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Let us consider a dened density on a set of very large dimension. It is quite dicult to nd an estimate of this density from a data set. However, it is possible through a projection pursuit methodology to achieve it. Over the last twenty years, many mathematicians have studied this approach, including Huber in 1985 (see "Projection pursuit", Annals of Statistics). In his article, Huber demonstrates the interest of his method in a very simple given case : considering two densities, a known one, and the other yet to be estimated, he manages through an algorithm to turn one into the other. He concludes, through a generalization of this process, by introducing a convergence in law. Huber's work is based on maximizing relative entropy. Our work will consist in demonstrating that it is possible through divergence based methodologies to achieve the same results as Huber but this time through minimizations of almost any ϕ-divergence and then in examining the advantages gained.

1 Comparison of Huber's method to ours First, let us expose the details of Huber method's. Let f be a density dened on R d and let g be a density belonging to a family of known and xed law such that K(f, g) < ∞ and K(g, f ) < ∞. We will assume that g still presents the same mean and variance as f . We would like to build a sequence of density closer to f than g already is from a relative entropy standpoint. Since the rst density of this sequence has to be derived only from f and g, we dene h by h(x 1 ) = f 1 (x 1 ) g 1 (x 1 ) , where f 1 and g 1 are the marginal densities of f and g in the x 1 direction. Based on Huber's lemma 13.1 of [Huber, 1985], we derive the following lemma :

Lemma 1. The function g * dened by g * (x) = g(x)h(x 1 ) is a density. Moreover, h = arginf {K(f, gr); where r is such that x → g(x)r(x 1 ) is a density}. Finally, we have K(f, g) = K(f 1 , g 1 ) + K(f, g * ).

Thus, and similarly, let us consider a, a vector set in R d * . We dene g * by g * (x) = g(x)h(a x), then g * is a density where h holds h = fa g a , h = arginf {K(f, gr); where r is such that x → g(x)r(a x) is a density}, and K(f, g) = K(f a , g a ) + K(f, g * ).

Hence, the vector a -that we will note a 1 -is a projection vector and g * -that we will call g (1) -is the rst element of the sequence dened at the beginning of this paragraph. Now, by iterating this process between f and g (1) , instead of f and g, we obtain a new projection vector, that we will call a 2 , as well as a new density g (2) . And so on, this way, Huber gets the sequence of densities (g (n) ) n he wanted. Finally, he shows, that under certain assumptions, there exist convergences between (g (n) ) n and f. This concludes our reminder of Huber's method. Let us now expose our method. The fact that we consider a broader context than Huber's, leads us to an algorithm presenting a simpler end of process test.

Let Φ be a divergence such that ϕ(0) < ∞ and greater than the L 1 distance. Keeping the notation h(x 1 ) = f 1 (x 1 ) g 1 (x 1 ) , let us introduce the following lemma :

Lemma 2. On the one hand, the function g * , dened by g * (x) = g(x)h(x 1 ), is a density. On the other hand, we have h = arginf {Φ(gr, f ); where r is such that x → g(x)r(x 1 ) is a density}.

Thus, similarly, let us consider a vector a set in R d and let us dene g * by g * (x) = g(x)h(a x), then we can say g * is a density where h holds h = f a ga and h = arginf {Φ(gr, f ); where r is such that x → g(x)r(a x) is a density}. Hence, the vector a -that we will note a 1 -is a projection vector and g * -that we will note g (1) -is the rst element of the sequence dened at the beginning of this paragraph. Now, by iterating this process between f and g (1) (instead of between f and g), we get a new vector projection a 2 and a new density g (2) . And so on, we obtain the sequence of the densities (g (n) ) n we wanted. We will focus later on the selection of a i . We nd also that inf a∈R d * Φ(g * , f ) is reached through lemma 10 (see page 15). We will therefore nd these a i and write their estimators.

First convergences

Based on the work of Broniatowski in [Broniatowski, 2003] and [START_REF] Broniatowski | Dual representation of φ-divergences and applications[END_REF], we derive estimators of the minimum expressions obtained above. Then, after introducing certain notations, we will produce almost sure uniform convergences of the transformed densities obtained.

Writing the estimators

Let ϕ * be a function dened by, ∀t ∈ R, ϕ * (t) = tϕ -1 (t)-ϕ(ϕ -1 (t)), where ϕ is the derivate function of ϕ, ϕ -1 being the reciprocal function of ϕ . Let F be the class of the function dened by [Broniatowski, 2003] and [START_REF] Broniatowski | Dual representation of φ-divergences and applications[END_REF] shows that the estimator of Φ(g

F = {x → ϕ ( g(x) f (x) f b (b x) g b (b x) ); b ∈ R d * }, then Broniatowski in
f a g a , f ) is: Φ(g f a ga , f ) = sup b∈R d { ϕ ( g(x) f (x) f b (b x) g b (b x) ) g(x) fa(a x) g a (a x) dx - ϕ * (ϕ ( g(x) f (x) f b (b x) g b (b x) )) dP n } where P n = 1
n Σδ X i and thus

Conclusion :

The estimator of the minimum divergence argument is

â = arg inf a∈R d Φ(g f a g a , f ) = arg inf a∈R d sup b∈R d { ϕ ( g(x) f (x) f b (b x) g b (b x) )g(x) f a (a x) g a (a x) dx -ϕ * (ϕ ( g(x) f (x) f b (b x) g b (b x) ))dP n }.
These estimators implicitly suppose that f and g are known. Therefore, we introduce an estimate of the convolution kernel of these densities, which leads to the formulation of certain hypotheses as explained below. Let X 1 , X 2 ,..,X n be a sequence of independent random vectors with same law f . Let Y 1 , Y 2 ,..,Y n be a sequence of independent random vectors with same law g. Then the kernel estimators f n , g n , f a,n and g a,n of f , g, f a and g a , for all a ∈ R d * , uniformly converge (see Deheuvels (1974) in [Deheuvels, 1974]). Let us consider now a positive sequence θ n such that θ n → 0, y n /θ 2 n → 0, where y n is the rate of convergence of the kernel estimator, y

