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Let us consider a dened density on a set of very large dimension. It is quite dicult to nd an estimate of this density from a data set. However, it is possible through a projection pursuit methodology to achieve it. Over the last twenty years, many mathematicians have studied this approach, including Huber in 1985 (see "Projection pursuit", Annals of Statistics). In his article, Huber demonstrates the interest of his method in a very simple given case : considering two densities, a known one, and the other yet to be estimated, he manages through an algorithm to turn one into the other. He concludes, through a generalization of this process, by introducing a convergence in law. Huber's work is based on maximizing relative entropy.

Our work will consist in demonstrating that it is possible to achieve the same results as Huber's but this time through minimizations. We will then compare the dierent laws and tests obtained by Huber and us.

Comparison of all the optimisation methods

In its section, we will expose the three lemmas forming the theoretical basis of our method.

Firstly, let f be a density dened in R d and let g be a density such that K(f, g) < ∞, K(g, f ) < ∞ and where g still presents the same mean and variance as f . We would like to build a density closer to f than g already is from a relative entropy standpoint. Since this new density has to be derived only from f and g, we dene h by h(x 1 ) = f 1 (x 1 ) g 1 (x 1 ) , where f 1 and g 1 are the marginal densities of f and g in the x 1 direction. Based on Huber's lemma 13.1 of [HUB85], we derive the following lemma : Lemma 1. Let us consider g * such that g * (x) = g(x)h(x 1 ) be a density. Moreover, h = arginf {K(f, gr); where r is such that x → g(x)r(x 1 ) be a density}. Finally, we have K(f, g) = K(f 1 , g 1 ) + K(f, g * ).

Thus, and similarly, let us consider a as a vector set in R d * . We dene g * by g * (x) = g(x)h(a x), then g * is a density such that h veries h = fa g a , h = arginf {K(f, gr); where r is such that x → g(x)r(a x) be a density}, and

K(f, g) = K(f a , g a ) + K(f, g * ).
Vector a is a projection vector.We will focus later on the selection of a.

Moreover, by keeping the expression h(x 1 ) = f 1 (x 1 ) g 1 (x 1 ) , we can introduce the following lemma, Lemma 2. The function g * dened by g * (x) = g(x)h(x 1 ) is a density and we have h = arginf {K(gr, f ); where r is such that x → g(x)r(x 1 ) be a density}.

Considering a, a set vector in R d * , let us dene g * by g * (x) = g(x)h(a x), then we can say g * is a density such that h veries h = fa g a and h = arginf {K(gr, f ); where r is such that x → g(x)r(a x) be a density}. We nd also that inf a∈R d * K(g * , f ) is reached through lemma 11 (see page 19).

Finally, we introduce a third lemma Lemma 3. The expression g{ln g * f }dx, is positive and is minimized for h = f a g a . Moreover, we have K(g, f ) = K(g a , f a ) + g{ln g * f }dx.

Basically, the above implies that the choice of a , which is equivalent to the choice of h, is such that K(g a , f a ) is being maximised since K(g, f ) is set.

Conclusion : The choice of h = f a

ga enables us to simultaneously solve the following three optimisation problems, for a ∈ R d * , First, nd a such that a = arginf {a∈R d * ;g (a) ∈ G} K(g (a) , f ) Second, nd a such that a = arginf {a∈R d * ;g (a) ∈ G} K(f, g (a) )

Third, nd a such that a = argsup {a∈R d * ;g (a) ∈ G} K(g a , f a )

First convergences -Main results

Based on the work of Broniatowski in [BRO03] and [BROKEZ], we derive estimators of the minimum and maximum expressions obtained above. Then, after introducing certain notations, we will produce almost sure uniform convergences of the transformed densities obtained.

Writing of the estimators

Based on the Broniatovski articles mentioned above, we deduct that the estimator of the maximum of the relative entropy, as derived from Huber's works, is â = arg sup a∈R d * K(g a , f a )

where K(g a , f a ) = ln( g a (a x) f a (a x) )g a (a x)dx -( g a (a x) f a (a x) -1)( f a (a x) f (x) )dP n . Similarly, the estimator of the minimal distance of Kullback-Lieber in our algorithm is

ǎ = arg inf a∈R d * Ǩ(g fa g a , f ) where Ǩ(g f a ga , f ) = ln( g(x) f (x) fa(a x) g a (a x) )g(x) fa(a x) g a (a x) dx -( g(x) f (x) fa(a x)
g a (a x) -1)dP n . These estimators implicitly suppose that f and g are known. Therefore, we introduce an estimate of the convolution kernel of these densities, which leads to the formulation of certain hypotheses as explained below. Let X 1 , X 2 ,..,X n be a sequence of independent random vectors with same law f . Let Y 1 , Y 2 ,..,Y n be a sequence of independent random vectors with same law g. Then the kernel estimators f n , g n , f a,n and g a,n of f , g, f a and g a , for all a ∈ R d * , uniformly converge (see Deheuvels (1974) in [DEH74]). Let us consider now a sequence θ n such that θ n → 0, and y n /θ 2 n → 0, where y n is the rate of convergence of the kernel estimator. Then, going forward, we will only consider the members of the sample X 1 , X 2 , ..., X n associated to f and the members of the sample Y 1 , Y 2 , ..., Y n associated to g

verifying f n (X i ) ≥ θ n , g n (Y i ) ≥ θ n and g b,n (b Y i ) ≥ θ n ,
for all i and for all b ∈ R d * . The vectors meeting these conditions will be once again called X 1 , X 2 , ..., X n and Y 1 , Y 2 , ..., Y n .

