P 1 (x) + P 2 (x) + P 3 (x) = I and P i (x)P j (x) = 0, ∀i, j ∈ {1, 2, 3}, i = j. Definition 5.2 A skew-evolution semiflow C = (ϕ, Φ) is called (t) trichotomic if there exist the functions N 1 , N 2 , N 3 : R + → R * + and three projectors P 1 , P 2 and P 3 compatible with C such that

and three projectors P 1 , P 2 and P 3 compatible with C such that Φ(t, t 0 , x)P 1 (x)v ≤ N 1 (s) Φ(s, t 0 , x)P 1 (x)v e ν 1 (t-s) (5.5)

and the sequence of nonnegative real numbers

Similarly can also be proved the other equivalences.

In order to characterize the exponential trichotomy by means of four projectors, we give the next Definition 5.3 Four invariant projectors {R k } k∈{1,2,3,4} that satisfies for all (x, v) ∈ Y following relations:

, are called compatible with the skew-evolution semiflow C. Theorem 5.2 A skew-evolution semiflow C = (ϕ, Φ) is exponentially trichotomic if and only if there exist four projectors {R k } k∈{1,2,3,4} compatible with C, constants µ > ν > 0 and a sequence of positive real numbers (α n ) n≥0 such that

for all m, p ∈ N and all (x, v) ∈ Y .

Proof. Necessity. As C is exponentially trichotomic, according to Proposition 5.1 there exist three projectors {P k } k∈{1,2,3} compatible with C, constants ν 1 ≤ ν 2 ≤ 0 ≤ ν 3 ≤ ν 4 and a sequence of positive real numbers (a n ) n≥0 such that relations (5.9)-(5.12) hold. We will define the projectors