(1)

n /θ 2 n → 0, where y

(1)

n is dened by |ϕ( g n (x) fn(x) f b,n (b x) g b,n (b x) )-ϕ( g(x) f (x) f b (b x) g b (b x) )| ≤ y (1) n for all b in R d * and all x in R d , and nally y (2) n θ 2 n → 0, where y (2) n is dened by |ϕ ( g n (x) fn(x) f b,n (b x) g b,n (b x) ) -ϕ ( g(x) f (x) f b (b x) g b (b x) )| ≤ y (2)
n for all b in R d * and all x in R d . Then, going forward, we will only consider the members of the sample X 1 , X 2 , ..., X n associated to f and the members of the sample

Y 1 , Y 2 , ..., Y n associated to g verifying f n (X i ) ≥ θ n , g n (Y i ) ≥ θ n and g b,n (b Y i ) ≥ θ n ,
for all i and for all b ∈ R d * , and the vectors meeting these conditions will be once again called

X 1 , X 2 , ..., X n and Y 1 , Y 2 , ..., Y n . Moreover let us consider B 1 (n, a) = 1 n Σ n i=1 ϕ { f a,n (a Y i ) ga,n(a Y i ) g n (Y i ) f n (Y i } f a,n (a Y i ) ga,n(a Y i ) and B 2 (n, a) = 1 n Σ n i=1 ϕ * {ϕ { f a,n (a X i ) g a,n (a X i ) gn(X i )
fn(X i }}. Assuming the number of random vectors thus discarded is negligible compared to n, the uniform convergence mentioned above still holds and the denition of θ n enables us to estimate the minimum of Φ(g f a g a , f )) by the following limit

lim n→∞ sup a∈R d * |(B 1 (n, a) -B 2 (n, a)) -Φ(g f a ga , f )| = 0.

Notations

In this paragraph, we will formalize what we explained earlier in our "Outline of the Article" section, i.e. we will write the sequence of the transformed densities obtained. Thus, let us dene the following sequences:

{g {k} } k=0..d , {a k } k=1..d , {â k } k=1..d
where through an immediate induction, we have g 0 = g, g (1) (x) = g(x)

f a 1 (a 1 x) ga 1 (a 1 x) -because the optimal h is h = f a g a -and g (j) (x) = g (j-1) (x) f a j (a j x) g (j-1) a j (a j x) for j = 1..d, i.e. g (j) (x) = g(x)Π j k=1 fa k (a k x) [g (k-1) ] a k (a k x)
. We dene this way a new sequence of the transformed densities {ĝ (j) } j=1..d , where

ĝ(j) (x) = ĝ(j-1) (x) f âj (â j x) [ĝ (j-1) ] âj (â j x) = g(x)Π j k=1 f âk (â k x) [ĝ (k-1) ] âk (â k x) for j = 1..d.

N ota Bene

In between each transformed density, we carry out a test of Kolmogorov-Smirnov to check if it is close to the real law. Many other adjustment tests can be carried out such that Stephens', Anderson-Darling's and Cramer-Von Mises'. Moreover, if f and g are gaussian, then in order to get Φ(g, f ) = 0, it is necessary for g to have same mean and variance as f , since, for the relative entropy, g f .ln

( g f ) + g f -1=0 if g f = 1
. This explains why we choose g this way.

Convergence studies

In this section, we will concentrate on the dierent types of convergence.

If P and P a are the densities of f and f a respectively, let us consider We remark that âk is a M -estimator for a k , k = 1..d and its rate of convergence is consequently in O P (m -1/2 ). However, V an der V aart, in chapter V of his work [van der Vaart, 1998],

Θ = R d , Θ Φ = {b ∈ Θ | ϕ * (ϕ ( g(x) f (x) f b (b x) g b (b x) ))dP < ∞}, M (b, a, x) = ϕ ( g(x) f (x) f b (b x) g b (b x) )g(x) f a (a x) g a (a x) dx -ϕ * (ϕ ( g(x) f (x) f b (b x) g b (b x) )), P n M (b, a) = ϕ ( g(x)f b (b x) f (x)g b (b x) )g(x) f a (a x) g a (a x) dx ϕ * (ϕ ( g(x)f b (b x) f (x)g b (b x) ))dP n , PM (b, a) = ϕ ( g(x)f b (b x) f (x)g b (b x) )g(x) f a (a x) ga(a x) dx -ϕ * (ϕ ( g(x)f b (b x) f (x)g b (b x) ))dP, ĉn (a) = arg sup c∈Θ P n M (c,
thoroughly studies M -estimators and formulates hypotheses that we will use here in our context and for all set a k , as dened in section (2.2): (H2) : For all ε > 0, there is η > 0, such that for all c ∈ Θ Φ verifying c -a k ≥ ε,

we have PM (c, a) -η > PM (a k , a), with a ∈ Θ. (H3) : ∃ Z < 0, n 0 > 0 such that(n ≥ n 0 ⇒ sup a∈Θ sup c∈{Θ Φ } c P n M (c, a) < Z) (H4) :
There is a neighbourhood of a k , V , and a positive function H, such that, for all c ∈ V , we have |M (c, a k , x)| ≤ H(x) (P -a.s.) with PH < ∞, (H5) : There is a neighbourhood V of a k , such that for all ε, there is a η such that for all c ∈ V and a ∈ Θ, verifying a -a k ≥ ε, we have PM (c, a k ) < PM (c, a) -η.

We will thus demonstrate that: Proposition 1. Assuming conditions (H1) to (H5) hold, we have (1) sup a∈Θ ĉn (a) -a k tends to 0 a.s. (respectively in probability) (2) γn tends to a k a.s. (respectively in probability).

Finally, if n is the number of vectors in the sample, we then have Theorem 1. For a set j = 1..d, we have almost everywhere and even uniformly almost everywhere, the following convergence: ĝ{j} → g {j} , when n → ∞.

