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We discuss a novel strategy for computing the eigenvalues and eigenfunctions of the relativistic Dirac operator with a radially symmetric potential. The virtues of this strategy lie on the fact that it avoids completely the phenomenon of spectral pollution and it always provides two-side estimates for the eigenvalues with explicit error bounds on both eigenvalues and eigenfunctions. We also discuss convergence rates of the method as well as illustrate our results with various numerical experiments.

Introduction

The free Dirac operator acting on 4-spinors of L 2 (R 3 ) 4 is determined by the first order differential expression

D := α • P + β = -i 3 k=1 α k ∂ k + β,
where α = (α 1 , α 2 , α 3 ), and the Pauli-Dirac matrices are:

α i = 0 σ i σ i 0 and β = I C 2 0 0 -I C 2 ,
for σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 and σ 3 = 1 0 0 -1 .

We assume that the units are fixed so that m = c = = 1. Standard arguments involving the Fourier transform show that D defines a selfadjoint operator with domain H 1 (R 3 ) 4 and that the spectrum of D is Spec(D) = (-∞, -1] ∪ [1, ∞). Spherically symmetric potentials are Hermitean 4 × 4 matrix multiplication operators, V , acting on L 2 (R 2 ) 4 , such that C ∞ 0 (R 3 \ {0}) ⊂ Dom(V ) and e iϕn•S V (R -1 x)e -iϕn•S = V (x), ∀x ∈ R 3 , ∀ϕ ∈ [0, 4π), where S = 1 2 0 σ σ 0 is the spin operator, and R is the matrix of the rotation of angle ϕ and axis n. Here Dom(V ) denotes the maximal domain of V .

Spherically symmetric potentials may be constructed from maps φ sc,el,am : R -→ R via (1.1)

V (x) = φ sc (|x|)β + φ el (|x|)I C 4 + iφ am (|x|)βα • x |x| .
The subscripts "sc", "el" and "am", stand for "scalar", "electric" and "magnetic" potential, respectively. Radial symmetry on the electric potential, for instance, is a consequence of the assumption that the atomic nucleus is pointwise and the electric forces are isotropic in an isotropic medium like the vacuum. In the particular case φ sc = φ am = 0 and φ el (r) = γ/r, |γ| < √ 3/2, H describes the motion of a relativistic electron in the field created by an atomic nucleus.

If V is subject to suitable smallness and regularity conditions (such as those ensuring that V is relatively compact with respect to D), then H := D+V defines an essentially self-adjoint operator in C ∞ 0 (R 3 \{0}) 4 with self-adjoint extension domain H 1 (R 3 ) 4 and (1.2) Spec ess (H) = Spec(D) = (-∞, -1] ∪ [1, ∞), see [Tha92, Theorems 4.2 and 4.16]. In fact there are known conditions, satisfied by potentials of practical interest (see e.g. [BG87, Theorems 6 and A]), preventing the existence of embedded eigenvalues. The addition of a non-zero potential might give rise to a non-empty discrete spectrum in the gap (-1, 1). These eigenvalues can only be found explicitly for a few simple systems which do not go much beyond the case of a single electron embedded in a field created by an atomic nucleus, see (4.1). For more complicated potentials, one has to rely either on asymptotic techniques (cf. [START_REF] Sh | Discrete spectrum of the perturbed Dirac operator[END_REF], [START_REF] Griesemer | Accumulation of discrete eigenvalues of the radial Dirac operator[END_REF], [START_REF] Michael | Eigenvalue asymptotics of perturbed periodic Dirac systems in the slow-decay limit[END_REF] and references therein) or on numerical estimations.

Few robust computational procedures are currently available to estimate numerically the eigenvalues of H, see [START_REF] Dyall | Kinetic balance and variational bounds failure in the solution of the dirac equation in a finite gaussian basis set[END_REF], [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF], [START_REF] Dolbeault | Minimization methods for the one-particle dirac equation[END_REF], [START_REF] Dolbeault | A variational method for relativistic computations in atomic and molecular physics[END_REF], [START_REF] Dolbeault | Relativistic hydrogenic atoms in strong magnetic fields[END_REF], [START_REF] Langer | Variational principles for eigenvalues of block operator matrices[END_REF] and references therein. Since H is strongly indefinite, a direct implementation of the projection method is not possible due to variational collapse. Under no further restriction on the potential or the reduction basis, accumulation points of eigenvalues of the finite dimensional approximate operator which do not belong to Spec(H) might appear, see [START_REF] Stanton | Kinetic balance a partial solution to the problem of variational safety in dirac calculations[END_REF] and [START_REF] Dyall | Kinetic balance and variational bounds failure in the solution of the dirac equation in a finite gaussian basis set[END_REF]. This phenomenon is known as spectral pollution.

The aim of the present paper is to investigate the applicability of the so called quadratic projection method for finding eigenvalues and eigenfunctions of H. This method has been recently studied in an abstract setting (see [START_REF] Shargorodsky | Geometry of higher order relative spectra and projection methods[END_REF], [START_REF] Levitin | Spectral pollution and second-order relative spectra for self-adjoint operators[END_REF], [START_REF] Boulton | Limiting set of second order spectra[END_REF] and [START_REF] Boulton | Non-variational approximation of discrete eigenvalues of self-adjoint operators[END_REF]) and it has already been applied with some success to crystalline Schrödinger operators, [START_REF] Boulton | On approximation of the eigenvalues of perturbed periodic schrodinger operators[END_REF], and magnetohydrodynamics, [START_REF] Strauss | Quadratic projection methods for approximating the spectrum of self-adjoint operators[END_REF]. In this approach, explained at length in Section 3, the underlying discretised eigenvalue problem is quadratic in the spectral parameter (rather than linear), and has non-real eigenvalues. Its main advantage over a standard projection method is its robustness: it never pollutes and it always provides a posteriori two-sided estimates of the error of computed eigenvalues.

Section 3.1 is devoted to a self-contained description of the quadratic projection method. In Theorem 1 we present an alternative proof of Shargorodsky's non-pollution Theorem [LS04, Theorem 2.6]. Additionally we show that information about eigenfunctions can be recovered from the quadratic projection method, see (3.4).