So let us consider

A 1 (n, a) = 1 n Σ n i=1 ln{ ga,n(a Y i ) fa,n(a Y i ) } ga,n(a Y i ) g n (Y i ) , A 2 (n, a) = 1 n Σ n i=1 ( ga,n(a X i ) fa,n(a X i ) -1) fa,n(a X i ) f n (X i ) , B 1 (n, a) = 1 n Σ n i=1 ln{ f a,n (a Y i ) g a,n (a Y i ) gn(Y i ) fn(Y i } B 2 (n, a) = 1 n Σ n i=1 (1 -{ f a,n (a X i ) g a,n (a X i ) gn(X i )
fn(X i }). Assuming the number of random vectors thus discarded is negligible compared to n, the uniform convergence mentioned above still holds and the denition of θ n enables us to estimate the maximum of K(g a , f a ) (and respectively of the minimum of K(g fa g a , f )) by the following limit: where through an immediate induction, we have g 0 = g, g {1} (x) = g(x)

lim n→∞ sup a∈R d * |(A 1 (n, a) -A 2 (n, a)) -K(g a , f a )| = 0, (resp. lim n→∞ sup a∈R d * |(B 1 (n, a) -B 2 (n, a)) -K(g f a ga , f )| = 0.)

Notations

f a 1 (a 1 x)
g a 1 (a 1 x) -because the optimal h is h = fa g a -and g {j} (x) = g {j-1} (x)

fa j (a j x) g {j-1} a j (a j x)
for j = 1..d, i.e 

g {j} (x) = g(x)Π j k=1 f a k (a k x) [g {k-1} ] a k (a k x)
(x) = g {j-1} n (x) f ãj (ã j x) [g {j-1} n ] ãj (ã j x) , i.e. g {j} n (x) = g(x)Π j k=1 f ãk (ã k x) [g {k-1} n ] ãk (ã k x)
.

N ota Bene

In between each transformed density, we carry out a test of Kolmogorov-Smirnov to check if it is close to the real law. Many other adjustment tests can be carried out such that Stephens', Anderson-Darling's and Cramer-Von Mises'. Moreover, if f and g are gaussian, then in order to get K(g, f ) = 0, it is necessary for g to have same mean and variance as f , since

g f .ln( g f ) + g f -1=0 in g f = 1
. This explains why we choose g this way.

Convergence studies

In this section, we will concentrate on the dierent types of convergence as a function of the two types of optimisation methodologies. These two methodologies are not symmetrical but lead to the same results. Although it is not obvious at rst, they constitute an alternative to Huber's methodology [HUB85].

First, let us consider ϕ(x) = x ln(x) -x + 1, ie ϕ (x) = ln(x) and

ϕ * (x) = xϕ -1 (x) -ϕ(ϕ -1 (x)) = e x -1, ie again ϕ * (ϕ (x)) =
x -1, and let us introduce some notations. If P and P a are the densities of f and f a respectively, let us consider P n M (c, a)

Θ = R d * , Θ 1 a = {b ∈ Θ | ϕ * (ϕ ( g b (b x) f b (b x) ))f a (a x) dx < ∞}, Θ 2 = {b ∈ Θ | ϕ * (ϕ ( g(x) f (x) f b (b x) g b (b x) ))dP < ∞}, m(b, a, x) = ϕ ( g b (b x) f b (b x) )g a (a x) dx -ϕ * (ϕ ( g b (b x) f b (b x) )) P a m(b, a) = ϕ ( g b (b x) f b (b x) )g a (a x) dx - ϕ * (ϕ ( g b (b x) f b (b x) ))f a (a x) dx P n m(b, a) = ϕ ( g b (b x) f b (b x) )g a (a x) dx - ϕ * (ϕ ( g b (b x) f b (b x) )) f a (a x) f (x) dP n M (b, a, x) = ϕ ( g(x) f (x) f b (b x) g b (b x) )g(x) f a (a x) g a (a x) dx -ϕ * (ϕ ( g(x) f (x) f b (b x) g b (b x) )) P n M (b, a) = ϕ ( g(x)f b (b x) f (x)g b (b x) )g(x) f a (a x) g a (a x) dx -ϕ * (ϕ ( g(x)f b (b x) f (x)g b (b x) ))dP n PM (b, a) = ϕ ( g(x)f b (b x) f (x)g b (b x) )g(x) f a (a x) g a (a x) dx -ϕ * (ϕ ( g(x)f b (b x) f (x)g b (b x) ))dP
We remark that âk and ǎk are M -estimators for a k for k = 1..d.

However, V an der V aart, in chapter V of his work [VDW], thoroughly studies M-estimators and formulates hypotheses that we will use here in our context and for all set a k , as dened in the above section (2.2):

(H1) : sup (H 2) : For all ε > 0, there is η > 0, such that for all c ∈ Θ 2 verifying c -a k ≥ ε we have PM (c, a) -η > PM (a k , a), with a ∈ Θ.

(H 3) : There is a neighbourhood of a k , V , and a positive function H,

such that, for all c ∈ V we have |M (c, a k , x)| ≤ H(x) (P -a.s.) with PH < ∞, (H 4) : There is a neighbourhood V of a k , such that for all ε, there is a η such that for all c ∈ V and a ∈ Θ, verifying a -a k ≥ ε, we have PM (c, a k ) < PM (c, a) -η.
Thus we will demonstrate that Proposition 1. Assuming conditions (H1 → 4) are true, we have (1) sup a∈Θ bn (a) -a k tends to 0 a.s.(respectively in probability)

(2) βn tends to a k a.s.(respectively in probability).

Proposition 2. Assuming conditions (H 1 → 4) are true, we have (1) sup a∈Θ čn (a) -a k tends to 0 a.s. (respectively in probability)

(2) γn tends to a k a.s. (respectively in probability).

Finally, if n is the number of vectors in the sample, then we have Theorem 1. For a set j = 1..d, we have almost everywhere and even uniformly almost everywhere, the following convergences : ǧ{j} → g {j} , when n → ∞ and ĝ{j} → g {j} , when n → ∞.

Rate of Convergence

In this section, we will show results that evidence the fact that these two optimisation methodologies are equivalent.

If m is the size of the sample and under the hypothesis:

(H0): f and g are assumed to be strictly positive and bounded (for which, we already shown in lemma 6 (see page 17) that ǧ(k) was strictly positive and bounded), Theorem 2. For all k = 0..d, we have

|ĝ (k) -g (k) | = O P (m -k/2 ) and |ǧ (k) -g (k) | = O P (m -k/2 ),
(1)

|ĝ (k) (x) -g (k) (x)|dx = O P (m -k/2 ) and |ǧ (k) (x) -g (k) (x)|dx = O P (m -k/2 ), (2) K(ǧ (k) , f ) -K(g (k) , f ) = O P (m -k/2 ) and K(ĝ (k) , f ) -K(g (k) , f ) = O P (m -k/2 ). (3)

Estimator laws

We have a x) . Let us consider now four new hypotheses:

I a k = ∂ 2 ∂a 2 K(g f a k ga k , f ), and x → g(b, a, x) = ϕ ( g(x)f b (b x) f (x)g b (b x) ) g(x)f a (a x) g a (
(H'5) : Estimators γn and ĉn (a k ) converge towards a k in probability.