Rate of convergence

In this section, we will expose results on the rate of convergence of our estimator. If m is the size of the sample and under the following hypothesis (H0): f and g are assumed to be strictly positive and bounded, -which thanks to lemma 5 (see page 13) implies that ĝ(k) is strictly positive and bounded - we have: Theorem 2. For all k = 1, ..., d, we have a x) . Let us consider now four new hypotheses: (H6) : Estimators γn and ĉn (a k ) converge towards a k in probability. (H7) : The function ϕ is C 3 in (0, +∞) and there is a neighbourhood of (a k , a k ), that we will note V k , such that, for all (b, a) of V k , the gradient ∇( g(x)f a (a x) ga(a x) ) and the Hessian H( g(x)fa(a x) g a (a x) ) exist (λ_a.s.), and the rst order partial derivative g(x)fa(a x) g a (a x)

|ĝ (k) -g (k) | = O P (m -k/2 ), (3.1) |ĝ (k) (x) -g (k) (x)|dx = O P (m -k/2 ), (3.2) Φ(ĝ (k) , f ) -Φ(g (k) , f ) = O P (m -k/2 ). (3.3) 4 Estimator laws Putting I a k = ∂ 2 ∂a 2 Φ(g f a k g a k , f ), and x → g(b, a, x) = ϕ ( g(x)f b (b x) f (x)g b (b x) ) g(x)f a (a x) g a (
and the rst and second order derivative of (b, a) → g(b, a, x) are dominated (λ_a.s.) by λ-integrable functions. (H8) : The function (b, a) → M (b, a) is C 3 in a neighbourhood V k of (a k , a k ) for all x; and the partial derivatives of (b, a) → M (b, a) are all dominated in V k by a P_integrable function H(x). (H9) : P ∂ ∂b M (a k , a k ) 2 and P ∂ ∂a M (a k , a k ) 2 are nite and the expressions P ∂ 2 ∂b i ∂b j M (a k , a k ) and I a k exist and are invertible. We then have: Theorem 3. Assuming that conditions H6 to H9 hold, then

√ nA.(ĉ n (a k ) -a k ) Law → B.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 ) and √ nA.(γ n -a k ) Law → C.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 )
where

A = (P ∂ 2 ∂b∂b M (a k , a k ) ∂ 2 ∂a∂a Φ(g fa k g a k , f )), C = P ∂ 2 ∂b∂b M (a k , a k )
and

B = P ∂ 2 ∂b∂b M (a k , a k ) + ∂ 2 ∂a∂a Φ(g f a k g a k , f ).

New evolution in the process

The idea is simple: let us assume the algorithm does not stop after d iterations but only when the end of process test permits. In this section, we will establish rst the existence of a convergence between g (j) and f in j, then second, a new end of process test will provide us with an alternative to the Kolmogorov test.

New convergence

In this paragraph, we will evidence the fact there is a convergence between the law generated by g (k) and f . First, a simple induction shows that the sequence of the transformed densities always holds g (j) 

(x) = g(x)Π j k=1 f ãk (ã k x) [g (j-1) ] ãk (ã k x)
, with g (0) = g. As a reminder, for all divergence setting an upper bound for the L 1 distance, we also have,

Φ(g (0) , f ) ≥ Φ(g (k) , f ) ≥ Φ(g (k-1) , f ) ≥ 0.
Thus under hypothesis (H0) -(H0) : f and g are strictly positive and boundedlemma 5 (see page 13) implies that, for all k, g (k) is a strictly positive and bounded density. We then get:

Theorem 4. Given that Φ is greater than the L 1 distance, if [min a Φ(g (k) f a [g (k) ]a , f )] → 0, when k → ∞, (
ie when the number of iterations is not nite), then the law generated by g (k) , when k → ∞, will be the same law as the one generated by f , ie lim k g (k) = f. We thus infer the two following corollaries Corollary 1. Based on theorem 1 and since Φ is greater than the

L 1 distance, then if [min a Φ(ĝ (k) f a [ĝ (k) ] a , f )] → 0,
where k → ∞, (ie when the number of iterations is not nite), we have

lim k lim n ĝ(k) = f. Corollary 2. Given that Φ is greater than the L 1 distance, then if lim n lim k [min a Φ(ĝ (k) f a [ĝ (k) ]a , f )] = 0, we have lim n lim k ĝ(k) = f .

Testing of criteria

Theorem 5. The law of the criteria writes

√ n(V ar P (M (a k , a k ))) -1/2 (P n M (ĉ n (a k ), γn ) -P n M (a k , a k )) Law → N (0, I), (5.1)
where k represents the k th step of the algorithm.

Thus, making the following hypothesis:

(H10): there is a k such that [Φ(g (k) f a k [g (k) ]a k , f )] = 0, then
Theorem 6. The law of the end of algorithm states:

√ n(V ar P (M (a k , a k ))) -1/2 (P n M (ĉ n (a k ), γn )) Law → N (0, I), (5.2)
where k represents the last iteration of the algorithm.

We can then build a condence ellipsoid around the last a k thanks also to the following corollary:

Corollary 3. If q N (0,1) 1-α
is the quantile of a α level reduced centered normal distribution, then, expression (5.2) implies that

{b ∈ R d ; √ n(V ar P (M (ĉ n (a k ), γn ))) -1/2 (P n M (ĉ n (a k ), γn ) ≤ q N (0,1) 1-level }
is a α level condence ellipsoid of a k according to our algorithm.

Simulation

Let us study three examples:

The rst will be with relative entropy, the second with the χ 2 -divergence and the third with a Cressie-Read divergence (still with γ = 1.25). We recall the denition of divergences from annex A (see page 12).

In each example, the rst part of our program will follow our algorithm and will aim at creating a sequence of densities (g (j) ), j = 1, .., k, k < d, such that g(0) = g, g (j) = g (j-1) f a j /[g (j-1) ] a j and Φ(g (k) , f ) = 0, where Φ is a divergence and

a j = arg inf b Φ(g (j-1) f b /[g (j-1) ] b , f
), for all j = 1, ..., k. Moreover, in a second step, our program will follow Huber's method and will create a sequence of densities (g (j) ), j = 1, .., k, k < d, such that g(0) = g, g (j) = g (j-1) f a j /[g (j-1) ] a j and Φ(g (k) , f ) = 0, where Φ is a divergence and a j = argsup b Φ([g (j-1) ] b , f b ), for all j = 1, ..., k. Let us remark that we test upfront the hypothesis that f is gaussian through a Kolmogorov Smirnov test.

