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Abstract : Let us consider a de�ned density on a set of very large dimension. It is
quite di�cult to �nd an estimate of this density from a data set. However, it is possible
through a projection pursuit methodology to achieve it. Over the last twenty years, many
mathematicians have studied this approach, including Huber in 1985 (see "Projection pur-
suit", Annals of Statistics). In his article, Huber demonstrates the interest of his method
in a very simple given case : considering two densities, a known one, and the other yet to
be estimated, he manages through an algorithm to turn one into the other. He concludes,
through a generalization of this process, by introducing a convergence in law. Huber's work
is based on maximizing relative entropy.
Our work will consist in demonstrating that it is possible through divergence based method-
ologies to achieve the same results as Huber but this time through minimizations of almost
any ϕ−divergence and then in examining the advantages gained.
Keywords : convexity; kernel estimator; maximum relative entropy; minimum Φ-divergence;
projection pursuit; rate of convergence; uniform convergence.
MSC: 94A17 62H40 62H10 62H11 62H12 62H15.

Outline of the article
Let f be a density de�ned in Rd, we de�ne a �rst fairly �exible approximation of f (we will
justify later this choice), which will simply be a density with same mean and variance as f
and that we will name g.
Let's brie�y consider Huber's �ndings :
Putting F = {f (a); for all a ∈ Rd

∗, f (a) = f ga

fa
and f (a) is a density} - where generally hu is

the density of u>X, if h is the density of X - then according to Huber, the �rst step of
his algorithm amounts to de�ning a1 and f (a1) - that we will call from now on f (1) - by
f (a1) = inff (a)∈ F K(f (a), g) (*), where a1 is the vector in Rd, which optimizes the relative
entropy K. In a second step, Huber replaces f by f (1) and go through the �rst step again.
By reiterating this process, Huber thus obtains a sequence (a1, a2, ...) of vectors of Rd

∗. The
sequence of the relative entropies of the f (ai) to g - that we will call from now on f (i) - holds
the relationship K(f (0), g) ≥ K(f (1), g) ≥ ..... ≥ 0 with f (0) = f .
Now, let us brie�y describe what we want to do.
Let us �rst introduce the concept of Φ−divergence. Let ϕ be a strictly convex function
de�ned by ϕ : R+ → R+, and such as ϕ(1) = 0. We de�ne a Φ−divergence of P from Q -
where P and Q are two probability distributions over a space Ω such that Q is absolutely
continuous with respect to P - by Φ(Q,P ) =

∫
ϕ(dQ

dP
)dP . Throughout this article, we will

also assume that ϕ(0) < ∞, that ϕ′ is continuous and that this divergence is greater than
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the L1 distance. We also de�ne G = {g(a); for all a ∈ Rd
∗, g(a) = g fa

ga
and g(a) is a density}.

The �rst step of our algorithm consists in de�ning a1 and g(a1) - that we will call from now
on g(1) - by g(a1) = infg(a)∈ G Φ(g(a), f) (**), where a1 is the vector in Rd, which optimises
this divergence. Later on, we will demonstrate this very a1 optimises simultaneously both
(*) and (**). In our second step, we will replace g by g(1), and we will repeat the �rst step.
And so on, by reiterating this process, we will end up obtaining a sequence (a1, a2, ...) of
vectors in Rd

∗. The sequence of the divergences of the g(ai) to f - that we will call from now
on g(i) - holds the following relationship: Φ(g(0), f) ≥ Φ(g(1), f) ≥ ..... ≥ 0 with g(0) = g.

The purpose of this article is to demonstrate the feasibility of extending Huber's method
- which is based on maximizing the relative entropy - to our method - which is based on the
minimization of a Φ−divergence - and then to examine the advantages gained.

We will study the rate of convergence and laws of the di�erent densities g(i) for all set i,
as well as the tests on all parameters. Moreover, by changing the end of process tests, we
will evidence the existence of convergences in i and we will perform new tests. In conclusion,
we will present simulations. All demonstrations and reminders can be found in Annex.

1 Comparison of Huber's method to ours
First, let us expose the details of Huber method's.
Let f be a density de�ned on Rd and let g be a density belonging to a family of known and
�xed law such that K(f, g) <∞ and K(g, f) <∞. We will assume that g still presents the
same mean and variance as f .
We would like to build a sequence of density closer to f than g already is from a relative
entropy standpoint. Since the �rst density of this sequence has to be derived only from f
and g, we de�ne h by h(x1) = f1(x1)

g1(x1)
, where f1 and g1 are the marginal densities of f and g

in the x1 direction. Based on Huber's lemma 13.1 of [Huber, 1985], we derive the following
lemma :

Lemma 1. The function g∗ de�ned by g∗(x) = g(x)h(x1) is a density.
Moreover, h = arginf{K(f, gr); where r is such that x 7→ g(x)r(x1) is a density}.
Finally, we have K(f, g) = K(f1, g1) +K(f, g∗).

Thus, and similarly, let us consider a, a vector set in Rd
∗. We de�ne g∗ by

g∗(x) = g(x)h(a>x), then g∗ is a density where h holds h = fa

ga
,

h = arginf{K(f, gr); where r is such that x 7→ g(x)r(a>x) is a density}, and
K(f, g) = K(fa, ga) +K(f, g∗).
Hence, the vector a - that we will note a1 - is a projection vector and g∗ - that we will
call g(1) - is the �rst element of the sequence de�ned at the beginning of this paragraph.
Now, by iterating this process between f and g(1), instead of f and g, we obtain a new
projection vector, that we will call a2, as well as a new density g(2). And so on, this way,
Huber gets the sequence of densities (g(n))n he wanted. Finally, he shows, that under certain
assumptions, there exist convergences between (g(n))n and f. This concludes our reminder of
Huber's method.
Let us now expose our method.
The fact that we consider a broader context than Huber's, leads us to an algorithm presenting
a simpler end of process test.
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Let Φ be a divergence such that ϕ(0) < ∞ and greater than the L1 distance. Keeping the
notation h(x1) = f1(x1)

g1(x1)
, let us introduce the following lemma :

Lemma 2. On the one hand, the function g∗, de�ned by g∗(x) = g(x)h(x1), is a
density. On the other hand, we have
h = arginf{Φ(gr, f); where r is such that x 7→ g(x)r(x1) is a density}.

Thus, similarly, let us consider a vector a set in Rd and let us de�ne g∗ by
g∗(x) = g(x)h(a>x), then we can say g∗ is a density where h holds h = fa

ga
and

h = arginf{Φ(gr, f); where r is such that x 7→ g(x)r(a>x) is a density}.
Hence, the vector a - that we will note a1 - is a projection vector and g∗ - that we will
note g(1) - is the �rst element of the sequence de�ned at the beginning of this paragraph.
Now, by iterating this process between f and g(1) (instead of between f and g), we get a
new vector projection a2 and a new density g(2). And so on, we obtain the sequence of the
densities (g(n))n we wanted. We will focus later on the selection of ai. We �nd also that
infa∈Rd∗ Φ(g∗, f) is reached through lemma 10 (see page 15). We will therefore �nd these ai

and write their estimators.