(H'6) : The function ϕ is C 3 in (0, +∞) and there is a neighbourhood of (a k , a k ), that we will note V k , such that, for all (b, a) of V k , the gradient ∇( g(x)f a (a x) ga(a x) ) and the Hessian H( g(x)f a (a x) ga(a x) ) exist (λ_a.s.), and the rst order partial derivative g(x)f a (a x) ga(a x)

and the rst and second order derivative of (b, a) → g(b, a, x) are dominated (λ_a.s.) by integrable functions.

(H'7) : The function (b, a) → M (b, a, x) is C 3 in a neighbourhood V k of (a k , a k ) for all x;
and all the partial derivatives of (b,

a) → M (b, a, x) are dominated in V k by a P_integrable function H(x).
(H'8) :

P ∂ ∂b M (a k , a k ) 2 and P ∂ ∂a M (a k , a k ) 2
are nite and the expressions P ∂ 2 ∂b i ∂b j M (a k , a k ) and I a k exist and are invertible. We then have: Theorem 3. Assuming that conditions H 5 to H 8 hold, then

√ nA.(ĉ n (a k ) -a k ) Law → B.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 ) and √ nA.(γ n -a k ) Law → C.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 )
where

A = (P ∂ 2 ∂b∂b M (a k , a k ) ∂ 2 ∂a∂a K(g fa k g a k , f )), C = P ∂ 2 ∂b∂b M (a k , a k ) and B = P ∂ 2 ∂b∂b M (a k , a k ) + ∂ 2 ∂a∂a K(g f a k g a k , f ). We also note x → g(b, a, x) = ϕ ( g b (b x) f b (b x) )g a (a x).
Let us consider the following hypotheses: (H5) : The estimators βn and bn (a k ) converge towards a k in probability.

(H6) : The function ϕ is C 3 in (0, +∞) and there exists a neibourghhood of (a k , a k ), that we will name V k , such that, for all (b, a) of V k , the gradient ∇( ga(a x) f a (a x) ) and the Hessian H( ga(a x) f a (a x) ) exist (λ -a.s.) and the rst order partial derivative g a (a x) f a (a x) and the rst and second order derivative of (b, a) → g(b, a, x) are dominated (λ_a.s.) by integrable functions.

(H7) : The function (b, a) → m(b, a) is C 3 in a neighbourhood V k of (a k , a k ) for all x and all the partial derivatives of (b, a) → m(b, a) are dominated in V k by a P_integrable function

H(x).

(H8) : P ∂ ∂b m(a k , a k ) 2 and P ∂ ∂a m(a k , a k ) 2 are nite and the quantities P ∂ 2 ∂b i ∂b j m(a k , a k ) and P ∂ 2 ∂a i ∂a j m(a k , a k ) are invertible. Then we have Theorem 4. Assuming that conditions H5 to H8 hold, then

√ nD.( bn (a k ) -a k ) Law → E.N d (0, P ∂ ∂b m(a k , a k ) 2 ) + F.N d (0, P ∂ ∂a m(a k , a k ) 2 ) and √ nD.( βn -a k ) Law → G.N d (0, P ∂ ∂a m(a k , a k ) 2 ) + F.N d (0, P ∂ ∂b m(a k , a k ) 2 )
where

E = P ∂ 2 ∂a 2 m(a k , a k ), F = P ∂ 2 ∂a∂b m(a k , a k ), G = P ∂ 2 ∂b 2 m(a k , a k ) and D = (P ∂ 2 ∂b 2 m(a k , a k )P ∂ 2 ∂a 2 m(a k , a k ) -P ∂ 2 ∂a∂b m(a k , a k )P ∂ 2 ∂b∂a m(a k , a k )) with D ∈ R + * .

New evolution in the process

The idea is simple: let us assume the algorithm does not stop after d iterations but only when the end of process test permits. Thus in this section, we will rst be able to write a convergence between g (j) and f in j, then second, a new end of process test will provide us with an alternative to the Kolmogorov test.

New convergence

In this paragraph, we will evidence the fact there is a convergence between the law generated by g (k) and f .

First, a simple induction shows that the sequence of the transformed densities always holds

g {j} n (x) = g(x)Π j k=1 f ãk (ã k x) [g {k-1} n ] ãk (ã k x)
, with g (0) = g. As a reminder, the relative entropy is greater than the L 1 distance and we also have

K(g (0) , f ) ≥ K(g (k) , f ) ≥ K(g (k-1) , f ) ≥ 0 and K(g (0) a , f a ) ≥ K(g (k) a , f a ) ≥ K(g (k-1) a , f a ) ≥ 0, where g (0) = g.
Thus under hypothesis (H0) (H0) : f and g are strictly positive and bounded, lemma 6 (see page 17) implies that, for all k, g (k) is a strictly positive and bounded density.

We then get Theorem 5. Since K is greater than the L 1 distance, if

[min a K(g (k) f a [g (k)
]a , f )] → 0, when k → ∞ (ie when the number of iterations is not nite), then the law generated by g (k) , when k → ∞, will be the same law as the one generated by f , ie lim k g

(k) = f. Similarly, if [max a K(g (k) a , f a )] → 0, when k → ∞ (ie the number of iterations is not nite) then lim k g (k) = f.
We thus infer the two following corollaries Corollary 1. Based on theorem 1 and since K is greater than the

L 1 distance, then if [min a K(ĝ (k) f a [ĝ (k) ]a , f )] → 0, when k → ∞, (ie when the number of iterations is not nite), we have lim k lim n ĝ(k) = f. Similarly, if [max a K(ǧ (k) a , f a )] → 0, when k → ∞ (ie when the number of iterations is not nite), then lim k lim n ǧ(k) = f. Corollary 2. Since K is greater than the L 1 distance, then if lim n lim k [min a K(ĝ (k) f a [ĝ (k) ] a , f )] = 0, we have lim n lim k ĝ(k) = f. Similarly, if lim n lim k [max a K(ǧ (k) a , f a )] = 0, we have lim n lim k ǧ(k) = f.