Example 1 : With the relative entropy We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random variable X with a density law f dened by,

f (x) = N ormal(x 1 + x 2 ) * Gumbel(x 0 + x 2 ) * Gumbel(x 0 + x 1 ),
where the Gumbel law parameters are (-3, 4) and (1, 1) and where the normal distribution parameters are (-5, 2). Let us generate then a gaussian random variable Y -that we will name g -with a density which presents the same mean and variance as f .

In the rst part of our program, we theoretically obtain k = 2, a 1 = (1, 0, 1) and a 2 = (1, 1, 0) (or a 2 = (1, 0, 1) and a 1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we test H0 : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus H1 : (a1, a2) = ((1, 0, 1), (1, 1, 0)). Moreover, if i represents the last iteration of the algorithm, then

√ n(V ar P (M (a i , a i ))) (-1/2) (P n M (c n (a i ), γ n ) -P n M (a i , a i ))
Law → N (0, 1), and then we estimate (a 1 , a 2 ) by the following 0.9(=α) level condence ellipsoid

E i = {b ∈ R 3 ; V ar P (M (b, b))Φ(g (i) f b /[g (i) ] b , f ) ≤ q N (0,1) 1-α / √ n = 0.182434}.
Indeed, if i = 1 represents the last iteration of the algorithm, then a 1 ∈ E 0 , and if i = 2 represents the last iteration of the algorithm, then a 2 ∈ E 1 , and so on, if i represents the last iteration of the algorithm, then

a i ∈ E i-1 .
Now, if we follow Huber's method, we also theoretically obtain k = 2, a 1 = (1, 0, 1) and a 2 = (1, 1, 0) (or a 2 = (1, 0, 1) and a 1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we perform the following test:

H0 : (a 1 , a 2 ) = ((1, 0, 1), (1, 1, 0)) versus H1 : (a 1 , a 2 ) = ((1, 0, 1), (1, 1, 0)). The fact that, if i represents the last iteration of the algorithm, then

√ n(V ar P (m(a i , a i ))) (-1/2) (P n m(b n (a i ), β n ) -P n m(a i , a i ))
Law → N (0, 1), enables us to estimate our sequence of (a i ), reduced to (a 1 , a 2 ), through the following 0.9(=α) level condence ellipsoid

E i = {b ∈ R 3 ; V ar P (m(b, b))Φ([g (i) ] b , f b ) ≤ q N (0,1) 1-α / √ n = 0.182434}.
Indeed, if i = 1 represents the last iteration of the algorithm, then a 1 ∈ E 0 , and if i = 2 represents the last iteration of the algorithm, then a 2 ∈ E 1 , and so on, if i represents the last iteration of the algorithm, then a i ∈ E 

H 0 : a 2 ∈ E 1 : True H 0 : a 2 ∈ E 1 : True K(Kernel Estimation of g (2) , g (2) ) 0.444388 0.794124
Therefore, we conclude that f = g (2) .

Example 2 : With the χ 2 divergence

We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random variable X with a density law f dened by,

f (x) = Gaussian(x1 + x2) * Gaussian(x0 + x2) * Gumbel(x0 + x1
), where the Normal law parameters are (-5, 2) and (1, 1) and where the Gumbel distribution parameters are -3 and 4. Let us generate then a gaussian random variable Y -that we will name g -with a density presenting the same mean and variance as f .

In the rst part of our program, we theoretically obtain k = 1 and a 1 = (1, 1, 0). To get this result, we perform the following test: H0 : a 1 = (1, 1, 0) versus H1 : a 1 = (1, 1, 0). Moreover, using the same reasoning as in Example 1, we estimate a 1 by the following 0.9(=α)

level condence ellipsoid E i = {b ∈ R 3 ; V ar P (M (b, b))χ 2 (gf b /g b , f ) ≤ q N (0,1) 1-α √ n = 0.182434}.
Now, if we follow Huber's method, we also theoretically obtain k = 1 and a 1 = (1, 1, 0). To get this result, we perform the following test: H0 : a 1 = (1, 1, 0) versus H1 : a 1 = (1, 1, 0). Hence, using the same reasoning as in Example 1, we are able to estimate our sequence of (a i ), reduced to a 1 , through the following 0.9(=α) level condence ellipsoid

E i = {b ∈ R 3 ; V ar P (m(b, b))χ 2 ([g (1) ] b , f b ) ≤ q N (0,1) 1-α / √ n = 0.182434}.

And, we obtain

Our Algorithm Huber's Algorithm Kolmogorov Smirnov test,

H 0 : f = g H 0 False H 0 False
Projection Study n • 0 : minimum : 0.0445199 maximum : 0.00960693 at point : (1.0,1,0.0) at point : (1.0,0,1.0) P-Value : 0.997535 P-Value : 0.99975 Test : 1) , g (1) ) 6.99742 9.59275 Therefore, we conclude that f = g (1) .

H 0 : a 1 ∈ E 0 : True H 0 : a 1 ∈ E 0 : True K(Kernel Estimation of g (
Example 3 : With the Cressie-Read divergence (Φ)

We are in dimension 2(=d), and we consider a sample of 50(=n) values of a random variable X with a density law f dened by, f (x) = Cauchy(x 0 ) * N ormal(x 1 ), where the Cauchy law parameters are -5 and 1 and where the normal distribution parameters are (0, 1). Let us generate then a gaussian random variable Y -that we will name g -with a density which presents the same mean and variance as f .

In the rst part of our program, we theoretically obtain k = 1 and a 1 = (1, 0). To get this result, we perform the following test: H0 : a 1 = (1, 0) versus H1 : a 1 = (1, 0). Moreover, using the same reasoning as in Example 1, we estimate a 1 by the following 0.9(=α) level condence ellipsoid :

E i = {b ∈ R 2 ; V ar P (M (b, b))Φ(gf b /g b , f ) ≤ q N (0,1) 1-α / √ n = 0.182434}.
Now, if we follow Huber's method, we also theoretically obtain k = 1 and a 1 = (1, 0). To get this result, we perform the following test: H0 : a 1 = (1, 0) versus H1 : a 1 = (1, 0). Hence, using the same reasoning as in Example 1, we are able to estimate our sequence of (a i ), reduced to a 1 , through the following 0.9(=α) level condence ellipsoid H 0 : a 1 ∈ E 0 : True H 0 : a 1 ∈ E 0 : True K(Kernel Estimation of g (1) , g (1) ) 6.47617 2.09937

E i = {b ∈ R 2 ; V ar P (m(b, b))Φ([g (1) ] b , f b ) ≤ q N (0,1) 1-α / √ n = 0.182434}.
Therefore, we conclude that f = g (1) .