In Section 4 we test the practical applicability of the numerical scheme proposed in Section 3 by reporting on various numerical experiments. As benchmark potentials we have chosen the purely coulombic, sub-coulombic and inverse harmonic electric potentials. In order to perform these numerical experiments, we split the space into upper and lower spinor component, after writing the problem in radial form. Spectral pollution in the standard projection method using this decomposition and the consequences of unbalancing the number of upper/lower components is discussed in Section 2.

We have chosen a basis of Hermite functions to reduce the continuous problem into finite-dimensional from. In Section 3.3 we perform a rigourous convergence analysis of the quadratic method using this basis. This analysis relies upon the general result [Bou07, Theorem 2.1]. The surprising numerical evidence included in Section 4.4 strongly suggest that, under appropriate circumstances, choosing a basis that heavily pollute the standard projection method, significantly improves convergence rates of the quadratic projection method.

We have posted a fully functional Matlab code for assembling the matrices involved in the quadratic projection method for V a coulombic potential in the Manchester NLEVP collection of non-linear eigenvalue problems [BHM + 08]. See the permanent link [BHM + ]. In Appendix A we include details of the explicit calculation of all matrix coefficients.

Spectral pollution and upper/lower spinor component balance

Consider, for any Ψ ∈ L 2 (R 3 ) 4 , the spherical coordinates representation:

(2.1) ψ(r, θ, φ) = rΨ(r sin(θ) sin(φ), r sin(θ) cos(φ), r cos(θ))

where (r, θ, φ)

∈ (0, ∞) × [0, π) × [-π, π). The map Ψ → ψ is an isomorphism between L 2 (R 3 ) 4 and L 2 ((0, ∞), dr) ⊗ L 2 (S 2 ) 4 . If we de- compose L 2 (S 2
) 4 as the sum of the so called two-dimensional angular momentum subspaces K m j ,κ j , the partial wave subspaces are given by

H m j ,κ j = L 2 ((0, ∞), dr) ⊗ K m j ,κ j , so that L 2 (R 3 ) 4 = H m j ,κ j .
Without further mention, here and below we always assume that the indices (m j , κ j ) run over the set m j ∈ {-j, • • • , j} and κ j ∈ {±(j + 1 2 )}, for j ∈ { 2k+1

2

: k ∈ N}. The r factor in (2.1) renders a Dirichlet boundary condition at 0. The dense subspaces

C ∞ 0 (0, ∞) ⊗ K m j ,κ j ⊂ H m j ,κ j are invariant under the action of H. If V is as in (1.1), then H ↾ C ∞ 0 (0, ∞) ⊗ K m j ,κ j is unitary equivalent to (2.2) H m j ,κ j := 1 + φ sc (r) + φ el (r) -d dr + κ j r + φ am (r) d dr + κ j r + φ am (r) -1 -φ sc (r) + φ el (r)
.

The operators H m j ,κ j are essentially self-adjoint in C ∞ 0 (0, ∞) 2 under suitable conditions on the potentials φ sc,el,am . Then Spec(H) = Spec(H m j ,κ j ).

Below we often suppress the sub-index (m j , κ j ) from operators and spaces, and only write the index κ ≡ κ j . Note that the eigenvalues of H are degenerate and their multiplicity is at least m j . By virtue of (1.2),

Spec disc (H) = Spec disc (H κ ). Since Spec ess (H κ ) = (-∞, -1] ∪ [1, ∞), H κ are strongly indefinite.
Let us consider a heuristic approach to the problem of spectral pollution for H κ and the decomposition of L 2 (0, ∞) 2 into upper and lower spinor components. For simplicity we assume that the potential is purely electric and attractive, φ sc (r) = φ am (r) = 0 and φ el (r) < 0.

The pair (u, v) ∈ Dom(H κ ) is a wave function of H κ with associated eigenvalue E ∈ (-1, 1) if and only if

(2.3) (φ el +1-E)u+(-∂ r + κ r )v = 0 and (∂ r + κ r )u+(φ el -1-E)v = 0.
System (2.3) can be decoupled into (2.4)

L E u = 0 and v = -(φ el -1 -E) -1 ∂ r + κ r u,
where

L E := --∂ r + κ r (φ el -1 -E) -1 ∂ r + κ r + (φ el + 1 -E) ≥ (1 + E) -1 ∂ r + κ r * ∂ r + κ r + φ el + (1 -E).
If we assume φ el is relatively compact with respect to the non-negative operator

(∂ r + κ r ) * (∂ r + κ r ), (2.5) min Spec ess L E ≥ (1 -E) > 0.
Moreover, the expression for v in (2.4) yields u ≡ 0 and v ≡ 0. Hence

E ∈ Spec disc H κ if and only if 0 is in the discrete spectrum of L E . Let M N ⊂ L 2 (0, ∞) be a nested family of finite-dimensional sub- spaces such that M N ⊂ M N +1 , N ≥1 M N = L 2 (0, ∞)
and L N M := M N ⊕ M M ⊂ Dom(H κ ). Let P N denote the orthogonal projection onto M N , so that P N → I in the strong sense. With this notation we wish to apply the projection method to operator H κ with test spaces L N M .

We first consider the case N = M. Let (u N , v N ) t ∈ L N N be a sequence normalised by u N 2 + v N 2 = 1, such that

P N [(φ el + 1 -E N )u N + (-∂ r + κ r )v N ] = 0, (2.6) P N [(∂ r + κ r )u N + (φ el -1 -E N )v N ] = 0 (2.7) for a suitable sequence E N → Ẽ ∈ (-1, 1). Let χ N be such that v N = -(φ el -1 -E N ) -1 ∂ r + κ r u N + χ N .
By virtue of (2.7),

(2.8)

P N (φ el -1 -E N )χ N = 0.
If we where able to prove that (2.9)

P N (-∂ r + κ r )χ N → 0, N → ∞,
by substituting into (2.6), we would have P N L Ẽ u N → 0. Thus, by virtue of the min-max principle alongside with (2.5), we would have 0 ∈ Spec disc L Ẽ and so Ẽ ∈ Spec disc H κ .

Unfortunately, (2.9) can not be easily verified. Since P N → I in the strong sense, (φ el -1 -E N )χ N → 0 in the weak sense. Since φ el < 0, χ N → 0 also in the weak sense. Therefore we are certain that (-∂ r + κ r )χ N → 0 and hence P N L Ẽ u N → 0 weakly. This does not imply in general (2.9), it only gives indication that the latter is a sensible guess.