2 First convergences
Based on the work of Broniatowski in [Broniatowski, 2003] and
[Broniatowski and Keziou, 2003], we derive estimators of the minimum expressions obtained
above. Then, after introducing certain notations, we will produce almost sure uniform
convergences of the transformed densities obtained.

2.1 Writing the estimators
Let ϕ∗ be a function de�ned by, ∀t ∈ R, ϕ∗(t) = tϕ′−1(t)−ϕ(ϕ′−1(t)), where ϕ′ is the derivate
function of ϕ, ϕ′−1 being the reciprocal function of ϕ′. Let F be the class of the function
de�ned by F = {x 7→ ϕ′( g(x)

f(x)
fb(b

>x)
gb(b>x)

); b ∈ Rd
∗}, then Broniatowski in [Broniatowski, 2003]

and [Broniatowski and Keziou, 2003] shows that the estimator of Φ(g fa

ga
, f) is:

Φ̂(g fa

ga
, f) = supb∈Rd{

∫
ϕ′( g(x)

f(x)
fb(b

>x)
gb(b>x)

) g(x)fa(a>x)
ga(a>x)

dx − ∫
ϕ∗(ϕ′( g(x)

f(x)
fb(b

>x)
gb(b>x)

)) dPn}
where Pn = 1

n
ΣδXi

and thus

Conclusion : The estimator of the minimum divergence argument is

â = arg inf
a∈Rd

Φ̂(g
fa

ga

, f)

= arg inf
a∈Rd

sup
b∈Rd

{
∫
ϕ′(

g(x)

f(x)

fb(b
>x)

gb(b>x)
)g(x)

fa(a
>x)

ga(a>x)
dx−

∫
ϕ∗(ϕ′(

g(x)

f(x)

fb(b
>x)

gb(b>x)
))dPn}.

These estimators implicitly suppose that f and g are known. Therefore, we introduce an
estimate of the convolution kernel of these densities, which leads to the formulation of certain
hypotheses as explained below. Let X1, X2,..,Xn be a sequence of independent random
vectors with same law f . Let Y1, Y2,..,Yn be a sequence of independent random vectors
with same law g. Then the kernel estimators fn, gn, fa,n and ga,n of f , g, fa and ga, for all
a ∈ Rd

∗, uniformly converge (see Deheuvels (1974) in [Deheuvels, 1974]). Let us consider now
a positive sequence θn such that θn → 0, yn/θ

2
n → 0, where yn is the rate of convergence of the
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kernel estimator, y(1)
n /θ2

n → 0, where y(1)
n is de�ned by |ϕ( gn(x)

fn(x)

fb,n(b>x)

gb,n(b>x)
)−ϕ( g(x)

f(x)
fb(b

>x)
gb(b>x)

)| ≤ y
(1)
n

for all b in Rd
∗ and all x in Rd, and �nally y

(2)
n

θ2
n
→ 0, where y(2)

n is de�ned by
|ϕ′( gn(x)

fn(x)

fb,n(b>x)

gb,n(b>x)
)−ϕ′( g(x)

f(x)
fb(b

>x)
gb(b>x)

)| ≤ y
(2)
n for all b in Rd

∗ and all x in Rd. Then, going forward,
we will only consider the members of the sample X1, X2, ..., Xn associated to f and the
members of the sample Y1, Y2, ..., Yn associated to g verifying fn(Xi) ≥ θn, gn(Yi) ≥ θn and
gb,n(b>Yi) ≥ θn, for all i and for all b ∈ Rd

∗, and the vectors meeting these conditions will be
once again called X1, X2, ..., Xn and Y1, Y2, ..., Yn.
Moreover let us consider B1(n, a) = 1

n
Σn

i=1ϕ
′{fa,n(a>Yi)

ga,n(a>Yi)
gn(Yi)
fn(Yi

}fa,n(a>Yi)

ga,n(a>Yi)
and

B2(n, a) = 1
n
Σn

i=1ϕ
∗{ϕ′{fa,n(a>Xi)

ga,n(a>Xi)
gn(Xi)
fn(Xi

}}. Assuming the number of random vectors thus
discarded is negligible compared to n, the uniform convergence mentioned above still holds
and the de�nition of θn enables us to estimate the minimum of Φ(g fa

ga
, f)) by the following

limit limn→∞ supa∈Rd∗ |(B1(n, a)−B2(n, a))− Φ(g fa

ga
, f)| = 0.

2.2 Notations
In this paragraph, we will formalize what we explained earlier in our "Outline of the Article"
section, i.e. we will write the sequence of the transformed densities obtained.
Thus, let us de�ne the following sequences: {g{k}}k=0..d, {ak}k=1..d, {âk}k=1..d where through
an immediate induction, we have g0 = g, g(1)(x) = g(x)

fa1(a>1 x)

ga1 (a>1 x)
- because the optimal h is

h = fa

ga
- and g(j)(x) = g(j−1)(x)

faj (a>j x)

g
(j−1)
aj

(a>j x)
for j = 1..d, i.e. g(j)(x) = g(x)Πj

k=1

fak
(a>k x)

[g(k−1)]ak
(a>k x)

.
We de�ne this way a new sequence of the transformed densities {ĝ(j)}j=1..d, where
ĝ(j)(x) = ĝ(j−1)(x)

fâj
(â>j x)

[ĝ(j−1)]âj
(â>j x)

= g(x)Πj
k=1

fâk
(â>k x)

[ĝ(k−1)]âk
(â>k x)

for j = 1..d.
Nota Bene
In between each transformed density, we carry out a test of Kolmogorov-Smirnov to check if it
is close to the real law. Many other adjustment tests can be carried out such that Stephens',
Anderson-Darling's and Cramer-Von Mises'. Moreover, if f and g are gaussian, then in
order to get Φ(g, f) = 0, it is necessary for g to have same mean and variance as f , since,
for the relative entropy, g

f
.ln( g

f
)+ g

f
−1=0 if g

f
= 1. This explains why we choose g this way.