- 

Critics of the simulations

We note that as the approximations accumulate and according to the power of the calculators used, we might obtain results above or below the value of the thresholds of the dierent tests. Moreover, in the case where f is unknown, we will never be sure to have reached the minimum or the maximum of the relative entropy: we have indeed used the simulated annealing method to solve our optimisation problem, and therefore it is only when the number of random jumps tends in theory towards innity that the probability to get the minimum or the maximum tends to 1. We note nally that no theory on the optimal number of jumps to implement does exist, as this number depends on the specicities of each particular problem.

Conclusion

The present article demonstrates that our Φ-divergence method constitutes a better alternative to Huber's. Indeed, the convergence results and simulations we carried out, convincingly fullled our expectations regarding our methodology. One of the key advantage of our method over Huber's lies in the fact that -since there exist divergences smaller than the relative entropy -our method requires a considerably shorter computation time.

A Annex -Reminders

A.1 Φ-Divergence

Let us call h a the density of a Z if h is the density of Z. Let ϕ be a strictly convex function dened by ϕ : R + → R + , and such that ϕ(1) = 0.

Denition 1. We dene Φ-divergence of P from Q, where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P , by

Φ(Q, P ) = ϕ( dQ dP )dP. (A.1)
The above expression (A.1) is also valid if P and Q are both dominated by the same probability.

The most used distances (Kullback, Hellinger or χ 2 ) belong to the Cressie-Read family (see Csiszar 1967 andCressie -Read 1984). They are dened by a specic ϕ. Indeed, -with the relative entropy, we associate ϕ(x) = xln(x) -x + 1 -with the Hellinger distance, we associate ϕ(x) = 2( √ x -1) 2

-with the χ 2 distance, we associate ϕ(x) = 1 2 (x -1) 2 -more generally, with power divergences, we associate ϕ(x) = x γ -γx+γ-1 γ(γ-1) , where γ ∈ R\(0, 1) -and, nally, with the L 1 norm, which is also a divergence, we associate ϕ(x) = |x -1|. We will notice that we have, in particular, the following inequalities:

d L 1 (g, f ) ≤ K(g, f ) ≤ χ 2 (g, f ).
Let us now present some well-known properties of divergences. Proposition 2. A fundamental property of Φ-divergences is the fact that there is a unique case of nullity. We have Φ(P, Q) = 0 ⇔ P = Q.

Proof : For all a in R d * , let F a be the cumulative distribution function of a X and ψ a be a complex function dened by ψ a (u, v) = F a (Re(u + iv)) + iF a (Re(v + iu)), for all u and v in R. First, the function ψ a (u, v) is an analytic function, because x → f a (a x) is continuous and since we have the corollary of Dini's second theorem -according to which "A sequence of cumulative distribution functions, which simply converges on R towards a continuous cumulative distribution function F on R, uniformly converges towards F on R"we deduct that, for all sequence (a n ) converging towards a, ψ an uniformly converges toward ψ a . Finally, the Weierstrass theorem, (see proposal (10.1) page 220 of the "Calcul innitésimal" book of Jean Dieudonné), implies that all sequences ψ a,n uniformly converge towards ψ a , for all a n tending to a. We can therefore conclude. 2

B Annex -Proofs

This last section includes the proofs of most of the lemmas, propositions, theorems and corollaries contained in the present article.

Proof of lemma 1 We remark that g and g * present the same density conditionally to x 1 . Indeed,

g * 1 (x 1 ) = g * (x)dx 2 ...dx d = h(x 1 )g(x)dx 2 ...dx d = h(x 1 ) g(x)dx 2 ...dx d = h(x 1 )g 1 (x 1
). Thus, we can demonstrate this lemma.

We have g(.|x 1 ) = g(x 1 ,...,x n )

g 1 (x 1 )
and g 1 (x 1 )h(x 1 ) is the marginal density of g * . Hence,

g * dx = g 1 (x 1 )h(x 1 )g(.|x 1 )dx = g 1 (x 1 ) f 1 (x 1 ) g 1 (x 1 ) ( g(.|x 1 )dx 2 ..dx d )dx 1 = f 1 (x 1 )dx 1 = 1 and since g * is positive, then g * is a density. Moreover, K(f, g * ) = f {ln(f ) -ln(g * )}dx, (B.1) = f {ln(f (.|x 1 )) -ln(g * (.|x 1 )) + ln(f 1 (x 1 )) -ln(g 1 (x 1 )h(x 1 ))}dx, = f {ln(f (.|x 1 )) -ln(g(.|x 1 )) + ln(f 1 (x 1 )) -ln(g 1 (x 1 )h(x 1 ))}dx, (B.2) as g * (.|x 1 ) = g(.|x 1 ). Since the minimum of this last equation (B.2) is reached through the minimization of f {ln(f 1 (x 1 )) -ln(g 1 (x 1 )h(x 1 ))}dx = K(f 1 , g 1 h), then proposition 2 necessarily implies that f 1 = g 1 h, hence h = f 1 /g 1 . Finally, we have K(f, g) -K(f, g * ) = f {ln(f 1 (x 1 )) -ln(g 1 (x 1 ))}dx = K(f 1 , g 1 ),
which completes the demonstration of the lemma.