The key idea behind the above heuristic argument motivates several pollution-free numerical methods for computing eigenvalues of H κ , including the quadratic projection method discussed in the forthcoming section: as (2.3) might be vulnerable to spectral pollution in the gap (-1, 1) because (2.9) is not necessarily guaranteed, we characterise the eigenvalues of this problem by testing whether 0 is in the spectrum of an auxiliary operator. This auxiliary operator has essential spectrum in {Re(z) > 0}, so that a neighbourhood of 0 is always protected against spectral pollution (see the discussion preceding [Bou06, Lemma 5].) In the quadratic projection method, (2.9) is substituted by (3.4).

Remark 1. A successful procedure for computing eigenvalues of the Dirac operator is the one developed by Dolbeault, Esteban and Séré, [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] and [START_REF] Dolbeault | A variational method for relativistic computations in atomic and molecular physics[END_REF]. This procedure systematically implements the above idea. Multiplying by u the left side equation of (2.4) and integrating in the space variable, gives A(E)u = 0 for

A(λ)v := ∞ 0 |(r κ v) ′ | 2 r 2κ (1 + λ -φ el ) + (φ el + 1 -λ)|v| 2 dr.
Both terms inside the integral decrease in λ so, if v is regular enough, there is a unique λ = λ(v) ∈ R satisfying A(λ)v = 0. Upper estimates for the eigenvalues of H κ are then found from those of the matrix corresponding to the λ-dependant form A(λ)v restricted to v ∈ M n .

Suppose now that M :

N -→ N. Let (u N , v N ) t ∈ L N M (N ) be a sequence normalised by u N 2 + v N 2 = 1
, such that (2.6) holds true and P N is replaced in (2.7) by P M (N ) . If lim N →∞ M(N)/N < 1, we are certainly less likely to obtain (2.9) as P N is replaced in (2.8) by P M (N ) . If, on the other hand, lim N →∞ M(N)/N > 1, then we would be more confident about obtaining (2.9) for symmetric reasons. In Section 4.4 we will present a series of numerical experiments supporting this heuristic argumentation. In particular, spectral pollution in the standard projection method appears to increase as lim N →∞ M(N)/N decreases (see figures 4) .

The quadratic projection method

3.1. The second order relative spectrum. We now describe the basics of the quadratic projection method. In order to simplify the notation, below and elsewhere G denotes a generic self-adjoint operator with domain Dom(G) acting on a Hilbert space. One should think of G as being any of the H κ introduced in the previous section. The inner product in this Hilbert space is denoted by •, • and the norm by • .

Let L ⊂ Dom(G) be a subspace of finite dimension. Assume that L = Span{b 1 , . . . , b n }, where the vectors b j are linearly independent. Let (3.1)

K := ( Gb j , Gb k ) n j,k=1 , L := ( Gb j , b k ) n j,k=1 and 
B := ( b j , b k ) n j,k=1 . For z ∈ C, let Q(z) := Bz 2 -2zL + K ∈ C n×n .
The aim of the quadratic projection method is to compute the so called second order spectrum of G relative to L:

Spec 2 (G, L) := Spec(Q) = {λ ∈ C : Q(λ)v = 0, some 0 = v ∈ C n }.
Since B is a non-singular matrix and det Q(z) is a polynomial of degree 2n, Spec 2 (G, L) consists of at most 2n points. These points do not lie on the real line, except if L contains eigenvectors of G. However, since

Q(z) * = Q(z), Spec 2 (G, L) = Spec 2 (G, L).
Approximation of the discrete spectrum of G using the second order spectrum has been discussed in [START_REF] Levitin | Spectral pollution and second-order relative spectra for self-adjoint operators[END_REF], [START_REF] Boulton | Non-variational approximation of discrete eigenvalues of self-adjoint operators[END_REF], [START_REF] Boulton | On approximation of the eigenvalues of perturbed periodic schrodinger operators[END_REF] and the references therein.

The following result establishes a crucial connection between Spec(G) and Spec 2 (G, L). Without further mention, we often identify the elements v ∈ L with corresponding v ∈ C n in the obvious manner:

v = n k=1 v, b * j b j and v = ( v, b * j ) n j=1 ,
where {b * j } is the basis conjugate to {b j }. Note that if the b j are mutually orthogonal and b j = 1, then b * j = b j . Below and elsewhere Π S denotes the orthogonal projection onto a subspace S ⊂ Dom(G).

Theorem 1. Let L ⊂ Dom(G) be any finite-dimensional subspace. If λ ∈ Spec 2 (G, L), then (3.2) [Re(λ) -| Im(λ)|, Re(λ) + | Im(λ)|] ∩ Spec(G) = ∅.
Moreover, suppose that E is an isolated eigenvalue of G with associated eigenspace E ⊂ Dom(G). Let

d E := dist(E, Spec G \ {E}) = min{|E -x| : x ∈ Spec G, x = E}. If (3.3) [Re(λ) -| Im(λ)|, Re(λ) + | Im(λ)|] ∩ Spec(G) = {E} and Q(λ)v = 0 for 0 = v ∈ C n , then the corresponding v ∈ L satisfies (3.4) v -Π E v v ≤ | Im λ| d E .
Proof. Let λ ∈ Spec 2 (G, L) and assume that Im(λ) = 0. Since

Q(z) = ( (z -G)b j , (z -G)b k ) n j,k=1 , Q(λ)v = 0 for non-trivial v ∈ C n if and only if (3.5) (λ -G)v, (λ -G)w = 0 ∀w ∈ L.
For u, w ∈ L and z = µ + iν where µ, ν ∈ R, we have

(z-G)u, (z-G)w = (µ-G)u, (µ-G)w -ν 2 u, w -2iν (µ-G)u, w .
In particular, if we take w = v in (3.5), we achieve

(Re λ -G)v 2 -| Im λ| 2 v 2 -2i| Im λ| (Re λ -G)v, v = 0. Thus (3.6) (Re λ -G)v v = | Im λ| and (3.7) | Im λ| (Re λ -G)v, v = 0. But recall that G = G * , so dist(x, Spec G) = min u∈Dom(G) (x -G)u u for x ∈ R. Therefore dist(Re λ, Spec G) ≤ | Im λ|, confirming (3.2).
For the second part, assume that λ, E and E are as in the hypothesis, and let v satisfy (3.5) and hence (3.6). Then