2.3 Convergence studies
In this section, we will concentrate on the di�erent types of convergence.
If P and Pa are the densities of f and fa respectively, let us consider
Θ = Rd, ΘΦ = {b ∈ Θ | ∫

ϕ∗(ϕ′( g(x)
f(x)

fb(b
>x)

gb(b>x)
))dP <∞},

M(b, a, x) =
∫
ϕ′( g(x)

f(x)
fb(b

>x)
gb(b>x)

)g(x)fa(a>x)
ga(a>x)

dx− ϕ∗(ϕ′( g(x)
f(x)

fb(b
>x)

gb(b>x)
)),

PnM(b, a) =
∫
ϕ′( g(x)fb(b

>x)
f(x)gb(b>x)

)g(x)fa(a>x)
ga(a>x)

dx
∫
ϕ∗(ϕ′( g(x)fb(b

>x)
f(x)gb(b>x)

))dPn,

PM(b, a) =
∫
ϕ′( g(x)fb(b

>x)
f(x)gb(b>x)

)g(x)fa(a>x)
ga(a>x)

dx− ∫
ϕ∗(ϕ′( g(x)fb(b

>x)
f(x)gb(b>x)

))dP,

ĉn(a) = arg supc∈Θ PnM(c, a), c̃n(a) = arg supc∈ΘΦ PnM(c, a),
γ̂n = arg infa∈Θ supc∈Θ PnM(c, a) and γ̃n = arg infa∈Θ supc∈ΘΦ PnM(c, a).
We remark that âk is a M -estimator for ak, k = 1..d and its rate of convergence is conse-
quently inOP(m−1/2). However, V an der V aart, in chapter V of his work [van der Vaart, 1998],
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thoroughly studiesM -estimators and formulates hypotheses that we will use here in our con-
text and for all set ak, as de�ned in section (2.2):

(H1) : sup
a∈Θ; c∈ΘΦ

|PnM(c, a)−PM(c, a)| → 0 a.s. (respectively in probability),

(H2) : For all ε > 0, there is η > 0, such that for all c ∈ ΘΦ verifying ‖c− ak‖ ≥ ε,

we have PM(c, a)− η > PM(ak, a), with a ∈ Θ.

(H3) : ∃ Z < 0, n0 > 0 such that(n ≥ n0 ⇒ sup
a∈Θ

sup
c∈{ΘΦ}c

PnM(c, a) < Z)

(H4) : There is a neighbourhood of ak, V , and a positive function H, such that,
for all c ∈ V , we have |M(c, ak, x)| ≤ H(x) (P− a.s.) with PH <∞,

(H5) : There is a neighbourhood V of ak, such that for all ε, there is a η such that for
all c ∈ V and a ∈ Θ, verifying ‖a− ak‖ ≥ ε, we have PM(c, ak) < PM(c, a)− η.

We will thus demonstrate that:

Proposition 1. Assuming conditions (H1) to (H5) hold, we have
(1) supa∈Θ ‖ĉn(a)− ak‖ tends to 0 a.s. (respectively in probability)
(2) γ̂n tends to ak a.s. (respectively in probability).

Finally, if n is the number of vectors in the sample, we then have

Theorem 1. For a set j = 1..d, we have almost everywhere and even uniformly
almost everywhere, the following convergence: ĝ{j} → g{j}, when n→∞.

3 Rate of convergence
In this section, we will expose results on the rate of convergence of our estimator. If m is
the size of the sample and under the following hypothesis

(H0): f and g are assumed to be strictly positive and bounded,
- which thanks to lemma 5 (see page 13) implies that ĝ(k) is strictly positive and bounded -
we have:

Theorem 2. For all k = 1, ..., d, we have

|ĝ(k) − g(k)| = OP(m−k/2), (3.1)∫
|ĝ(k)(x)− g(k)(x)|dx = OP(m−k/2), (3.2)

Φ(ĝ(k), f)− Φ(g(k), f) = OP(m−k/2). (3.3)

4 Estimator laws
Putting Iak

= ∂2

∂a2 Φ(g
fak

gak
, f), and x → g(b, a, x) = ϕ′( g(x)fb(b

>x)
f(x)gb(b>x)

)g(x)fa(a>x)
ga(a>x)

. Let us consider
now four new hypotheses:
(H6) : Estimators γ̂n and ĉn(ak) converge towards ak in probability.
(H7) : The function ϕ is C3 in (0,+∞) and there is a neighbourhood of (ak, ak), that
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we will note V ′
k , such that, for all (b, a) of V ′

k , the gradient ∇(g(x)fa(a>x)
ga(a>x)

) and the Hessian
H(g(x)fa(a>x)

ga(a>x)
) exist (λ_a.s.), and the �rst order partial derivative g(x)fa(a>x)

ga(a>x)
and the �rst

and second order derivative of (b, a) 7→ g(b, a, x) are dominated (λ_a.s.) by λ-integrable
functions.
(H8) : The function (b, a) 7→M(b, a) is C3 in a neighbourhood Vk of (ak, ak) for all x; and the
partial derivatives of (b, a) 7→ M(b, a) are all dominated in Vk by a P_integrable function
H(x).
(H9) : P‖ ∂

∂b
M(ak, ak)‖2 and P‖ ∂

∂a
M(ak, ak)‖2 are �nite and the expressions

P ∂2

∂bi∂bj
M(ak, ak) and Iak

exist and are invertible.
We then have:

Theorem 3. Assuming that conditions H6 to H9 hold, then√
nA.(ĉn(ak)− ak)

Law→ B.Nd(0,P‖ ∂
∂b
M(ak, ak)‖2) + C.Nd(0,P‖ ∂

∂a
M(ak, ak)‖2) and√

nA.(γ̂n − ak)
Law→ C.Nd(0,P‖ ∂

∂b
M(ak, ak)‖2) + C.Nd(0,P‖ ∂

∂a
M(ak, ak)‖2)

where A = (P ∂2

∂b∂b
M(ak, ak)

∂2

∂a∂a
Φ(g

fak

gak
, f)), C = P ∂2

∂b∂b
M(ak, ak) and

B = P ∂2

∂b∂b
M(ak, ak) + ∂2

∂a∂a
Φ(g

fak

gak
, f).

5 New evolution in the process
The idea is simple: let us assume the algorithm does not stop after d iterations but only
when the end of process test permits. In this section, we will establish �rst the existence of
a convergence between g(j) and f in j, then second, a new end of process test will provide
us with an alternative to the Kolmogorov test.

5.1 New convergence
In this paragraph, we will evidence the fact there is a convergence between the law generated
by g(k) and f .

First, a simple induction shows that the sequence of the transformed densities always
holds g(j)(x) = g(x)Πj

k=1

fãk
(ã>k x)

[g(j−1)]ãk
(ã>k x)

, with g(0) = g. As a reminder, for all divergence setting
an upper bound for the L1 distance, we also have, Φ(g(0), f) ≥ Φ(g(k), f) ≥ Φ(g(k−1), f) ≥ 0.
Thus under hypothesis (H0) -

(H0) : f and g are strictly positive and bounded -
lemma 5 (see page 13) implies that, for all k, g(k) is a strictly positive and bounded density.
We then get:

Theorem 4. Given that Φ is greater than the L1 distance, if
[mina Φ(g(k) fa

[g(k)]a
, f)] → 0, when k → ∞, (ie when the number of iterations is not

�nite), then the law generated by g(k), when k →∞, will be the same law as the
one generated by f , ie limk g

(k) = f.

We thus infer the two following corollaries

Corollary 1. Based on theorem 1 and since Φ is greater than the L1 distance,
then if [mina Φ(ĝ(k) fa

[ĝ(k)]a
, f)] → 0, where k → ∞, (ie when the number of iterations

is not �nite), we have limk limn ĝ
(k) = f.
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Corollary 2. Given that Φ is greater than the L1 distance, then
if limn limk[mina Φ(ĝ(k) fa

[ĝ(k)]a
, f)] = 0, we have limn limk ĝ

(k) = f .