Proof of lemma 2 We remark that g and g * present the same density conditionally to x 1 . Indeed,

g * 1 (x 1 ) = g * (x)dx 2 ...dx d = h(x 1 )g(x)dx 2 ...dx d = h(x 1 ) g(x)dx 2 ...dx d = h(x 1 )g 1 (x 1
). Thus, we can demonstrate this lemma. We have g(.|x 1 ) = g(x 1 ,...,x n )

g 1 (x 1 )
and g 1 (x 1 )h(x 1 ) is the marginal density of g * . Hence,

g * dx = g 1 (x 1 )h(x 1 )g(.|x 1 )dx = g 1 (x 1 ) f 1 (x 1 ) g 1 (x 1 ) ( g(.|x 1 )dx 2 ..dx d )dx 1 = f 1 (x 1 )dx 1 = 1 and since g * is positive, then g * is a density. Moreover, Φ(g * , f ) = f ϕ( g * f )dx, (B.3) = f (x).ϕ( g * (./x 1 ) f (./x 1 ) g 1 (x 1 )h(x 1 ) f 1 (x 1 ) )dx.
Thus, the minimum in h of (B.3) is reached through the minimization of ϕ( g * (./x 1 ) f (./x 1 )

g 1 (x 1 )h(x 1 ) f 1 (x 1 )
), in h. And since h = h(x 1 ), this minimisation is obtained by choosing h = f 1 g 1 , which completes the demonstration of this lemma.

Proof of lemma 7 Lemma 7. The set Γ c is closed in L 1 for the topology of the uniform convergence.

By denition of the closure of a set, we have the result.

Proof of lemma 8

Lemma 8. For all c > 0, we have

Γ c ⊂ B L 1 (f, c), where B L 1 (f, c) = {p ∈ L 1 ; f -p 1 ≤ c}.
Since Φ is greater than the L 1 distance, we get the result.

Proof of lemma 9

Lemma 9. G is closed in L 1 for the topology of the uniform convergence.

By denition of the closure of a set and lemma 6 (see page 13), we get the result.

Proof of lemma 10

Lemma 10. We can say that inf a∈R d * Φ(g * , f ) is reached.

Indeed, let G be {g f a g a ; a ∈ R d * } and Γ c be Γ c = {p; Φ(p, f ) ≤ c} for all c>0. From lemmas 7, 8 and 9 (see page 15), we get Γ c ∩ G is a compact for the topology of the uniform convergence, if Γ c ∩ G is not empty. Since proposition 1 (see page 13) implies Q → Φ(Q, P ) is lower semi-continuous in L 1 for the topology of the uniform convergence, then the inmum is reached in L 1 . And nally, taking for example c = Φ(g, f ), Ω is necessarily not empty because we always have Φ(g * , f ) ≤ Φ(g, f ). We therefore conclude.

Proof of proposition 1

Given that X n a.s. Let ε > 0 be such that sup a∈Θ cn (a) -a k > ε. We notice that if such ε, had failed to exist, the result would be obvious. Therefore, for this ε, there is a n ∈ Θ such that cn (a n )-a k > ε, which implies thanks to (H2) that there exists a η such that PM (c n (a n ), a n )-PM (a k , a n ) > η. Thus, we can write:

P( sup a∈R d cn (a) -a k > ε) ≤ P(PM (c n (a n ), a n ) -PM (a k , a n ) > η) → 0 by (B.4).
Moreover, (H1) and (H3) imply that ĉn (a) = cn (a) for all a ∈ Θ and for n big enough. This results in sup a∈Θ ĉn (a) -a k → 0 a.s., which concludes our demonstration of the rst part of the proposition.

For the second part, we remark that (H1) and (H3) also imply that γn = γn for all a ∈ Θ. This explains why it is sucient to demonstrate the result for γn only.

Based on the rst part of the demonstration and on condition (H4), we can write:

P n M (c n (γ n ), γn ) ≥ P n M (c n (a k ), a k ) ≥ PM (c n (γ n ), a k ) -o P (1), which implies: PM (c n (γ n ), a k ) -PM (c n (γ n ), γn ) ≤ P n M (c n (γ n ), γn ) -PM (c n (γ n ), γn ) + o P (1) ≤ sup a∈Θ; b∈Θ Φ |P n M (b, a) -PM (b, a)| → 0 a.s..(B.5)
Based on the rst part of this demonstration and on (H5), we infer the existence of η such that: s. by (B.5). This concludes our demonstration. 2

P( γn -a k ≥ ε) ≤ P(PM (c n (γ n ), a k ) -PM (c n (γ n ), γn )) → 0 a.
Proof of Theorem 1 The demonstration below holds for the two types of optimisation. Let us consider g (0) = g, a density with same mean and variance as f . In this proof, we will assume f and g are strictly positive and bounded i.e. through lemma 5 (see page 13), that the densities ĝ(k) and g (k) are also strictly positive and bounded. Using lemma 2, (see page 3), and lemma 6, (see page 13), we demonstrate the theorem by induction.

Proof of theorem 2 row 3.1: Here let us consider m, the size of the sample and f and g two bounded densities. This demonstration holds for the two types of optimisation. Let us consider

Ψ j = { f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) - f a j (a j x)
[g (j-1) ]a j (a j x) }. Since f and g are bounded , it is easy to prove that from a certain rank, we get

|Ψ j | ≤ max( 1 [ǧ (j-1) ] ǎj ( ǎj x) , 1 [g (j-1) ]a j (a j x) )|f ǎj ( ǎj x) -f a j (a j x)|.
Moreover, we can remark the following:

First, based on what we stated earlier, for all set x and from a certain rank, there is a constant R>0 independent from n, such that:

max( 1 [ǧ (j-1) ] ǎj ( ǎj x) , 1 [g (j-1) ] a j (a j x) ) ≤ R = R(x) = O(1). Second, since ǎk is an M -estimator of a k for k = 1..d, its convergence rate is O P (m -1/2 ).
Thus using simple functions, we obtain an upper and lower bound for f ǎj and for f a j and we reach the following conclusion:

|Ψ j | ≤ O P (m -1/2 ). (B.6)
We nally obtain:

|Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) -Π k j=1 f a j (a j x) [g (j-1) ] a j (a j x) | = Π k j=1 f a j (a j x) [g (j-1) ] a j (a j x) |Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) [g (j-1) ] a j (a j x) f a j (a j x) -1|.
Based on relationship B.6, the expression -1) ] ǎj ( ǎj x)

f ǎj ( ǎj x) [ǧ (j
[g (j-1) ]a j (a j x) f a j (a j x)

tends towards 1 at a rate of O P (m -1/2 ) for all j. Consequently Π k j=1 f ǎj ( ǎj x)

[ǧ (j-1) ] ǎj ( ǎj x)