(E -G)v ≤ |E -Re λ| v + (Re λ -G)v ≤ 2| Im λ| v . Since dist(x, Spec G \ {E}) = min u∈Dom(H), u⊥E (x -G)u u ,
we have

(E -G)(I -Π E )v ≥ d E (I -Π E )v , so that (I -Π E )v ≤ (E -G)v d E . Now, (E-G)v 2 = |E-Re λ| 2 v 2 + (Re λ-G)v 2 +2(E-Re λ) (Re λ-G)v, v .
Thus, by (3.6) and (3.7),

(E -G)v 2 = |E -Re λ| 2 v 2 + | Im λ| 2 v 2 = |E -λ| 2 v 2 .
This gives

(I -Π E )v ≤ | Im λ| d E v as needed.
This theorem suggest a method for estimating Spec(G) from Spec 2 (G, L). We call this method the quadratic projection method. Choose a suitable L ⊂ Dom(G), find Q(z) and compute Spec 2 (G, L). Those λ ∈ Spec 2 (G, L) which are close to R will necessarily be close to Spec(G), with a two-sided error given by | Im(λ)|. Moreover if λ is close enough to an isolated eigenvalue E of G, then

(3.8) | Re λ -E| ≤ | Im λ|
and a vector 0 = v ∈ L such that Q(λ)v = 0 approaches the eigenspace associated to this eigenvalue with an error also determined by | Im(λ)|. Note that there is no concern with the position of E relative to the essential spectrum, or any semi-definitness condition imposed on G.

The procedure is always free from spectral pollution.

Remark 2. A stronger statement implying the first part of Theorem 1 can be found in [LS04, Lemma 5.2]. In fact, for isolated points of the spectrum, the residual on the right of (3.8) can actually be improved to

2| Im(λ)| 2 d E for | Im(λ)| sufficiently small, see [BL07, Corollary 2.6].
However, note that this later estimate is less robust in the sense that d E is not known a priori.

The Hermite basis.

In the forthcoming sections we apply the quadratic projection method to G = H κ . To this end we construct finite-dimensional subspaces L ⊂ Dom(H κ ) generated by Hermite functions.

Let the odd-order Hermite functions be defined by

Φ k (r) := c -1 2k+1 h 2k+1 (r)e -r 2 2 , r ≥ 0,
where h n (r) are the Hermite polynomials and c n = 2 n-1 n! √ π are normalisation constants. Motivated by the results of [Bou07, Section 3.4] on Schrödinger operators with band gap essential spectrum, we choose (3.9)

L ≡ L N M := Span Φ 1 (r) 0 , . . . , Φ N (r) 0 , 0 Φ 1 (r) , . . . , 0 Φ M (r)
.

Below we might consider an unbalance between the number of basis elements in the first and second component, N = M. Without further mention, we often write L N ≡ L N N , and

L n ≡ L N (n),M (n) when M and N depend upon n.
We now compute the matrix coefficients of Q(z). For this we recall some properties of Φ k (r). The Hermite polynomials are defined by the identity

h n (z) := (-1) n e z 2 d n dz n e -z 2 , n ∈ N.
They satisfy the recursive formulae,

h ′ n (z) = 2nh n-1 (z), (3.10) h n+1 (z) = 2zh n (z) -2nh n-1 (z) (3.11)
and form an orthogonal set on the interval (-∞, ∞) with weight factor

e -z 2 , ∞ -∞ h m (z)h n (z)e -z 2 dz = 2 n n! √ πδ nm .
The generating function of this family of polynomials is

∞ n=0 h n (z) t n n! = e 2zt-t 2 . Thus (3.12) ∞ n=0 h n (0) t n n! = ∞ n=0 (-1) n t 2n n! , so that h n (0) = 0 n -odd, (-1) n/2 n! (n/2)! n -even.
The odd-order Hermite functions are the normalised wave functions of a harmonic oscillator, (3.13) -Φ ′′ k (r) + r 2 Φ k (r) = (2k + 1)Φ k (r), subject to Dirichlet boundary condition at the origin. They form an orthonormal basis of L 2 (0, ∞) and so B = I in (3.1).

The entries of the matrices K and L in (3.1) can also be found explicitly from known properties of the Hermite polynomials. The crucial terms for assembling these matrices are obtained in Appendix A.

3.3. Convergence. The procedure described above is useful, provided we can find points of Spec 2 (H κ , L) near the real axis. Here we formulate sufficient conditions on the sequence of subspaces L n , in order to guarantee the existence of a sequence λ n ∈ Spec 2 (H κ , L n ) accumulating at points of the discrete spectrum of H κ . We then show that the sequence of subspaces (3.9) satisfies these conditions.

We firstly recall the following result [Bou07, Theorem 2.1]. Note that L N M are subspaces of Dom(H 2 κ ) for all κ. Theorem 2. Let E be an isolated eigenvalue of finite multiplicity of G with associated eigenspace denoted by E. Suppose that L n ⊂ Dom(G 2 ) is a sequence of subspaces such that

(3.14) G p (u -Π n u) ≤ δ(n) u ∀u ∈ E, p = 0, 1, 2,
where δ(n) → 0 as n → ∞ is independent of u and p. Then there exists b > 0 and λ n ∈ Spec 2 (G, L n ), such that

(3.15) |λ n -E| < bδ(n) 1/2 .
We now verify (3.14) for G = H κ and L n as in (3.9). To this end we consider an argument similar to the one discussed in [Bou07, Section 3.4] for the case of the cristaline non-relativistic Schrödinger operator.

Let

A = Ã 0 0 Ã
where à = -∂ 2 r + r 2 acting on L 2 (0, ∞), subject to Dirichlet boundary conditions at the origin. We fix the domain of A as

Dom(A) = N ∈N L N , so that A = A * , A has a compact resolvent and L N ⊖ L N -1 are the eigenspaces of A.
For f and g regular enough, we have

H κ f g = p 1 f + p 2 g p 3 f + p 4 g and H 2 κ f g = q 1 f + q 2 g q 3 f + q 4 g ,
where p j are linear polynomials and q j are quadratic polynomials in the variables ∂ r , φ sc,el,am and κ/r. Condition (3.14) is achieved by showing that both H κ and H 2 κ are relatively bounded in the sense of operators with respect to A.