5.2 Testing of criteria
Theorem 5. The law of the criteria writes

√
n(V arP(M(ak, ak)))

−1/2(PnM(ĉn(ak), γ̂n)− PnM(ak, ak))
Law→ N (0, I), (5.1)

where k represents the kth step of the algorithm.

Thus, making the following hypothesis:
(H10): there is a k such that [Φ(g(k) fak

[g(k)]ak

, f)] = 0, then

Theorem 6. The law of the end of algorithm states:
√
n(V arP(M(ak, ak)))

−1/2(PnM(ĉn(ak), γ̂n))
Law→ N (0, I), (5.2)

where k represents the last iteration of the algorithm.

We can then build a con�dence ellipsoid around the last ak thanks also to the following
corollary:

Corollary 3. If qN (0,1)
1−α is the quantile of a α level reduced centered normal distri-

bution, then, expression (5.2) implies that
{b ∈ Rd;

√
n(V arP(M(ĉn(ak), γ̂n)))−1/2(PnM(ĉn(ak), γ̂n) ≤ q

N (0,1)
1−level}

is a α level con�dence ellipsoid of ak according to our algorithm.

6 Simulation
Let us study three examples:

The �rst will be with relative entropy, the second with the χ2-divergence and the third
with a Cressie-Read divergence (still with γ = 1.25). We recall the de�nition of divergences
from annex A (see page 12).

In each example, the �rst part of our program will follow our algorithm and will aim at
creating a sequence of densities (g(j)), j = 1, .., k, k < d, such that g(0) = g,
g(j) = g(j−1)faj

/[g(j−1)]aj
and Φ(g(k), f) = 0, where Φ is a divergence and

aj = arg infb Φ(g(j−1)fb/[g
(j−1)]b, f), for all j = 1, ..., k. Moreover, in a second step, our

program will follow Huber's method and will create a sequence of densities (g(j)), j = 1, .., k,
k < d, such that g(0) = g, g(j) = g(j−1)faj

/[g(j−1)]aj
and Φ(g(k), f) = 0, where Φ is a diver-

gence and aj = argsupbΦ([g(j−1)]b, fb), for all j = 1, ..., k. Let us remark that we test upfront
the hypothesis that f is gaussian through a Kolmogorov Smirnov test.

Example 1 : With the relative entropy

We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random
variable X with a density law f de�ned by,
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f(x) = Normal(x1 + x2) ∗Gumbel(x0 + x2) ∗Gumbel(x0 + x1),
where the Gumbel law parameters are (−3, 4) and (1, 1) and where the normal distribution
parameters are (−5, 2). Let us generate then a gaussian random variable Y - that we will
name g - with a density which presents the same mean and variance as f .

In the �rst part of our program, we theoretically obtain k = 2, a1 = (1, 0, 1) and a2 =
(1, 1, 0) (or a2 = (1, 0, 1) and a1 = (1, 1, 0) which leads us to the same conclusion). To get this
result, we test H0 : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus H1 : (a1, a2) 6= ((1, 0, 1), (1, 1, 0)).
Moreover, if i represents the last iteration of the algorithm, then√

n(V arP(M(ai, ai)))
(−1/2)(PnM(cn(ai), γn)− PnM(ai, ai))

Law→ N (0, 1),
and then we estimate (a1, a2) by the following 0.9(=α) level con�dence ellipsoid

Ei = {b ∈ R3; V arP(M(b, b))Φ(g(i)fb/[g
(i)]b, f) ≤ q

N (0,1)
1−α /

√
n = 0.182434}.

Indeed, if i = 1 represents the last iteration of the algorithm, then a1 ∈ E0, and if i = 2
represents the last iteration of the algorithm, then a2 ∈ E1, and so on, if i represents the last
iteration of the algorithm, then ai ∈ Ei−1.

Now, if we follow Huber's method, we also theoretically obtain k = 2, a1 = (1, 0, 1) and
a2 = (1, 1, 0) (or a2 = (1, 0, 1) and a1 = (1, 1, 0) which leads us to the same conclusion). To
get this result, we perform the following test:

H0 : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus H1 : (a1, a2) 6= ((1, 0, 1), (1, 1, 0)).
The fact that, if i represents the last iteration of the algorithm, then√

n(V arP(m(ai, ai)))
(−1/2)(Pnm(bn(ai), βn)− Pnm(ai, ai))

Law→ N (0, 1),
enables us to estimate our sequence of (ai), reduced to (a1, a2), through the following 0.9(=α)
level con�dence ellipsoid

E ′i = {b ∈ R3; V arP(m(b, b))Φ([g(i)]b, fb) ≤ q
N (0,1)
1−α /

√
n = 0.182434}.

Indeed, if i = 1 represents the last iteration of the algorithm, then a1 ∈ E ′0, and if i = 2
represents the last iteration of the algorithm, then a2 ∈ E ′1, and so on, if i represents the last
iteration of the algorithm, then ai ∈ E ′i−1.
Finally, we obtain

Our Algorithm Huber's Algorithm
Kolmogorov Smirnov test, H0 : f = g H0 False H0 False

Projection Study n◦ 0 :
minimum : 0.0317505 maximum : 0.00715135
at point : (1.0,1.0,0) at point : (1.0,1.0,0)
P-Value : 0.99851 P-Value : 0.999839

Test : H0 : a1 ∈ E0 : False H0 : a1 ∈ E ′0 : False

Projection Study n◦ 1 :
minimum : 0.0266514 maximum : 0.00727748
at point : (1.0,0,1.0) at point : (1,0.0,1.0)
P-Value : 0.998852 P-Value : 0.999835

Test : H0 : a2 ∈ E1 : True H0 : a2 ∈ E ′1 : True
K(Kernel Estimation of g(2), g(2)) 0.444388 0.794124

Therefore, we conclude that f = g(2).

Example 2 : With the χ2 divergence

We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random
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variable X with a density law f de�ned by,
f(x) = Gaussian(x1 + x2) ∗Gaussian(x0 + x2) ∗Gumbel(x0 + x1),

where the Normal law parameters are (−5, 2) and (1, 1) and where the Gumbel distribution
parameters are −3 and 4. Let us generate then a gaussian random variable Y - that we will
name g - with a density presenting the same mean and variance as f .

In the �rst part of our program, we theoretically obtain k = 1 and a1 = (1, 1, 0). To get
this result, we perform the following test: H0 : a1 = (1, 1, 0) versus H1 : a1 6= (1, 1, 0).
Moreover, using the same reasoning as in Example 1, we estimate a1 by the following 0.9(=α)
level con�dence ellipsoid Ei = {b ∈ R3; V arP(M(b, b))χ2(gfb/gb, f) ≤ q

N (0,1)
1−α√

n
= 0.182434}.

Now, if we follow Huber's method, we also theoretically obtain k = 1 and a1 = (1, 1, 0). To
get this result, we perform the following test: H0 : a1 = (1, 1, 0) versus H1 : a1 6= (1, 1, 0).
Hence, using the same reasoning as in Example 1, we are able to estimate our sequence of
(ai), reduced to a1, through the following 0.9(=α) level con�dence ellipsoid

E ′i = {b ∈ R3; V arP(m(b, b))χ2([g(1)]b, fb) ≤ q
N (0,1)
1−α /

√
n = 0.182434}.