[g (j-1) ] a j (a j x) f a j (a j x)

tends towards 1 at a rate of O P (m -k/2 ). Thus from a certain rank, we get

|Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) -Π k j=1 fa j (a j x) [g (j-1) ]a j (a j x) | = O P (m -k/2 )O P (1) = O P (m -k/2 ). In conclusion, we obtain |ǧ (k) -g (k) | = g(x)|Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) -Π k j=1 f a j (a j x) [g (j-1) ]a j (a j x) | ≤ O P (m -k/2 ).
row 3.2: This demonstration holds for the two types of optimisation. Since f and g are assumed to be strictly positive and bounded, hence lemma 5 (see page 13) implies g (k) is also, for all k, strictly positive and bounded. Moreover, theorem 3. k) has been assumed to be strictly positive and bounded. Thus, g (k) 

1 implies that | ĝ(k) (x) g (k) (x) -1| = O P (m -k/2 ) because g (k) (x)| ĝ(k) (x) g (k) (x) -1| = |ĝ (k) (x) -g (k) (x)|. Hence, there exists a function C of R d in R + such that lim m→∞ m -k/2 C(x) = 0 and | ĝ(k) (x) g (k) (x) -1| ≤ m -k/2 C(x), we have: |ĝ (k) (x) -g (k) (x)|dx = g (k) (x)| ĝ(k) (x) g (k) (x) -1|dx, because g (k) > 0 ≤ g (k) (x)C(x)m -k/2 dx, Moreover, sup x∈R d |ĝ (k) (x) -g (k) (x)| = sup x∈R d g (k) (x)| ĝ(k) (x) g (k) (x) -1| = sup x∈R d g (k) (x)C(x)m -k/2 → 0 a.s., by theorem 1. This implies that sup x∈R d g (k) (x)C(x) < ∞ a.s., ie sup x∈R d C(x) < ∞ a.s. since g (
(x)C(x)dx ≤ sup C. g (k) (x)dx = sup C < ∞ since g (k) is a density, therefore we can conclude |ĝ (k) (x) -g (k) (x)|dx ≤ sup C.m -k/2 = O P (m -k/2 ).
row 3.3: This demonstration holds for the two types of optimisation. We have k) |dx with the line before last being derived from theorem 7. Since we get the same expression as the one we found in our Proof of Theorem 3.2 row 2, we then conclude in a similar manner.

Φ(ǧ (k) , f ) -Φ(g (k) , f ) = f ϕ( ǧ(k) f )dx -ϕ( g (k) f )dx = f {ϕ( ǧ(k) f ) -ϕ( g (k) f ))}dx ≤ f R| ǧ(k) f -g (k) f |dx = R |ǧ (k) -g (

Proof of theorem 3

By denition of the estimators γn and ĉn (a k ), we have

P n ∂ ∂b M (b, a) = 0 P n ∂ ∂a M (b(a), a) = 0 ie P n ∂ ∂b M (ĉ n (a k ), γn ) = 0 P n ∂ ∂a M (ĉ n (a k ), γn ) + P n ∂ ∂b M (ĉ n (a k ), γn ) ∂ ∂a ĉn (a k ) = 0,
which leads to the simplication of the above system into 

P n ∂ ∂b M (ĉ n (a k ), γn ) = 0 (E0) P n ∂ ∂a M (ĉ n (a k ), γn ) = 0 (E1

Proof of theorem 4

Let us consider ψ and ψ (k) the characteristic functions of the densities f and g (k-1) , then we have, |ψ(t) -ψ (k) (t)| ≤ |f (x) -g (k) (x)|dx ≤ Φ(g (k) , f ) = min a Φ(g (k-1) fa [g (k-1) ] a , f ), therefore the assumption that lim k min a Φ(g (k-1) f a [g (k-1) ] a , f ) = 0 implies lim k g (k) = f . Proof of theorem 5 Through a Taylor development of P n M (č n (a k ), γn ) of rank 2, we get at point (a k , a k ):

P n M (č n (a k ), γn ) = P n M (a k , a k ) + P n ∂ ∂a M (a k , a k )(γ n -a k ) + P n ∂ ∂b M (a k , a k )(č n (a k ) -a k ) + 1 2 {(γ n -a k ) P n ∂ 2 ∂a∂a M (a k , a k )(γ n -a k ) + (č n (a k ) -a k ) P n ∂ 2 ∂b∂a M (a k , a k )(γ n -a k ) +(γ n -a k ) P n ∂ 2 ∂a∂b M (a k , a k )(č n (a k ) -a k ) + (č n (a k ) -a k ) P n ∂ 2 ∂b∂b M (a k , a k )(č n (a k ) -a k )}
The lemma below enables us to conclude. Thus we get P n M (č n (a k ), γn ) = P n M (a k , a k ) + O P ( 1 n ), ie √ n(P n M (č n (a k ), γn ) -PM (a k , a k )) = √ n(P n M (a k , a k ) -PM (a k , a k )) + o P (1). Hence √ n(P n M (č n (a k ), γn ) -PM (a k , a k )) abides by the same limit distribution as √ n(P n M (a k , a k ) -PM (a k , a k )), which is N (0, V ar P (M (a k , a k ))).

Proof of corollaries 1 and 2 Since they are both identical, we will only develop the proof of corollary 2. Let us demonstrate that under hypothesis lim k→∞ Φ(g (k) , f ) = 0, we have lim n→∞ lim k→∞ Φ(g (k) n , f ) = 0.

If g ∞ n = lim k→∞ g (k)
n , then we can say g ∞ n is a density. Indeed, we infer g ∞ n = lim k→∞ g 

  a), cn (a) = arg sup c∈Θ Φ P n M (c, a), γn = arg inf a∈Θ sup c∈Θ P n M (c, a) and γn = arg inf a∈Θ sup c∈Θ Φ P n M (c, a).