Testing of the criteria

Theorem 6. The law of the criteria writes

√ n(V ar P (M (a k , a k ))) -1/2 (P n M (ĉ n (a k ), γn ) -P n M (a k , a k )) Law → N (0, I), √ n(V ar P (m(a k , a k ))) -1/2 (P n m( bn (a k ), βn ) -P n m(a k , a k )) Law → N (0, I),
where k represents the k th step of the algorithm.

Thus, making the following hypotheses:

(H 10): there is a k such that [K(g (k) f a k [g (k) ]a k , f )] = 0, (H10): there is a k such that [K([g (k) ] a k , f a k )] = 0,
We can say that Theorem 7. The law of the end of algorithm states

√ n(V ar P (M (a k , a k ))) -1/2 (P n M (ĉ n (a k ), γn )) Law → N (0, I), (4) √ n(V ar P (m(a k , a k ))) -1/2 (P n m( bn (a k ), βn )) Law → N (0, I).
(

) 5 
where k represents the last iteration of the algorithm.

We can then build condence ellipsoids around the last a k thanks also to the following corollary:

Corollary 3. If q N (0,1)

1-α
is the quantile of a reduced centered normal distribution with level α, then, expression (4) implies that

{b ∈ R d ; √ n(V ar P (M (ĉ n (a k ), γn ))) -1/2 (P n M (ĉ n (a k ), γn ) ≤ q N (0,1)
1-α } is a condence ellipsoid with a level α of a k according to our algorithm and the expression (5) implies

that {b ∈ R d ; √ n(V ar P (m( bn (a k ), βn ))) -1/2 (P n m( bn (a k ), βn )) ≤ q N (0,1)
1-α } is a condence ellipsoid with a level α of a k based on Huber's algorithm.

Simulations

We will illustrate this section by detailing several examples.

In each example, the rst part of our program will follow our algorithm and will aim at creating a sequence of densities (g (j) ), j = 1, .., k, k < d, such that g(0) = g, g (j) = g (j-1) f a j /[g (j-1) ] a j and K(g (k) , f ) = 0, where K is the relative entropy and -1) ] b , f ), for all j = 1, ..., k. Moreover, in a second step, our program will follow Huber's method and will create a sequence of densities (g (j) ), j = 1, .., k, k < d, such that g(0) = g, g (j) = g (j-1) f a j /[g (j-1) ] a j and K(g (k) , f ) = 0, where K is the relative entropy and a j = argsup b K([g (j-1) ] b , f b ), for all j = 1, ..., k. Let us remark that we test upfront the hypothesis that f is gaussian through a Kolmogorov Smirnov test.

a j = arg inf b K(g (j-1) f b /[g (j
Example 1 :

We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random variable X with a density law f dened by,

f (x) = normal(x 1 + x 2 ) * Gumbel(x 0 + x 2 ) * Gumbel(x 0 + x 1 ),
where the Gumbel law parameters are (-3, 4) and (1, 1) and where the normal distribution parameters are (-5, 2). Let us generate then a gaussian random variable Y -that we will name g -with a density which presents the same mean and variance as f .

In the rst part of our program, we theoretically obtain k = 2, a 1 = (1, 0, 1) and a 2 = (1, 1, 0) (or a 2 = (1, 0, 1) and a 1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we perform the following test H0 : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus H1 : (a1, a2) = ((1, 0, 1), (1, 1, 0)).

Moreover, if i represents the last iteration of the algorithm, then

√ n(V ar P (M (a i , a i ))) (-1/2) (P n M (c n (a i ), γ n ) -P n M (a i , a i ))
Law → N (0, 1), and then we estimate (a 1 , a 2 ) by the following 0.9(=α) level condence ellipsoid

E i = {b ∈ R 3 ; V ar P (M (b, b))K(g (i) f b /[g (i) ] b , f ) ≤ q N (0,1) 1-α / √ n = 0.182434}.
Indeed, if i = 1 represents the last iteration of the algorithm, then a 1 ∈ E 0 , and if i = 2

represents the last iteration of the algorithm, then a 2 ∈ E 1 , and so on, if i represents the last iteration of the algorithm, then a i ∈ E i-1 .

Now, if we follow Huber's method, we also theoretically obtain k = 2, a 1 = (1, 0, 1) and a 2 = (1, 1, 0) (or a 2 = (1, 0, 1) and a 1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we perform the following test:

H0 : (a 1 , a 2 ) = ((1, 0, 1), (1, 1, 0)) versus H1 : (a 1 , a 2 ) = ((1, 0, 1), (1, 1, 0)).

The fact that, if i represents the last iteration of the algorithm, then

√ n(V ar P (m(a i , a i ))) (-1/2) (P n m(b n (a i ), β n ) -P n m(a i , a i )) Law → N (0, 1),
enables us to estimate our sequence of (a i ), reduced to (a 1 , a 2 ), through the following 0.9(=α) level condence ellipsoid 2) , g (2) ) 0.444388 0.794124 Therefore, we conclude that f = g (2) .

E i = {b ∈ R 3 ; V ar P (m(b, b))K([g (i) ] b , f b ) ≤ q N (0,1) 1-α / √ n = 0.182434}. Indeed, if i = 1
0 : a 2 ∈ E 1 : True H 0 : a 2 ∈ E 1 : True K(Kernel Estimation of g (
Example 2 :

We are in dimension 2(=d), and we consider a sample of 50(=n) values of a random variable X with a density law f dened by, f (x) = Cauchy(x 0 ) * N ormal(x 1 ), where the Cauchy law parameters are -5 and 1 and where the normal distribution parameters are (0, 1).