And, we obtain

Our Algorithm Huber's Algorithm
Kolmogorov Smirnov test, H0 : f = g H0 False H0 False

Projection Study n◦ 0 :
minimum : 0.0445199 maximum : 0.00960693
at point : (1.0,1,0.0) at point : (1.0,0,1.0)
P-Value : 0.997535 P-Value : 0.99975

Test : H0 : a1 ∈ E0 : True H0 : a1 ∈ E ′0 : True
K(Kernel Estimation of g(1), g(1)) 6.99742 9.59275

Therefore, we conclude that f = g(1).

Example 3 : With the Cressie-Read divergence (Φ)

We are in dimension 2(=d), and we consider a sample of 50(=n) values of a random
variable X with a density law f de�ned by, f(x) = Cauchy(x0) ∗ Normal(x1), where the
Cauchy law parameters are -5 and 1 and where the normal distribution parameters are (0, 1).
Let us generate then a gaussian random variable Y - that we will name g - with a density
which presents the same mean and variance as f .

In the �rst part of our program, we theoretically obtain k = 1 and a1 = (1, 0). To get
this result, we perform the following test: H0 : a1 = (1, 0) versus H1 : a1 6= (1, 0).
Moreover, using the same reasoning as in Example 1, we estimate a1 by the following 0.9(=α)
level con�dence ellipsoid :

Ei = {b ∈ R2; V arP(M(b, b))Φ(gfb/gb, f) ≤ q
N (0,1)
1−α /

√
n = 0.182434}.

Now, if we follow Huber's method, we also theoretically obtain k = 1 and a1 = (1, 0). To
get this result, we perform the following test: H0 : a1 = (1, 0) versus H1 : a1 6= (1, 0).
Hence, using the same reasoning as in Example 1, we are able to estimate our sequence of
(ai), reduced to a1, through the following 0.9(=α) level con�dence ellipsoid

E ′i = {b ∈ R2; V arP(m(b, b))Φ([g(1)]b, fb) ≤ q
N (0,1)
1−α /

√
n = 0.182434}.
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And, we obtain

Our Algorithm Huber's Algorithm
Kolmogorov Smirnov test, H0 : f = g H0 False H0 False

Projection Study n◦ 0 :
minimum : 0.0210058 maximum : 0.0619417
at point : (1.001,0) at point : (1.0,0.0)
P-Value : 0.989552 P-Value : 0.969504

Test : H0 : a1 ∈ E0 : True H0 : a1 ∈ E ′0 : True
K(Kernel Estimation of g(1), g(1)) 6.47617 2.09937

Therefore, we conclude that f = g(1).
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Figure 1: Graph of the distribution to estimate and of the starting Gaussian.
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Figure 2: Graph of the distribution to estimate and of our own estimate.
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Critics of the simulations
We note that as the approximations accumulate and according to the power of the cal-

culators used, we might obtain results above or below the value of the thresholds of the
di�erent tests. Moreover, in the case where f is unknown, we will never be sure to have
reached the minimum or the maximum of the relative entropy: we have indeed used the
simulated annealing method to solve our optimisation problem, and therefore it is only when
the number of random jumps tends in theory towards in�nity that the probability to get
the minimum or the maximum tends to 1. We note �nally that no theory on the optimal
number of jumps to implement does exist, as this number depends on the speci�cities of each
particular problem.

Conclusion
The present article demonstrates that our Φ-divergence method constitutes a

better alternative to Huber's. Indeed, the convergence results and simulations
we carried out, convincingly ful�lled our expectations regarding our methodol-
ogy. One of the key advantage of our method over Huber's lies in the fact that
- since there exist divergences smaller than the relative entropy - our method
requires a considerably shorter computation time.

A Annex - Reminders
A.1 Φ-Divergence
Let us call ha the density of a>Z if h is the density of Z. Let ϕ be a strictly convex function
de�ned by ϕ : R+ → R+, and such that ϕ(1) = 0.

De�nition 1. We de�ne Φ−divergence of P from Q, where P and Q are two probability
distributions over a space Ω such that Q is absolutely continuous with respect to P , by

Φ(Q,P ) =

∫
ϕ(
dQ

dP
)dP. (A.1)

The above expression (A.1) is also valid if P and Q are both dominated by the same proba-
bility.

The most used distances (Kullback, Hellinger or χ2) belong to the Cressie-Read family
(see Csiszar 1967 and Cressie - Read 1984). They are de�ned by a speci�c ϕ. Indeed,
- with the relative entropy, we associate ϕ(x) = xln(x)− x+ 1
- with the Hellinger distance, we associate ϕ(x) = 2(

√
x− 1)2

- with the χ2 distance, we associate ϕ(x) = 1
2
(x− 1)2

- more generally, with power divergences, we associate ϕ(x) = xγ−γx+γ−1
γ(γ−1)

, where γ ∈ R\(0, 1)

- and, �nally, with the L1 norm, which is also a divergence, we associate ϕ(x) = |x− 1|.
We will notice that we have, in particular, the following inequalities:

dL1(g, f) ≤ K(g, f) ≤ χ2(g, f).
Let us now present some well-known properties of divergences.

Proposition 2. A fundamental property of Φ−divergences is the fact that there is a unique
case of nullity. We have Φ(P,Q) = 0 ⇔ P = Q.
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Property 1. The application Q 7→ Φ(Q,P ) is

(i) convex, (A.2)
(ii) lower semi -continuous, for the topology

that makes all the applications of the form Q 7→
∫
fdQ continuuous

where f is bounded and continued, and (A.3)
(iii) lower semi-continuous for the topology of the uniform convergence.

Finally, we will also use the following property derived from the �rst part of corollary
(1.29) page 19 of [Friedrich and Igor, 1987],

Property 2.
If T : (X,A) → (Y,B) is measurable and if Φ(P,Q) <∞, then Φ(P,Q) ≥ Φ(PT−1, QT−1).

A.2 Useful properties and lemmas
We introduce several theorems and properties related to convexity.

Property 3 (Characterization of convex functions).
Let f be a function of I in R.
f is convex if and only if one of the assertions below holds:
(i) Any arc of the graph of f is above its chord,
(ii) The epigraph of f is convex ( in the meaning of the convex part of an a�ne space),
(iii) For any (x1, .., xn) ∈ In and for any (λ1, .., λn) ∈ Rn

+ such that
∑n

1 λi = 1, we have
f(

∑n
1 λixi) ≤

∑n
1 λif(xi).

(iv) For any x ∈ I, the function t 7→ f(t)−f(x)
t−x

is increasing in I \ x.
Then, according to theorem III.4 of [AZE, 1997], we have

Theorem 7. Let f : I → R be a convex function. Then f is a Lipschitz function
in all compact interval [a, b] ⊂ int{I}. In particular, f is continuous on int{I}.

Now, we introduce useful lemmas.