  Φ|P n M (c, a) -PM (c, a)| → 0 a.s. (respectively in probability),

Figure 1 :Figure 2 :Figure 3 :

 123 Figure 1: Graph of the distribution to estimate and of the starting Gaussian.

→

  X if ∀ε > 0, P(lim sup{|X n -X| > ε}) = 0, we prove proposition 1: Proof : Since cn (a) = arg sup c∈Θ Φ P n M (c, a), we have P n M (c n (a), a) ≥ P n M (a k , a). And through condition (H1), we get P n M (c n (a), a) ≥ P n M (a k , a) ≥ PM (a k , a) -o P (1), where o P (1) does not depend on a. Thus, we get: PM (a k , a) -PM (c n (a), a) ≤ P n M (c n (a), a) -PM (c n (a), a) + o P (1) (B.4) ≤ sup a∈Θ; c∈Θ Φ |P n M (c, a) -PM (c, a)| → 0 a.s. .

  Lemma 11. Let H be an integrable function and let C = H dP andC n = H dP n , then, C n -C = O P ( 1 √ n ).

  from the Lebesgue theorem and by induction, we get g∞ n = g.(Π i≥1 f âi [g n (i-1)] âi ) ≥ 0. Moreover, we have ∀k, 0 ≤ Φ(g ∞ n , f ) ≤ Φ(g (k) n , f ) ≤ Φ(g, f ), ( * )

)

  .Using a Taylor development of the (E0) equation, we infer there exists (c n , γ n ) on the interval[(ĉ n (a k ), γn ), (a k , a k )] such that -P n ∂ ∂b M (a k , a k ) = [(P ∂ 2 ∂b∂b M (a k , a k )) + o P (1), (P ∂ 2 ∂a∂b M (a k , a k )) + o P (1)]a n . with a n = ((ĉ n (a k ) -a k ) , (γ n -a k ) ).Similarly, through a Taylor development of (E1), we infer there exists (c n , γn ) on the interval[(ĉ n (a k ), γn ), (a k , a k )] such that -P n ∂ ∂a M (a k , a k ) = [(P ∂ 2 ∂b∂a M (a k , a k )) + o P (1), (P ∂ 2 ∂a 2 M (a k , a k )) + o P (1)]a n .with a n = ((ĉ n (a k ) -a k ) , (γ n -a k ) ). Thus we get√ na n = √ n P ∂ 2 ∂b 2 M (a k , a k ) P ∂ 2 ∂a∂b M (a k , a k ) P ∂ 2 ∂b∂a M (a k , a k ) P ∂ 2 ∂a 2 M (a k , a k ) ∂ 2 ∂b∂b M (a k , a k ) ∂ 2∂a∂a Φ(g since (H6) enables us to reverse the derivative and integral signs. Moreover, the central limit theorem implies:P n ∂ ∂b m(a k , a k ) (0, P ∂ ∂a m(a k , a k ) 2 ), since P ∂∂b m(a k , a k ) = P ∂ ∂a m(a k , a k ) = 0, which leads us to the result.

					-1	-P n -P n	∂ ∂b M (a k , a k ) ∂ ∂a M (a k , a k )	+ o P (1)
	= .	√ n(P f a k ga k P ∂ 2 ∂b∂b M (a k , a k ) + ∂ 2 ∂a∂a Φ(g fa k g a k P ∂ 2 ∂b∂b M (a k , a k )	, f )) -1 , f ) P ∂ 2 ∂b∂b M (a k , a k ) P ∂ 2 ∂b∂b M (a k , a k )	.	-P n -P n	∂ ∂b M (a k , a k ) ∂ ∂a M (a k , a k )	+ o P (1)
						Law → N d (0, P ∂ ∂b m(a k , a k ) 2 ),
	P n	∂ ∂a m(a k , a k )				

Law

→ N d

Property 1. The application Q → Φ(Q, P ) is (i) convex, (A.2) (ii) lower semi -continuous, for the topology that makes all the applications of the form Q → f dQ continuuous where f is bounded and continued, and (A.3) (iii) lower semi-continuous for the topology of the uniform convergence.

Finally, we will also use the following property derived from the rst part of corollary (1.29) page 19 of [Friedrich and Igor, 1987],

Property 2.

A.2 Useful properties and lemmas

We introduce several theorems and properties related to convexity.

Property 3 (Characterization of convex functions).

Let f be a function of I in R. f is convex if and only if one of the assertions below holds: (i) Any arc of the graph of f is above its chord, (ii) The epigraph of f is convex ( in the meaning of the convex part of an ane space), (iii) For any (x 1 , .., x n ) ∈ I n and for any

Then, according to theorem III.4 of [AZE, 1997], we have Theorem 7. Let f : I → R be a convex function. Then f is a Lipschitz function in all compact interval [a, b] ⊂ int{I}. In particular, f is continuous on int{I}. Now, we introduce useful lemmas. Lemma 3. Let f be a density in R d bounded and strictly positive. Then, any projection density of f , that we will name f a , a ∈ R d * , is also bounded and strictly positive in R.

Lemma 4. Let f be a density in R d bounded and strictly positive. Then all density f (./a x),

for any a ∈ R d * , is also bounded and strictly positive.

The above lemmas 3 and 4 can be evidenced by a reductio ad absurdum argument. Moreover, by induction and through lemmas 3 and 4, we have Lemma 5. If f and g are strictly positive and bounded densities, then g (k) is strictly positive and bounded.

Finally we introduce a last lemma Lemma 6. Let f be an absolutely continuous density, then, for all sequence (a n ) tending to a in R d * , the sequence f a n uniformly converges towards f a .

since the sequence (Φ(g

n , f )) k is decreasing. Taking the limit in n of ( * ), we get ∀k,

where g ∞ ∞ = lim n→∞ g ∞ n and g (k) = lim n→∞ g (k)

n thanks to theorem 1. Through a reductio ad absurdum, and assuming Φ(g ∞ ∞ , f ) > Φ(g (k) , f ) ≥ 0, since Φ is lower semi continuous, we have

n , f ), which leads to the contradiction we were looking for. Hence ( * * ) is true. We can therefore conclude that ( * * ) implies Φ(g ∞ ∞ , f ) = 0, ie lim n→∞ lim k→∞ Φ(g

n , f ) = 0, as a reductio ad absurdum argument would have led to 0 < Φ(g ∞ ∞ , f ) ≤ Φ(g (k) , f ), which would have contradicted the hypothesis according to which lim k→∞ Φ(g (k) , f ) = 0.