The following results can be easily extended to more general potentials. Here we only consider those of interest in our present discussion.

Lemma 3. Suppose that (3.16) φ sc,el,am = χ sc,el,am + ψ sc,el,am where |χ sc,el,am (r

)| ≤ cr -1 , ∀r > 0, ψ sc,el,am ∈ L ∞ (0, ∞),
for some constant c > 0. Then Dom(A) ⊆ Dom(H 2 κ ) and there exist constants a, b > 0 such that

H p κ v ≤ a Av + b v ∀ v ∈ Dom(A), p = 0, 1, 2.
Proof. It is enough to check that the H p κ are relatively bounded with respect to -∂ 2 r I C 2 . This, on the other hand, is a straightforward consequence of Hardy's inequality.

By combining this lemma with Theorem 2 and Theorem 1, we achieve the following.

Corollary 4. Let E be an isolated eigenvalue of H κ of finite multiplicity with associated eigenspace E. Let L N M be defined by (3.9). Suppose that φ sc,el,am satisfy (3.16) and assume additionally that E ⊂ Dom(A q ) for some q > 1. For b > 0 large enough and independent of N or M, we can always find a sequence λ N M ∈ Spec 2 (H κ , L N M ), such that

(3.17) |λ N M -E| < b(N -q-1 2 + M -q-1 2 )
and

(I -Π E )v N M < b(N -q-1 2 + M -q-1 2 ), where v N M ∈ L M N solves Q(λ N M )v N M = 0. Proof. Let v = v 1 v 2 ∈ E normalised by v = 1. By virtue of
Lemma 3 and Theorem 2, the desired conclusion follows if we are able to find b > 0 such that

(3.18) ∞ k=n | Ãr v j , Φ k | 2 < bn -2(q-r) ,
for r = 0, 1 and j = 1, 2. In order to show (3.18), note that the hypothesis v ∈ Dom(A q ) ensures (2n) 2(q-r)

∞ k=n | Ãr v j , Φ k | 2 ≤ ∞ k=n (2k + 1) 2q | v j , Φ k | 2 = ∞ k=n | Ãq v j , Φ k | 2 → 0 as n → ∞.
Remark 3. Suppose that the number of degrees of freedom M + N = 2n is fixed. Modulo the constant b, the bound on the right side of (3.17) is optimal at (N, M) = (n, n). This suggests that an optimal rate of approximation might be achieved by choosing an equal number of upper/lower spinor components in (3.9). Contrary to this presumption, and depending on the potential V , the numerical evidence we present in sections 4.4 and 4.5, show that the residual on the right side of (3.8) can in some cases decrease significantly (over 18% in some cases) by suitably choosing N = M.

We now explore precise conditions on the potential, in order to guarantee the hypothesis of Corollary 4.

Lemma 5. Let φ sc,el,am ∈ C ∞ (0, ∞) be such that φ sc,el,am (r) → 0 as r → ∞. Assume additionally that r → r α φ sc,el,am (r) are locally bounded for some α ∈ (0, 1). Let H κ u = Eu. For sufficiently small a > 0,

e ar u H p (0,∞) < ∞ ∀p ∈ N. Proof. See [BG87, Corollary 3.1]. Let D κ = 1 -d dr + κ j r d dr + κ j r -1 and V = φ sc + φ el φ am φ am -φ sc + φ el .
For any 0 < ε < min |E ± 1|, we can always separate V = V c + V ε where: (a) V c is smooth, it has compact support and a singularity of order O(r -α ) at the origin, (b) V ε is smooth with bounded derivatives and

V ε ∞ < ε. Then u = -(D κ + V ε -E) -1 V c u.
Multiplying this identity by D p κ and e ar , yields

(3.19) D p κ e ar u = -D p κ (D κ + V ε + ia -E) -1 e ar V c u.
Let σ ∈ R. On the one hand, (D κ + V ε + ia -E) -1 is a bounded operator from H σ (0, ∞) to H σ+1 (0, ∞). On the other hand, multiplication by V c is a bounded operator from H σ (0, ∞) into H σ-α (0, ∞). Indeed, note that [Tri99, Theorem 2.1(i) for p = q = 2] yield the latter result for σ ∈ N after commutation and iteration, then duality and interpolation ensure it for all σ ∈ R. Therefore, as (

D κ + V ε + ia -E) -1 V c is bounded from H σ (0, ∞) to H σ+(1-α) (0, ∞), (3.19
) and a standard bootstrap argument ensure the desired conclusion.

We remark that, by using [His00, Lemma 5.1] (which can be modified in order to get ride of the term 1 2 in its assumption (i)), necessarily a < (1 -ε) 2 -E 2 for the above lemma to hold true. Corollary 6. Assume that φ sc,el,am are as in Lemma 5. Let E be an isolated eigenvalue of H κ of finite multiplicity with associated eigenspace E. Let L N M be defined by (3.9). For b > 0 large enough and independent of N or M, we can always find a sequence λ N M ∈ Spec 2 (H κ , L N M ), such that (3.17) holds true if q < 5/4.

Proof. Let v ∈ E be as in the proof of Corollary 4. We show that

(3.20) ∞ k=0 (2k + 1) 2q | v j , Φ k | 2 < ∞, for j = 1, 2. Let F = (∂ r -r).
Integration by parts and (3.10), yield

v j , Φ k = 1 c 2k+1 ∞ 0 v j (r)h 2k+1 (r)e -r 2 2 dr = 1 2(2k + 2)c 2k+1 ∞ 0 v j (r)h ′ 2k+2 (r)e -r 2 2 dr = -1 2(2k + 2)c 2k+1 ∞ 0 F v j (r)h 2k+2 (r)e -r 2 2 dr = 1 2 2 (2k + 2)(2k + 3)c 2k+1 ∞ 0 F v j (r)h ′ 2k+3 (r)e -r 2 2 dr = 1 2 2 (2k + 2)(2k + 3)c 2k+1 ∞ 0 F 2 v j (r)h 2k+3 (r)e -r 2 2 dr = -1 2 3 (2k + 2)(2k + 3)(2k + 4)c 2k+1 F 2 v j (0)h 2k+4 (0) + ∞ 0 F 3 v j (r)h 2k+4 (r)e -r 2 2 dr = -F 2 v j (0)h 2k+4 (0) 2 3 (2k + 2)(2k + 3)(2k + 4)c 2k+1 + ∞ 0 F 4 v j (r)h 2k+5 (r)e -r 2 2 dr 2 4 (2k + 2) . . . (2k + 5)c 2k+1 = a 1 + a 2 .
Identity (3.12) alongside with the fact that |F 2 v j (0)| < ∞ (see Lemma 5) and the Stirling formula, ensures that a 1 ∼ n -7/4 as n → ∞. On the other hand, Lemma 5 ensures that F 4 v j ∈ L 2 (0, ∞). Thus, since c 2k+5 2 4 (2k + 2) . . .