Lemma 3. Let f be a density in Rd bounded and strictly positive. Then, any projection
density of f , that we will name fa, a ∈ Rd

∗, is also bounded and strictly positive in R.

Lemma 4. Let f be a density in Rd bounded and strictly positive. Then all density f(./a>x),
for any a ∈ Rd

∗, is also bounded and strictly positive.

The above lemmas 3 and 4 can be evidenced by a reductio ad absurdum argument.
Moreover, by induction and through lemmas 3 and 4, we have

Lemma 5. If f and g are strictly positive and bounded densities, then g(k) is strictly positive
and bounded.

Finally we introduce a last lemma

Lemma 6. Let f be an absolutely continuous density, then, for all sequence (an) tending to
a in Rd

∗, the sequence fan uniformly converges towards fa.
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Proof :

For all a in Rd
∗, let Fa be the cumulative distribution function of a>X and ψa be a complex

function de�ned by ψa(u, v) = Fa(Re(u+ iv)) + iFa(Re(v + iu)), for all u and v in R.
First, the function ψa(u, v) is an analytic function, because x 7→ fa(a

>x) is continuous and
since we have the corollary of Dini's second theorem - according to which "A sequence of
cumulative distribution functions, which simply converges on R towards a continuous cumu-
lative distribution function F on R, uniformly converges towards F on R"- we deduct that,
for all sequence (an) converging towards a, ψan uniformly converges toward ψa. Finally, the
Weierstrass theorem, (see proposal (10.1) page 220 of the "Calcul in�nitésimal" book of Jean
Dieudonné), implies that all sequences ψ′a,n uniformly converge towards ψ′a, for all an tending
to a. We can therefore conclude. 2

B Annex - Proofs
This last section includes the proofs of most of the lemmas, propositions, theorems and
corollaries contained in the present article.

Proof of lemma 1
We remark that g and g∗ present the same density conditionally to x1. Indeed,
g∗1(x1) =

∫
g∗(x)dx2...dxd =

∫
h(x1)g(x)dx2...dxd = h(x1)

∫
g(x)dx2...dxd = h(x1)g1(x1).

Thus, we can demonstrate this lemma.
We have g(.|x1) = g(x1,...,xn)

g1(x1)
and g1(x1)h(x1) is the marginal density of g∗. Hence,∫

g∗dx =
∫
g1(x1)h(x1)g(.|x1)dx =

∫
g1(x1)

f1(x1)
g1(x1)

(
∫
g(.|x1)dx2..dxd)dx1 =

∫
f1(x1)dx1 = 1

and since g∗ is positive, then g∗ is a density. Moreover,

K(f, g∗) =

∫
f{ln(f)− ln(g∗)}dx, (B.1)

=

∫
f{ln(f(.|x1))− ln(g∗(.|x1)) + ln(f1(x1))− ln(g1(x1)h(x1))}dx,

=

∫
f{ln(f(.|x1))− ln(g(.|x1)) + ln(f1(x1))− ln(g1(x1)h(x1))}dx, (B.2)

as g∗(.|x1) = g(.|x1). Since the minimum of this last equation (B.2) is reached through
the minimization of

∫
f{ln(f1(x1)) − ln(g1(x1)h(x1))}dx = K(f1, g1h), then proposition 2

necessarily implies that f1 = g1h, hence h = f1/g1.
Finally, we have K(f, g) − K(f, g∗) =

∫
f{ln(f1(x1)) − ln(g1(x1))}dx = K(f1, g1), which

completes the demonstration of the lemma.

Proof of lemma 2
We remark that g and g∗ present the same density conditionally to x1. Indeed,
g∗1(x1) =

∫
g∗(x)dx2...dxd =

∫
h(x1)g(x)dx2...dxd = h(x1)

∫
g(x)dx2...dxd = h(x1)g1(x1).

Thus, we can demonstrate this lemma.
We have g(.|x1) = g(x1,...,xn)

g1(x1)
and g1(x1)h(x1) is the marginal density of g∗. Hence,∫

g∗dx =
∫
g1(x1)h(x1)g(.|x1)dx =

∫
g1(x1)

f1(x1)
g1(x1)

(
∫
g(.|x1)dx2..dxd)dx1 =

∫
f1(x1)dx1 = 1

and since g∗ is positive, then g∗ is a density.
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Moreover,

Φ(g∗, f) =

∫
fϕ(

g∗

f
)dx, (B.3)

=

∫
f(x).ϕ(

g∗(./x1)

f(./x1)

g1(x1)h(x1)

f1(x1)
)dx.

Thus, the minimum in h of (B.3) is reached through the minimization of ϕ(g∗(./x1)
f(./x1)

g1(x1)h(x1)
f1(x1)

),
in h. And since h = h(x1), this minimisation is obtained by choosing h = f1

g1
, which com-

pletes the demonstration of this lemma.

Proof of lemma 7

Lemma 7. The set Γc is closed in L1 for the topology of the uniform convergence.

By de�nition of the closure of a set, we have the result.

Proof of lemma 8

Lemma 8. For all c > 0, we have Γc ⊂ BL1(f, c), where BL1(f, c) = {p ∈ L1; ‖f −p‖1 ≤ c}.
Since Φ is greater than the L1 distance, we get the result.

Proof of lemma 9

Lemma 9. G is closed in L1 for the topology of the uniform convergence.

By de�nition of the closure of a set and lemma 6 (see page 13), we get the result.

Proof of lemma 10

Lemma 10. We can say that infa∈Rd∗ Φ(g∗, f) is reached.

Indeed, let G be {g fa

ga
; a ∈ Rd

∗} and Γc be Γc = {p; Φ(p, f) ≤ c} for all c>0. From
lemmas 7, 8 and 9 (see page 15), we get Γc ∩G is a compact for the topology of the uniform
convergence, if Γc ∩G is not empty. Since proposition 1 (see page 13) implies Q 7→ Φ(Q,P )
is lower semi-continuous in L1 for the topology of the uniform convergence, then the in�mum
is reached in L1. And �nally, taking for example c = Φ(g, f), Ω is necessarily not empty
because we always have Φ(g∗, f) ≤ Φ(g, f). We therefore conclude.

Proof of proposition 1
Given that Xn

a.s.→ X if ∀ε > 0, P(lim sup{|Xn −X| > ε}) = 0, we prove proposition 1:
Proof :
Since c̃n(a) = arg supc∈ΘΦ PnM(c, a), we have PnM(c̃n(a), a) ≥ PnM(ak, a). And through
condition (H1), we get PnM(c̃n(a), a) ≥ PnM(ak, a) ≥ PM(ak, a)− oP(1),
where oP(1) does not depend on a. Thus, we get:

PM(ak, a)− PM(c̃n(a), a) ≤ PnM(c̃n(a), a)−PM(c̃n(a), a) + oP(1) (B.4)
≤ sup

a∈Θ; c∈ΘΦ

|PnM(c, a)−PM(c, a)| → 0 a.s. .
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Let ε > 0 be such that supa∈Θ ‖c̃n(a)− ak‖ > ε. We notice that if such ε, had failed to exist,
the result would be obvious. Therefore, for this ε, there is an ∈ Θ such that ‖c̃n(an)−ak‖ > ε,
which implies thanks to (H2) that there exists a η such that PM(c̃n(an), an)−PM(ak, an) >
η. Thus, we can write:

P(sup
a∈Rd

‖c̃n(a)− ak‖ > ε) ≤ P(PM(c̃n(an), an)−PM(ak, an) > η) → 0 by (B.4).