Our reasoning is the same as in Example 1. In the rst part of our program, we theoretically obtain k = 1 and a 1 = (1, 0). To get this result, we perform the following test:

H0 : a 1 = (1, 0) versus H1 : a 1 = (1, 0).
We estimate a 1 by the following 0.75(=α) level condence ellipsoid

E i = {b ∈ R 2 ; V ar P (M (b, b))K(gf b /g b , f ) ≤ q N (0,1) 1-α / √ n = 0.0961665}.
Now, if we follow Huber's method, we also theoretically obtain k = 1 and a 1 = (1, 0). To get this result, we perform the following test: H0 : a 1 = (1, 0) versus H1 : a 1 = (1, 0).

Hence, using the same reasoning as in Example 1, we estimate a 1 through the following 0.75(=α) level condence ellipsoid 1) , g (1) ) 2.44546 2.32331

E i = {b ∈ R 2 ; V ar P (m(b, b))K([g (1) ] b , f b ) ≤ q N (0,1) 1-α / √ n = 0.0961665}.
0 : a 1 ∈ E 0 : True H 0 : a 1 ∈ E 0 : True K(Kernel Estimation of g (
Therefore, we conclude that f = g (1) .
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Critics of the simulations

We note that as the approximations accumulate and according to the power of the calculators used, we might obtain results above or below the value of the thresholds of the dierent tests.

Moreover, in the case where f is unknown, we will never be sure to have reached the minimum or the maximum of the relative entropy: we have indeed used the simulated annealing method to solve our optimisation problem, and therefore it is only when the number of random jumps tends in theory towards innity that the probability to get the minimum or the maximum tends to 1. We note nally that no theory on the optimal number of jumps to implement does exist, as this number depends on the specicities of each particular problem.

Conclusion

The present article demonstrates that our relative entropy minimisation method constitutes a good alternative to Huber's. Indeed, the convergence results and simulations we carried out convincingly fullled our expectations regarding our methodology.

The above lemmas 4 and 5 can be evidenced by a reductio ad absurdum argument. Moreover, by induction and lemmas 4 and 5, we have Lemma 6. If f and g are strictly positive and bounded densities, then g (k) is strictly positive and bounded.

Finally we introduce a last lemma Lemma 7. Let f be an absolutely continuous density, then, for all sequence (a n ) tending to a in R d * , the sequence f a n uniformly converges towards f a .

Proof :

For all a in R d * , let F a be the cumulative distribution function of a X and ψ a be a complex function dened by ψ a (u, v) = F a (Re(u + iv)) + iF a (Re(v + iu)), for all u and v in R.

First, the function ψ a (u, v) is an analytic function, because x → f a (a x) is continuous and since we have the corollary of Dini's second theorem -according to which "A sequence of cumulative distribution functions which simply converges on R towards a continuous cumulative distribution function F on R, uniformly converges towards F on R"we deduct that, for all sequence (a n ) converging towards a, ψ a n uniformly converges toward ψ a . Finally, the Weierstrass theorem, (see proposal (10.1) page 220 of the "Calcul innitésimal" book of Jean Dieudonné), implies that all sequences ψ a,n uniformly converge towards ψ a , for all a n tending to a. We can therefore conclude.

2

Annex II -Proofs

This last section includes the proofs of most of the lemmas, propositions, theorems and corollaries contained in the present article.

Proof of lemma 1

We remark that g and g * determine the same density conditionally to x 1 . Indeed,

g * 1 (x 1 ) = g * (x)dx 2 ...dx d = h(x 1 )g(x)dx 2 ...dx d = h(x 1 ) g(x)dx 2 ...dx d = h(x 1 )g 1 (x 1
). Thus, we can demonstrate this lemma.

We have g(.|x 1 ) = g(x 1 ,...,xn)

g 1 (x 1 )
and g 1 (x 1 )h(x 1 ) is the marginal density of g * . Hence,

g * dx = g 1 (x 1 )h(x 1 )g(.|x 1 )dx = g 1 (x 1 ) f 1 (x 1 ) g 1 (x 1 ) ( g(.|x 1 )dx 2 ..dx d )dx 1 = f 1 (x 1 )dx 1 = 1
By denition of the closure of a set and lemma 7 (see page 17), we get the result.

Proof of lemma 11

Lemma 11. We can say that inf a∈R d * K(g * , f ) is reached.

Indeed, let G be {g fa g a ; a ∈ R d * } and Γ c be Γ c = {p; K(p, f ) ≤ c} for all c>0. From lemmas 8, 9 and 10 (see page 18), we get Γ c ∩ G is a compact for the topology of the uniform convergence, if Γ c ∩G is not empty. Hence, and since proposition 2 (see page 16) tells us that Q → K(Q, P ) is lower semi-continuous in L 1 for the topology of the uniform convergence, then the inmum is reached in L 1 .

Taking for example c = K(g, f ), Ω is necessarily not empty because we always have K(g * , f ) ≤ K(g, f ).

Proof of propositions 1 and 2

First let us introduce the following lemma, Lemma 12. From (H1), we derive the existence of C < 0 and n 0 > 0 such that

(n ≥ n 0 ) ⇒ sup a∈Θ sup b∈{Θ 1 a } c P n m(b, a) < C Proof : This lemma comes from the fact that ∃C > 0 sup a∈Θ sup b∈{Θ 1 a } c P a m(b, a) < -C, which is true for any b ∈ {Θ 1 a } c . We have ∞ = ϕ * (ϕ ( g b (b x) f b (b x) ))f a (a x) dx = ( g b (b x) f b (b x) -1)f a (a x) dx and since ϕ ( g b (b x) f b (b x) )g a (a x)dx ≤ 1 + K(g a , f b ) ≤ 1 + K(g, f
) as result of Property 3. Indeed, for all density h dened in R d and for all u element in R d * , considering T : h u → h, we obtain the measurability of T and the following inequality Let ε > 0 be such that sup a∈Θ bn (a) -a k > ε. We notice that if such ε had failed to exist, the result would be obvious. Therefore, for this ε, there is a n ∈ Θ such that bn (a n ) -a k > ε, which implies thanks to (H2) that there exists a η such that P an m(a k , a n ) -P an m( bn (a n ), a n ) > η. Thus, we can write:

∞ > K(g, f ) ≥ K(T -1 (g), T -1 (f )) = K(g a , f b ), hence this conclusion. 2 Given that X n a.s. → X if ∀ε > 0, P(lim sup{|X n -X| > ε}) = 0,
P( sup a∈R d bn (a) -a k > ε) ≤ P(P a n m(a k , a n ) -P a n m( bn (a n ), a n ) > η) → 0 by (8).
Moreover, (H1), through the above lemma 12, implies that bn (a) = bn (a) for all a ∈ Θ and for n big enough. This results in sup a∈Θ bn (a) -a k → 0 a.s., which concludes our demonstration of the rst part of the proposition.