(2k + 5)c 2k+1 ∼ n -2 , a 2 = O(n -2 ) as n → ∞.
This guarantees (3.20) for q < 5/4.

According to this corollary, for smooth potentials, the order of approximation of the quadratic projection method to any eigenvalue E of H κ should be at least a power 1/8 of the dimension of L M N . The numerical experiment performed in Section 3.3 show that this bound improves substantially for particular potentials. See Figure 8 (right) and Table 5 

(right).

Remark 4. The arguments involved in the proof of this theorem show that, the behaviour of the wave functions at the singularity and its regularity are the main ingredients responsible for controlling the speed of approximation when using a Hermite basis (3.9).

Some numerical experiments

We now report on various numerical experiments performed for very simple radially symmetric potentials. It is not our intention to show accurate computations, but rather to illustrate how the method discussed in Section 3 can be implemented in order to rigourously enclose eigenvalues and compute eigenfunctions of the Dirac operator. 4.1. Ground state of the purely coulombic potential. We begin by considering the analytically solvable case of V being a radially symmetric purely coulombic potential: φ sc = φ am = 0, φ el (r) = γ/r. Here -√ 3/2 < γ < 0. The eigenvalues of H κ are given explicitly by (4.1)

E j = 1 + γ 2 (j + κ 2 -γ 2 ) 2 -1/2 .
Note that E j → 1 as j → ∞ for all values of κ. The ground state of the full coulombic Dirac operator H is achieved when κ = -1 and j = 0.

In Figure 1 we superimpose the computation of Spec 2 (H -1 , L n ) for two values of n, in a narrow box near the interval [-3, 3]. Here L n is given by (3.9). For the set of parameters considered (κ = -1 and γ = -1/2), (4.1) yields E 0 ≈ 0.866025, E 1 ≈ 0.965925, E 2 ≈ 0.9851210, E 3 ≈ 0.99174012 and E 4 ≈ 0.9947623. A two sided approximation of E 0 is achieved from the point λ ∈ Spec 2 (H -1 , L 1000 ) at λ ≈ 0.8661+0.0236i. According to (3.2), there should be an eigenvalue of H -1 in the interval [0.8661-0.0236, 0.8661+0.0236]. This eigenvalue happens to be E 0 . For E 1 , E 2 and the pair (E 3 , E 4 ), we can also derive similar conclusions. Note that Spec ess (H -1 ) is also revealed by points of Spec 2 (H -1 , L n ) seemingly accumulating at (-∞, -1] ∪ [1, ∞).

In Figure 2 we show approximation of the corresponding ground wave function associated with E 0 . We have also depicted the analytical eigenfunction:

(4.2) u 0 (r) = ν 0 γ (1 -γ 2 ) 1/2 -1 r √ 1-γ 2 e -(γE 0 / √ 1-γ 2 )r ,
where ν 0 is chosen so that u 0 = 1. From this picture it is clear that, at least qualitatively, u 0 (r) seems to be captured quite well even for small values of n.

We show a quantitative analysis of the calculation of u 0 in Table 3. In the middle column we compute the residual on the left of (3.4) and on the last column we compute the right hand side of (3.4). It is quite remarkable that the actual residuals are over 74% smaller than the error predicted by Theorem 1. 4.2. β-Dependence of the sub-coulombic potential. We now investigate the case of the potential being radially symmetric and subcoulombic: φ sc = φ am = 0, φ el (r) = γ/r β for β ∈ (0, 1). Here -1 < γ < 0. The purpose of this experiment is to show how Theorem 1 provides a priori information about Spec disc (H κ ) even for small values of n. Note that (1.2) is guaranteed from [Tha92, Theorems 4.7 and 4.17]. Furthermore H has infinitely many eigenvalues according to [START_REF] Thaller | The Dirac Equation[END_REF]Theorem 4.23].

In Figure 3, we show computation of the ground state of H -1 , for β = 0.1 : 0.1 : 1 and γ = -1/2. As β → 1 -, E 0 → 0.8661, the ground eigenvalue of the coulombic Dirac operator. As β → 0 + the eigenvalue remains above 1/2. Note that the family of operators H κ is not analytic at β = 0 for this potential. For β = 0 the spectrum becomes

Spec(H κ ) = (-∞, -3/2] ∪ [1/2, ∞).
The vertical bars show | Im(λ)|, the maximum error in the computation of E 0 ≈ Re(λ) given by Theorem 1. For this example we have chosen n = 15. Table 4 contains the data depicted in Figure 2. Observe that the error increases as β → 0 + and β → 1 -. This seems to be a consequence of the fact that E 0 becomes closer to other spectral points at both limits, so d E 0 → 0. 4.3. The inverse harmonic electric potential. In this set of experiments we consider another canonical example in the theory of Dirac operators: φ sc = φ am = 0, φ el (r) = γ/(1 + r 2 ) for γ < 0. The discrete spectrum of H is known to be finite for -1/8 < γ < 0 and infinite for γ < -1/8, [START_REF] Klaus | On the point spectrum of Dirac operators[END_REF]. As the parameter γ decreases, we expect that eigenvalues will appear at the threshold 1, move through the gap, and leave it at -1. This dynamics is shown in Figure 4, for the ground eigenvalue of H -1 . It is a long standing question whether the eigenvalues become resonances when they re-enter the spectrum.