Moreover, (H1) and (H3) imply that ĉn(a) = c̃n(a) for all a ∈ Θ and for n big enough.
This results in supa∈Θ ‖ĉn(a)− ak‖ → 0 a.s., which concludes our demonstration of the �rst
part of the proposition.
For the second part, we remark that (H1) and (H3) also imply that γ̂n = γ̃n for all a ∈ Θ.
This explains why it is su�cient to demonstrate the result for γ̃n only.
Based on the �rst part of the demonstration and on condition (H4), we can write:
PnM(c̃n(γ̃n), γ̃n) ≥ PnM(c̃n(ak), ak) ≥ PM(c̃n(γ̃n), ak)− oP(1),

which implies:
PM(c̃n(γ̃n), ak)−PM(c̃n(γ̃n), γ̃n) ≤ PnM(c̃n(γ̃n), γ̃n)−PM(c̃n(γ̃n), γ̃n) + oP(1)

≤ sup
a∈Θ; b∈ΘΦ

|PnM(b, a)−PM(b, a)| → 0 a.s..(B.5)

Based on the �rst part of this demonstration and on (H5), we infer the existence of η such
that: P(‖γ̃n − ak‖ ≥ ε) ≤ P(PM(c̃n(γ̃n), ak) − PM(c̃n(γ̃n), γ̃n)) → 0 a.s. by (B.5). This
concludes our demonstration. 2

Proof of Theorem 1
The demonstration below holds for the two types of optimisation. Let us consider g(0) = g, a
density with same mean and variance as f . In this proof, we will assume f and g are strictly
positive and bounded i.e. through lemma 5 (see page 13), that the densities ĝ(k) and g(k)

are also strictly positive and bounded. Using lemma 2, (see page 3), and lemma 6, (see page
13), we demonstrate the theorem by induction.

Proof of theorem 2

row 3.1: Here let us considerm, the size of the sample and f and g two bounded densities.
This demonstration holds for the two types of optimisation. Let us consider
Ψj = { fǎj (ǎj

>x)

[ǧ(j−1)]ǎj (ǎj
>x)

− faj (a>j x)

[g(j−1)]aj (a>j x)
}. Since f and g are bounded , it is easy to prove that

from a certain rank, we get |Ψj| ≤ max( 1
[ǧ(j−1)]ǎj (ǎj

>x)
, 1

[g(j−1)]aj (a>j x)
)|fǎj

(ǎj
>x)− faj

(a>j x)|.
Moreover, we can remark the following:

First, based on what we stated earlier, for all set x and from a certain rank,
there is a constant R>0 independent from n, such that:

max( 1
[ǧ(j−1)]ǎj (ǎj

>x)
, 1

[g(j−1)]aj (a>j x)
) ≤ R = R(x) = O(1).

Second, since ǎk is anM−estimator of ak for k = 1..d, its convergence rate is OP(m−1/2).
Thus using simple functions, we obtain an upper and lower bound for fǎj

and for faj
and we

reach the following conclusion:
|Ψj| ≤ OP(m−1/2). (B.6)

We �nally obtain:
|Πk

j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)
−Πk

j=1

faj (a>j x)

[g(j−1)]aj (a>j x)
| = Πk

j=1

faj (a>j x)

[g(j−1)]aj (a>j x)
|Πk

j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

[g(j−1)]aj (a>j x)

faj (a>j x)
−1|.

16



Based on relationship B.6, the expression fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

[g(j−1)]aj (a>j x)

faj (a>j x)
tends towards 1 at a rate

of OP(m−1/2) for all j. Consequently Πk
j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

[g(j−1)]aj (a>j x)

faj (a>j x)
tends towards 1 at a rate

of OP(m−k/2). Thus from a certain rank, we get
|Πk

j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

− Πk
j=1

faj (a>j x)

[g(j−1)]aj (a>j x)
| = OP(m−k/2)OP(1) = OP(m−k/2).

In conclusion, we obtain
|ǧ(k) − g(k)| = g(x)|Πk

j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

− Πk
j=1

faj (a>j x)

[g(j−1)]aj (a>j x)
| ≤ OP(m−k/2).

row 3.2: This demonstration holds for the two types of optimisation.
Since f and g are assumed to be strictly positive and bounded, hence lemma 5 (see page 13)
implies g(k) is also, for all k, strictly positive and bounded.
Moreover, theorem 3.1 implies that | ĝ(k)(x)

g(k)(x)
− 1| = OP(m−k/2) because

g(k)(x)| ĝ(k)(x)

g(k)(x)
− 1| = |ĝ(k)(x) − g(k)(x)|. Hence, there exists a function C of Rd in R+ such

that limm→∞m−k/2C(x) = 0 and | ĝ(k)(x)

g(k)(x)
− 1| ≤ m−k/2C(x), we have:

∫ |ĝ(k)(x)− g(k)(x)|dx =
∫
g(k)(x)| ĝ(k)(x)

g(k)(x)
− 1|dx, because g(k) > 0

≤ ∫
g(k)(x)C(x)m−k/2dx,

Moreover, supx∈Rd |ĝ(k)(x)− g(k)(x)| = supx∈Rd g(k)(x)| ĝ(k)(x)

g(k)(x)
− 1|

= supx∈Rd g(k)(x)C(x)m−k/2 → 0 a.s., by theorem 1.
This implies that supx∈Rd g(k)(x)C(x) <∞ a.s., ie supx∈Rd C(x) <∞ a.s. since g(k) has been
assumed to be strictly positive and bounded.
Thus,

∫
g(k)(x)C(x)dx ≤ supC.

∫
g(k)(x)dx = supC < ∞ since g(k) is a density, therefore

we can conclude
∫ |ĝ(k)(x)− g(k)(x)|dx ≤ supC.m−k/2 = OP(m−k/2).

row 3.3: This demonstration holds for the two types of optimisation. We have
Φ(ǧ(k), f)− Φ(g(k), f) =

∫
fϕ( ǧ(k)

f
)dx− ϕ(g(k)

f
)dx =

∫
f{ϕ( ǧ(k)

f
)− ϕ(g(k)

f
))}dx

≤ ∫
f R| ǧ(k)

f
− g(k)

f
|dx = R

∫ |ǧ(k) − g(k)|dx
with the line before last being derived from theorem 7. Since we get the same expression
as the one we found in our Proof of Theorem 3.2 row 2, we then conclude in a similar manner.