For the second part, we remark that (H1), as a result of the above lemma 12, also implies that βn = βn for all a ∈ Θ. This explains why it is sucient to demonstrate the result for βn only. Based on the rst part of the demonstration and on condition (H3), we can write:

P n m( bn ( βn ), βn ) ≥ P n m( bn (a k ), a k ) ≥ P a m( bn ( βn ), a k ) -o P (1), which implies: Based on the rst part of this demonstration and on (H4), we infer the existence of η such that: P( βn -a k ≥ ε) ≤ P(P βn m( bn ( βn ), a k ) -P βn m( bn ( βn ), βn ) > η) → 0 a.s. by (9), which concludes our demonstration. 2

In a similar manner, we demonstrate proposition 2.

Proof of theorem 1

The demonstration below holds for the two types of optimisation. Let us consider g (0) = g, a density with same mean and variance as f . In this proof, we will assume f and g are strictly positive and bounded i.e. through lemma 6 (see page 17), the densities ĝ(k) and g (k) are also strictly positive and bounded. Using lemma 2, (see page 3), and lemma 7, (see page 17), we demonstrate the theorem by induction.

Proof of theorem 2 row 1: Here let us consider m, the size of the sample and f and g two bounded densities.

This demonstration holds for the two types of optimisation. Let us consider

Ψ j = { f ǎj ( ǎj x)
[ǧ (j-1) ] ǎj ( ǎj x) -f a j (a j x)

[g (j-1) ]a j (a j x) }. Since f and g are bounded , it is easy to prove that from a certain rank, we get |Ψ j | ≤ max( 1[ǧ (j-1) ] ǎj ( ǎj x) , 1 [g (j-1) ] a j (a j x) )|f ǎj ( ǎj x) -f a j (a j x)|. Moreover, we can remark the following:

First, based on what we stated earlier, for all set x and from a certain rank, there is a constant R>0 independent from n, such that:

max( 1 [ǧ (j-1) ] ǎj ( ǎj x) , 1 [g (j-1) ] a j (a j x) ) ≤ R = R(x) = O(1). Second, since ǎk is an M -estimator of a k for k = 1..d, its convergence rate is O P (m -1/2 ).
Thus using simple functions, we obtain an upper and lower bound for f ǎj and for f a j and we reach the following conclusion:

|Ψ j | ≤ O P (m -1/2 ). (10) 
We nally obtain:

|Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) -Π k j=1 f a j (a j x) [g (j-1) ] a j (a j x) | = Π k j=1 f a j (a j x) [g (j-1) ] a j (a j x) |Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) [g (j-1) ] a j (a j x) f a j (a j x) -1|.
Based on relationship 10, the expression

f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) [g (j-1) ] a j (a j x) fa j (a j x)
tends towards 1 at a rate of O P (m -1/2 ) for all j. Consequently Π k j=1 f ǎj ( ǎj x)

[ǧ (j-1) ] ǎj ( ǎj x)

[g (j-1) ]a j (a j x) f a j (a j x)

tends towards 1 at a rate of O P (m -k/2 ). Thus from a certain rank, we get

|Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) -Π k j=1 f a j (a j x) [g (j-1) ] a j (a j x) | = O P (m -k/2 )O P (1) = O P (m -k/2
). In conclusion, we obtain

|ǧ (k) -g (k) | = g(x)|Π k j=1 f ǎj ( ǎj x) [ǧ (j-1) ] ǎj ( ǎj x) -Π k j=1 fa j (a j x) [g (j-1) ]a j (a j x) | ≤ O P (m -k/2
). row 2: This demonstration holds for the two types of optimisation.

Since f and g are assumed to be strictly positive and bounded, hence lemma 6 (see page 17) implies g (k) is also, for all k, strictly positive and bounded. k) has been assumed to be strictly positive and bounded. Thus, g (k) 

Moreover, theorem 1 implies that | ĝ(k) (x) g (k) (x) -1| = O P (m -k/2 ) because g (k) (x)| ĝ(k) (x) g (k) (x) -1| = |ĝ (k) (x) -g (k) (x)|. Hence, there exists a function C of R d in R + such that lim m→∞ m -k/2 C(x) = 0 and | ĝ(k) (x) g (k) (x) -1| ≤ m -k/2 C(x), we have: |ĝ (k) (x) -g (k) (x)|dx = g (k) (x)| ĝ(k) (x) g (k) (x) -1|dx, because g (k) > 0 ≤ g (k) (x)C(x)m -k/2 dx, Moreover, sup x∈R d |ĝ (k) (x) -g (k) (x)| = sup x∈R d g (k) (x)| ĝ(k) (x) g (k) (x) -1| = sup x∈R d g (k) (x)C(x)m -k/2 → 0 a.s., by theorem 1. This implies that sup x∈R d g (k) (x)C(x) < ∞ a.s., ie sup x∈R d C(x) < ∞ a.s. since g (
(x)C(x)dx ≤ sup C. g (k) (x)dx = sup C < ∞ since g (k) is a density, therefore we can conclude |ĝ (k) (x) -g (k) (x)|dx ≤ sup C.m -k/2 = O P (m -k/2 ).
row 3: This demonstration holds for the two types of optimisation. We have k) |dx with the line before last being derived from theorem 8. We get the same expression as the one we found in our Proof of Theorem 2 row 2, we then conclude in a similar manner.