In Figure 5 we depict the first three eigenfunctions of H -1 for γ = -4. They correspond to the eigenvalues E 0 ≈ -0.3955, E 1 ≈ 0.6049 and E 2 ≈ 0.9328. See also Figure 7. Note that for γ = -4, both components of the eigenfunctions appear to obey a Sturm-Liouville type oscillation hierarchy. 4.4. Upper/lower spinor component balance and approximation of eigenvalues. We now investigate the effects of "unbalancing" the basis by choosing N = M.

In Figure 6, we have performed the following experiment. Fix the number of degrees of freedom, dim(L M N ) = 200. Then for N = 10 : 5 : 190 and M = 200 -N, use the quadratic method as well as the Galerkin method to approximate eigenvalues of H κ in the spectral gap (-1, 1). We firstly consider φ sc = φ am = 0 and φ el (r) = -1/(2r).

The Galerkin method might or might not produce spurious eigenvalues. The quadratic method will always provide two-sided non-polluted bounds for the true eigenvalues with a residual, obtained from (3.2), which might change with N. See also figures 4 and 6. The Galerkin method appears to pollute heavily near the upper end of the gap for N > M, as predicted by the considerations of Section 2. Moreover, for the ground state, the minimal | Im(λ)| is not achieved at N = 100 which corresponds to N = M, but rather at some N > 100. It is remarkable that the residual are reduced significantly (up to 66% for the true residual) when M(N)/N ≈ 1/5.

If we performed the analogous experiment for the inverse harmonic potential, the conclusion are also rather surprising. See Figure 7. The Galerkin method appears to pollute heavily near the upper end of the gap for N > M as predicted in Section 2. However, now the approximation is improved by over 16% for E 0 and over 18% for

E 1 , if M(N)/N ≈ 3.
We can explain these phenomena by considering the relation between the components of the exact eigenvectors.

In the case of a purely coulombic potential, the ground state is given by (4.2) where ν 0 is a real constant. The lower spinor component just differs from the upper one by a scalar factor. When γ ∈ (0, 1), the lower component is smaller in modulus than the upper one. Choosing N > M, can reduce an upper bound of the residual associated to the first component, while the residual associated to the second component remains small due to the smallness of the lower component.

In the case of an inverse harmonic purely electric potential, this argument fails, as the two spinor components of the eigenfunction are not a scalar factor of each other, see Figure 5. If we denote an eigenfunction by u = (u upp , u low ), the figure suggests that |∂ 2 r u upp (0

)| << |∂ 2 r u low (0)|. As |∂ 2 r Φ k (0)| = 0
, it is natural to expect that a decrease in the residual is only achieved by choosing a suitable M > N.

Remark 5. Although we can not prove it rigourously, strong evidence suggests that (for any of the potentials considered above) no spurious eigenvalue is produced by the Galerkin method when N = M. Why bothering then with more complicated procedures, such as the quadratic projection method, to avoid inexistent spectral pollution. A partial answer is, on the one hand, robustness: we do not know a priori whether the Galerkin method pollutes for a given basis. On the other hand, as the experiments of this section suggest, some times forcing a kinetic unbalance into a model might improve convergence properties. 4.5. Convergence properties of the odd Hermite basis. A convergence analysis, as the number of degrees of freedom increases, can be found in Figure 8 and Table 5. Due to the discussion of Section 4.4, we consider this for different ratios N/M.

The right graph shows that the conclusion of Corollary 6 is far from optimal for the inverse harmonic potential of Section 4.3. As expected from Section 4.4, a faster convergence rate as well as smaller residuals are found if we suitably choose N < M.

The left graph corresponds to the coulombic potential discussed in Section 4.1. It clearly shows that the order of convergence of λ n → E does not obey the estimate |λ n -E| ≤ O(n -a ) (for some a > 0) of Corollary 4. In fact the convergence rate seems to decrease as we increase the number of degrees of freedom. This reduction in the speed of convergence can be prevented by putting M = f (N) for a suitable nonlinear increasing function 0 < f (x) < x. The optimal f (x), however, might depend on the eigenvalue to be approximated. Remark 6. According to Remark 2, the actual approximate eigenvalue Re(λ) is correct up to O(n -2a ), where a is the second column of Table 5. Furthermore, note that, in the case of the coulombic potential we can compute directly the true residual | Re(λ) -E|. From Figure 6 bottom, it is clear that this true residual is substantially smaller than the one estimated by | Im(λ)|.

Appendix A. Entries of the matrix polynomial coefficients

The recursive identities satisfied by the Hermite functions allow us to find recursive expressions for the matrix entries of K and L in (3.1) when G = H κ . Rather than estimating the corresponding inner products by trapezoidal rules, we build the codes involved in the numerical experiments performed in Section 4 using these explicit expressions. As large factors are cancelled in these explicit expressions, this approach turns out to be far more accurate. Since some of the calculations are not entirely trivial, we include here the crucial details.

Let

T 1 = ∞ 0 Φ k (r)Φ j (r) dr, T 2 (k, j) = ∞ 0 Φ ′ k (r)Φ j (r) dr, T 3 = ∞ 0 1 r Φ k (r)Φ j (r) dr, T 4 = ∞ 0 Φ ′ k (r)Φ ′ j (r) dr, T 5 (k, j) = ∞ 0 1 r Φ ′ k (r)Φ j (r) dr, T 6 = ∞ 0 1 r 2 Φ k (r)Φ j (r) dr, F 1 = ∞ 0 φ el (r)Φ k (r)Φ j (r) dr, F 2 = ∞ 0 φ 2 el (r)Φ k (r)Φ j (r) dr, F 3 = ∞ 0 φ el (r) r Φ k (r)Φ j (r) dr, F 4 (k, j) = ∞ 0 φ el (r)Φ ′ k (r)Φ j (r) dr.
Here and below we stress the dependence on j, k when the coefficient is not symmetric with respect to these indices. Denote

Ψ k,1 = Φ k 0 , Ψ j,2 = 0 Φ j .
Then H κ Ψ kl , Ψ jm are given according to Table 1 and H κ Ψ kl , H κ Ψ jm are given according to Table 2.

m = 1 m = 2 l = 1 T 1 + F 1 T 2 (k, j) + κT 3 l = 2 -T 2 (k, j) + κT 3 -T 1 + F 1 Table 1. Term H κ Ψ kl , Ψ jm .
For m, n ∈ N ∪ 0, let