Proof of theorem 3

By de�nition of the estimators γ̂n and ĉn(ak), we have
{

Pn
∂
∂b
M(b, a) = 0

Pn
∂
∂a
M(b(a), a) = 0

ie
{

Pn
∂
∂b
M(ĉn(ak), γ̂n) = 0

Pn
∂
∂a
M(ĉn(ak), γ̂n) + Pn

∂
∂b
M(ĉn(ak), γ̂n) ∂

∂a
ĉn(ak) = 0,

which leads to the simpli�cation

of the above system into
{
Pn

∂
∂b
M(ĉn(ak), γ̂n) = 0 (E0)

Pn
∂
∂a
M(ĉn(ak), γ̂n) = 0 (E1)

.
Using a Taylor development of the (E0) equation, we infer there exists (cn, γn) on the interval
[(ĉn(ak), γ̂n), (ak, ak)] such that
−Pn

∂
∂b
M(ak, ak) = [(P ∂2

∂b∂b
M(ak, ak))

> + oP(1), (P ∂2

∂a∂b
M(ak, ak))

> + oP(1)]an.
with an = ((ĉn(ak)− ak)

>, (γ̂n − ak)
>).

Similarly, through a Taylor development of (E1), we infer there exists (c̃n, γ̃n) on the interval
[(ĉn(ak), γ̂n), (ak, ak)] such that
−Pn

∂
∂a
M(ak, ak) = [(P ∂2

∂b∂a
M(ak, ak))

> + oP(1), (P ∂2

∂a2M(ak, ak))
> + oP(1)]an.
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with an = ((ĉn(ak)− ak)
>, (γ̂n − ak)

>). Thus we get

√
nan =

√
n

[
P ∂2

∂b2
M(ak, ak) P ∂2

∂a∂b
M(ak, ak)

P ∂2

∂b∂a
M(ak, ak) P ∂2

∂a2M(ak, ak)

]−1 [ −Pn
∂
∂b
M(ak, ak)

−Pn
∂
∂a
M(ak, ak)

]
+ oP(1)

=
√
n(P ∂2

∂b∂b
M(ak, ak)

∂2

∂a∂a
Φ(g

fak

gak
, f))−1

.

[
P ∂2

∂b∂b
M(ak, ak) + ∂2

∂a∂a
Φ(g

fak

gak
, f) P ∂2

∂b∂b
M(ak, ak)

P ∂2

∂b∂b
M(ak, ak) P ∂2

∂b∂b
M(ak, ak)

]
.

[ −Pn
∂
∂b
M(ak, ak)

−Pn
∂
∂a
M(ak, ak)

]
+ oP(1)

since (H6) enables us to reverse the derivative and integral signs.
Moreover, the central limit theorem implies: Pn

∂
∂b
m(ak, ak)

Law→ Nd(0,P‖ ∂
∂b
m(ak, ak)‖2),

Pn
∂
∂a
m(ak, ak)

Law→ Nd(0,P‖ ∂
∂a
m(ak, ak)‖2), since P ∂

∂b
m(ak, ak) = P ∂

∂a
m(ak, ak) = 0, which

leads us to the result.

Proof of theorem 4
Let us consider ψ and ψ(k) the characteristic functions of the densities f and g(k−1), then we
have, |ψ(t)−ψ(k)(t)| ≤ ∫ |f(x)−g(k)(x)|dx ≤ Φ(g(k), f) = minaΦ(g(k−1) fa

[g(k−1)]a
, f), therefore

the assumption that limk minaΦ(g(k−1) fa

[g(k−1)]a
, f) = 0 implies limk g

(k) = f .

Proof of theorem 5
Through a Taylor development of PnM(čn(ak), γ̌n) of rank 2, we get at point (ak, ak):
PnM(čn(ak), γ̌n)
= PnM(ak, ak) + Pn

∂
∂a
M(ak, ak)(γ̌n − ak)

> + Pn
∂
∂b
M(ak, ak)(čn(ak)− ak)

>

+1
2
{(γ̌n − ak)

>Pn
∂2

∂a∂a
M(ak, ak)(γ̌n − ak) + (čn(ak)− ak)

>Pn
∂2

∂b∂a
M(ak, ak)(γ̌n − ak)

+(γ̌n − ak)
>Pn

∂2

∂a∂b
M(ak, ak)(čn(ak)− ak) + (čn(ak)− ak)

>Pn
∂2

∂b∂b
M(ak, ak)(čn(ak)− ak)}

The lemma below enables us to conclude.

Lemma 11. Let H be an integrable function and let C =
∫
H dP and Cn =

∫
H dPn,

then, Cn − C = OP( 1√
n
).

Thus we get PnM(čn(ak), γ̌n) = PnM(ak, ak) +OP( 1
n
),

ie √n(PnM(čn(ak), γ̌n) − PM(ak, ak)) =
√
n(PnM(ak, ak) − PM(ak, ak)) + oP(1). Hence√

n(PnM(čn(ak), γ̌n)−PM(ak, ak)) abides by the same limit distribution as√
n(PnM(ak, ak)−PM(ak, ak)), which is N (0, V arP(M(ak, ak))).

Proof of corollaries 1 and 2
Since they are both identical, we will only develop the proof of corollary 2.
Let us demonstrate that under hypothesis limk→∞ Φ(g(k), f) = 0, we have

lim
n→∞

lim
k→∞

Φ(g(k)
n , f) = 0.

If g∞n = limk→∞ g
(k)
n , then we can say g∞n is a density. Indeed, we infer∫

g∞n =
∫

limk→∞ g
(k)
n = limk→∞

∫
g

(k)
n = 1 from the Lebesgue theorem and by induction, we

get g∞n = g.(Πi≥1
fâi

[gn(i−1)]âi
) ≥ 0. Moreover, we have

∀k, 0 ≤ Φ(g∞n , f) ≤ Φ(g(k)
n , f) ≤ Φ(g, f), (∗)
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since the sequence (Φ(g
(k)
n , f))k is decreasing. Taking the limit in n of (∗), we get ∀k, 0 ≤

limn→∞ Φ(g∞n , f) ≤ limn→∞ Φ(g
(k)
n , f) ≤ Φ(g, f), ie

∀k, 0 ≤ Φ(g∞∞, f) ≤ Φ(g(k), f) ≤ Φ(g, f), (∗∗)

where g∞∞ = limn→∞ g∞n and g(k) = limn→∞ g
(k)
n thanks to theorem 1. Through a reductio

ad absurdum, and assuming Φ(g∞∞, f) > Φ(g(k), f) ≥ 0, since Φ is lower semi continuous,
we have limn infΦ(g∞n , f) ≥ Φ(g∞∞, f) and limn infΦ(g

(k)
n , f) ≥ Φ(g

(k)
∞ , f). Consequently,

Φ(g∞n , f) ≥ Φ(g∞∞, f) > Φ(g
(k)
n , f), which leads to the contradiction we were looking for.

Hence (∗∗) is true. We can therefore conclude that (∗∗) implies Φ(g∞∞, f) = 0, ie
limn→∞ limk→∞ Φ(g

(k)
n , f) = 0, as a reductio ad absurdum argument would have led to

0 < Φ(g∞∞, f) ≤ Φ(g(k), f), which would have contradicted the hypothesis according to which
limk→∞ Φ(g(k), f) = 0.
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