K(ǧ (k) , f ) -K(g (k) , f ) = f ϕ( ǧ(k) f )dx -ϕ( g (k) f )dx = f {ϕ( ǧ(k) f ) -ϕ( g (k) f ))}dx ≤ f R| ǧ(k) f -g (k) f |dx = R |ǧ (k) -g (

Proof of theorem 3

By denition of the estimators γn and ĉn (a k ), we have

   P n ∂ ∂b M (b, a) = 0 P n ∂ ∂a M (b(a), a) = 0 ie    P n ∂ ∂b M (ĉ n (a k ), γn ) = 0 P n ∂ ∂a M (ĉ n (a k ), γn ) + P n ∂ ∂b M (ĉ n (a k ), γn ) ∂ ∂a ĉn (a k ) = 0,
which leads to the simplication of the above system into

   P n ∂ ∂b M (ĉ n (a k ), γn ) = 0 (E0) P n ∂ ∂a M (ĉ n (a k ), γn ) = 0 (E1) .
Using a Taylor development of the (E0) equation, we infer there exists (c n , γ n ) on the interval

[(ĉ n (a k ), γn ), (a k , a k )] such that -P n ∂ ∂b M (a k , a k ) = [(P ∂ 2 ∂b∂b M (a k , a k )) + o P (1), (P ∂ 2 ∂a∂b M (a k , a k )) + o P ( 1 
)]a n . with a n = ((ĉ n (a k ) -a k ) , (γ n -a k ) ).

Similarly, through a Taylor development of (E1), we infer there exists (c n , γn ) on the interval [(ĉ n (a k ), γn ), (a k , a k )] such that We similarly demonstrate theorem 4.

-P n ∂ ∂a M (a k , a k ) =

Proof of theorem 5

Let us consider ψ, ψ a , ψ (k) , ψ (k) a the characteristic functions of the densities f , f a , g (k-1) and [g (k-1) ] a , then |ψ(ta) -ψ (k-1) (ta)| = |ψ a (t) -ψ (k-1) a (t)| ≤ |f a (a x) -[g (k-1) ] a (a x)|dx, and then sup a |ψ a (t) -ψ (k-1) a (t)| ≤ sup a |f a (a x) -[g (k-1) ] a (a x)|dx ≤ max a K([g (k-1) ] a , f a ) since ψ(ta) = E(e ita x ) = ψ a (t), where t ∈ R and a ∈ R d * , and since the relative entropy is greater than the L 1 distance and since this maximum has been reached. Therefore, if max a K([g (k-1) ] a , f a ) tends to 0, we have lim k g (k) = f. Moreover, we have (k) , f ) = min a K(g (k-1) fa [g (k-1) ] a , f ), hence the hypothesis according to which lim k min a K(g (k-1) fa [g (k-1) ]a , f ) = 0 implies that lim k g (k) = f . Proof of theorem 6 Through a Taylor development of P n M (č n (a k ), γn ) of rank 2, we get at point (a k , a k ): 

|ψ(t) -ψ (k) (t)| ≤ |f (x) -g (k) (x)|dx ≤ K(g

  čn (a) = arg sup c∈Θ P n M (c, a) cn (a) = arg sup c∈Θ 2 P n M (c, a) γn = arg inf a∈Θ sup c∈Θ P n M (c, a) γn = arg inf a∈Θ sup c∈Θ 2

a∈Θ; b∈Θ 1 a

 1 |P n m(b, a) -P a m(b, a)| → 0 a.s. (respectively in probability)(H2) : For all ε > 0, there is η > 0 such that, for all b ∈ Θ 1 a verifying b -a k ≥ ε for all a ∈ Θ, we have P a m(b, a) < P a m(a k , a) -η, (H3) : There is a neighbourhood of a k , V , and a positive function H, such that, for all b ∈ V , we have |m(b, a k , x)| ≤ H(x) (P a -a.s.) with P a H < ∞, (H4) : There is a neighbourhood V of a k , such that for all ε, there is a η such that for all b ∈ V and a ∈ Θ, verifying a -a k ≥ ε, we have P a m(b, a k ) -η > P a m(b, a). and (H 1) : sup a∈Θ; c∈Θ 2 |P n M (c, a) -PM (c, a)| → 0 a.s. (respectively in probability)

Figure 1 :

 1 Figure 1: Graph of the distribution to estimate and of the starting Gaussian.

Figure 2 :Figure 3 :

 23 Figure 2: Graph of the distribution to estimate and of our own estimate.

a

  we prove proposition 1: Proof : Since bn (a) = arg sup b∈Θ 1 a P a n m(b, a), we have P n m( bn (a), a) ≥ P n m(a k , a). And through condition (H1), we get P n m( bn (a), a) ≥ P n m(a k , a) ≥ P a m(a k , a) -o P (1), where o P (1) does not depend on a. Thus, we get: P a m(a k , a) -P a m( bn (a), a) ≤ P n m( bn (a), a) -P a m( bn (a), a) + o P (1) |P n m(b, a) -P a m(b, a)| → 0 a.s. .

P

  a m( bn ( βn ), a k ) -P a m( bn ( βn ), βn ) ≤ P n m( bn ( βn ), βn ) -P a m( bn ( βn ), βn ) + o P (1) ≤ sup a∈Θ; b∈Θ 1 a |P n m(b, a) -P a m(b, a)| → 0 a.s.. (9)

P

  n M (č n (a k ), γn ) = P n M (a k , a k ) + P n ∂ ∂a M (a k , a k )(γ n -a k ) + P n ∂ ∂b M (a k , a k )(č n (a k ) -a k ) + 1 2 {(γ n -a k ) P n ∂ 2 ∂a∂a M (a k , a k )(γ n -a k ) + (č n (a k ) -a k ) P n ∂ 2 ∂b∂a M (a k , a k )(γ n -a k ) +(γ n -a k ) P n ∂ 2 ∂a∂b M (a k , a k )(č n (a k ) -a k ) + (č n (a k ) -a k ) P n ∂ 2 ∂b∂b M (a k , a k )(č n (a k ) -a k )}The lemma below enables us to conclude.Lemma 13. Let H be an integrable function and let C = H dP andC n = H dP n , then, C n -C = O P ( 1 √ n ).Thus we get Pn M (č n (a k ), γn ) = P n M (a k , a k ) + O P ( 1 n ), ie √ n(P n M (č n (a k ), γn ) -PM (a k , a k )) = √ n(P n M (a k , a k ) -PM (a k , a k )) + o P (1). Hence √ n(P n M (č n (a k ), γn ) -PM (a k , a k)) abides by the same limit distribution as √ n(P n M (a k , a k ) -PM (a k , a k )), which is N (0, V ar P (M (a k , a k ))).

  Let us dene the following sequences {g {k} } k=0..d , {a k } k=1..d , {â k } k=1..d , and {ǎ k } k=1..d

  . We dene this way two new sequences, following the two dierent optimisation methods. Indeed, if g

		{k} n	represents ĝ{k} or ǧ{k} and if ãk represents ǎk
	or âk , we get {g	{j} n } j=1..d where g n {j}

  [(P ∂ 2 ∂b∂a M (a k , a k )) + o P (1), (P ∂ 2 ∂a 2 M (a k , a k )) + o P (1)]a n . with a n = ((ĉ n (a k ) -a k ) , (γ n -a k ) ). Thus we get M (a k , a k ) P ∂ 2 ∂a∂b M (a k , a k ) P ∂ 2 ∂b∂a M (a k , a k ) P ∂ 2 ∂a 2 M (a k , a k ) , f ) P ∂ 2 ∂b∂b M (a k , a k ) P ∂ 2 ∂b∂b M (a k , a k ) P ∂ 2 ∂b∂b M (a k , a k )since (H6) enables us to reverse the derivative and integral signs.Moreover, the central limit theorem implies:P n ∂ ∂b m(a k , a k ) Law → N d (0, P ∂ ∂b m(a k , a k ) 2 ), P n ∂ ∂a m(a k , a k ) Law → N d (0, P ∂ ∂a m(a k , a k ) 2 ), since P ∂ ∂b m(a k , a k ) = P ∂∂a m(a k , a k ) = 0, which leads us to the result.

	.	 	P ∂ 2 ∂b∂b M (a k , a k ) + ∂ 2 ∂a∂a K(g	f a k ga k	  .	 	-P n -P n	∂ ∂b M (a k , a k ) ∂ ∂a M (a k , a k )	  + o P (1)
				√ na n =	√ n	 	P ∂ 2 ∂b 2  	-1  	-P n -P n	∂ ∂b M (a k , a k ) ∂ ∂a M (a k , a k )	  + o P (1)
	=	√ n(P ∂ 2 ∂b∂b M (a k , a k ) ∂ 2 ∂a∂a K(g	fa k g a k	, f )) -1

Annex I -Reminders 1 The relative entropy

Let us call h a the density of a Z if h is the density of Z, and K the relative entropy or Kullback-Lieber distance, i.e. if P and Q are two probabilities then K(Q, P ) = ϕ( ∂Q ∂P ) dP if P << Q and K(Q, P ) = +∞ otherwise, where ϕ : x → xln(x) -x + 1 is strictly convex.

Let us present some well-known properties of the relative entropy.

Property 1. A fundamental property of the relative entropy is the fact there is a unique case of nullity. We have

Property 2. The application Q → K(Q, P ) is convex, lower semi-continuous for the topology that makes all the applications of the form Q → f dQ continuous where f is bounded and continuous, lower semi-continuous for the topology of the uniform convergence, and greater than the L 1 distance.

Moreover, the corollary (1.29) page 19 of [LIVAJ] enables us to say, Property 3.

and with equality being reached when T is surjective for (P, Q).

And nally, according to the theorem III.4 of [AZE97], we have Theorem 8. Let f : I → R be a convex function. Then f is a Lipschitz function in all compact intervals [a, b] ⊂ int{I}. In particular, f is continuous on int{I}.

2 Useful lemmas Lemma 4. Let f be a density in R d bounded and strictly positive. Then, any projection density of f , that we will name f a , a ∈ R d * , is also bounded and strictly positive in R.

Lemma 5. Let f be a density in R d bounded and strictly positive. Then all density f (./a x),

for any a ∈ R d * , is also bounded and strictly positive.

and since g * is positive, then g * is a density. Moreover,

as g * (.|x 1 ) = g(.|x 1 ). Since the minimum of this last equation ( 7) is reached through the

completes the demonstration of the lemma.

Proof of lemma 2

The demonstration is very similar to lemma 1's save for the fact we now base our reasoning

Proof of lemma 3

Without any loss of generalities, let us reason on the rst component. In order to demonstrate this lemma, we will consider f * , the density dened as f * (x) = f (x)t(x 1 ), where t is a function only depending on x 1 . Since f * (.|x 1 ) = f (.|x 1 ), we get -as for lemma 1, and by reasoning with K(g, f * ) = g{ln(g)) -ln(f * )}dx and not with K(f, g * ) = f {ln(f ) -ln(g * )}dxthe result.

Proof of lemma 8

Lemma 8. The set Γ c is closed in L 1 for the topology of the uniform convergence.

By denition of the closure of a set, we have the result.

Proof of lemma 9

Lemma 9. For all c > 0, we have

Since K is greater than the L 1 distance, we get the result.

Proof of lemma 10

Lemma 10. G is closed in L 1 for the topology of the uniform convergence.

Proof of corollaries 1 and 2

Since they are both identical, we will only develop the proof for corollary 2. These demonstrations also apply to the two types of optimisation. We will name g n the density of ĝ(k)

or ǧ(k) . Now, let us demonstrate that, under hypothesis lim k→∞ K(g (k) , f ) = 0, we have

n , then we can say g ∞ n is a density. Indeed, we infer

n = 1 from the Lebesgue theorem and by induction, we

since the sequence (K(g

n , f )) k is decreasing. Taking the limit in n of ( * ), we get ∀k, 0 ≤

n thanks to theorem 1. Through a reductio ad absurdum, and assuming

n , f ), which leads to the contradiction we were looking for.

Hence ( * * ) is true. We can therefore conclude that ( * * ) implies K(g ∞ ∞ , f ) = 0, ie lim n→∞ lim k→∞ K(g

n , f ) = 0, as a reductio ad absurdum argument would have led to 0 < K(g ∞ ∞ , f ) ≤ K(g (k) , f ), which would have contradicted the hypothesis according to which lim k→∞ K(g (k) , f ) = 0.