P (n) = n l=1 1 + 1 2l n = 0 1 n = 0 m = 1 m = 2 l = 1 T 1 + T 4 + κT 5 (k, j) + κT 5 (j, k)+ -T 2 (k, j) -T 2 (j, k) + 2κF 3 + κ 2 T 6 + 2F 1 + F 2 F 4 (k, j) -F 4 (j, k) l = 2 -T 2 (k, j) -T 2 (j, k) + 2κF 3 + T 1 + T 4 -κT 5 (k, j) -κT 5 (j, k)+ -F 4 (k, j) + F 4 (j, k) κ 2 T 6 -2F 1 + F 2 Table 2. Term H κ Ψ kl , H κ Ψ jm . and (A.1) I(m, n) = 1 c m c n ∞ 0 h m (r)h n (r)e -r 2 dr. Lemma 7. I(m, n) =    δ mn m ≡ n (mod 2) (-1) k-j+1 √ 2P (k)P (j) (2k-2j-1) √ π(2k+1) m = 2k, n = 2j + 1.
Proof. If m ≡ n (mod 2), then h m (r)h n (r) is an even function for r ∈ R and so

∞ 0 h m (r)h n (r)e -r 2 dr = 1 2 ∞ -∞
h m (r)h n (r)e -r 2 dr.

On the other hand, if m ≡ n (mod 2), say m = 2k and n = 2j + 1, (3.10) and integration by parts yield

∞ 0 h 2k (r)h 2j+1 (r)e -r 2 dr = ∞ 0 h 2j+1 (r)(e -r 2 ) (2k) dr = - ∞ 0 h ′ 2j+1 (r)(e -r 2 ) (2k-1) dr = -2(2j + 1) ∞ 0 h 2j (r)(e -r 2 ) (2k-1) dr = 2 2 (j + 1)(2k -1) ∞ 0 h 2k-2 (r)h 2j-1 (r)e -r 2 dr.
The corresponding expression for I(m, n) can be obtained in a straightforward manner from these two assertions.

Lemma 8.

T 1 (k, j) = δ jk , T 2 (k, j) = 4(-1) k-j+1 (k -j) √ π(2k -2j -1)(2k -2j + 1) P (j)P (k),

T 3 (k, j) = 2(-1) k-j+1 P (j) √ π P (k) k m=0 P (m) (2m + 1)(2m -2j -1) , T 4 (k, j) = 1 2        -2k(2k + 1) j = k -1 4k + 3 j = k -(2k + 2)(2k + 3) j = k + 1 0 otherwise, T 5 (k, j) =      2(-1) j-k P (k) P (j) k < j 1 k = j 0 k > j, T 6 (k, j) = (-1) j-k 2    P (j) P (k) j ≤ k P (k) P (j) k < j.
Proof. Let I(m, n) be given by (A.1). By virtue of identities (3.10) and (3.11),

∞ 0 h ′ 2k+1 h 2j+1 e -r 2 dr = (2k + 1)I(2k, 2j + 1) -2 -1 I(2k + 2, 2j + 1), ∞ 0 1 r h 2k+1 h 2j+1 e -r 2 dr = k l=0 (-1) l 2 2l+1 k! (k -l)! I(2(k -l), 2j + 1).
This yields T 2 and T 3 . Let

J(k, j) = ∞ 0 1 r h 2k h 2j+1 e -r 2 dr. Then J(k, j) = √ π2 2j (2k)!(-1) j-k j! k! k ≤ j 0 k > j and ∞ 0 1 r h ′ 2k+1 h 2j+1 e -r 2 dr = 2(2k + 1)J(k, j) -δ kj √ π2 k (2k + 1)!.
This renders T 5 . Moreover, integration by parts ensures

T 6 = ∞ 0 1 r 2 Φ k Φ j = - ∞ 0 1 r ′ Φ k Φ j = T 5 (k, j) + T 5 (j, k) .
The expression for T 4 follows from (3.13) and the identity

∞ 0 Φ ′ k (r)Φ ′ j (r) dr = 1 2 ∞ -∞ -Φ ′′ k (r)Φ j (r) dr.
From E 1 and E 2 in the next lemma, one easily obtains explicit formulae for F n when φ el (r) = γ/r β . Lemma 9. For β ∈ [0, 1] and α ∈ [-1, 2], let

E 1 (β, k, j) = ∞ 0 1 r β Φ ′ k (r)Φ j (r) dr, E 2 (α, k, j) = ∞ 0 1 r α Φ k (r)Φ j (r) dr.
Then

E 1 (β, k, j) = (2j+1)E 2 (β+1, k, j)+ 2(2j + 1)jE 2 (β+1, k, j-1)-E 2 (β-1, k, j)
and

E 2 (α, k, j) = 2P (j)P (k)(-1) k+j √ π k,j m,p=1 (-1) m+p Γ( 3-α 2 + m + p) k m j p m!p!P (m)P (p) . Proof. Let S n (k) = c -1 2k+1 (2k + 1)! (-1) k-n 2 2n+1 (k -n)!(2n + 1)! . Then c -1 2k+1 h 2k+1 (r) = k n=0 S n (k)r 2n+1 and E 2 (α, k, j) = k,j m,p=1 S m (k)S p (j)K(α, m, p)
where

K(α, m, p) = ∞ 0 1 r α r 2m+1 r 2p+1 e -r 2 dr = 1 2 Γ 3 -α 2 + m + p .
On the other hand, the expression for E 1 follows from applying (3.10) and (3.11).

If E 3 and E 4 are as in the following lemma and φ el (r) = 1 1+r 2 , then

F 1 (k, j) = E 3 (2k + 1, 2j + 1), F 2 (k, j) = 1 2 2k + 1 2 E 4 (2k, 2j + 1) + 2j + 1 2 E 4 (2k + 1, 2j) - √ k + 1E 4 (2k + 2, 2j + 1) -j + 1E 4 (2k + 1, 2j + 2)+ E 3 (2k + 1, 2j + 1) , F 3 (k, j) = T 3 (k, j) - 2k + 1 2 E 3 (2k, 2j + 1) - √ k + 1E 3 (2k + 2, 2j + 1), F 4 (k, j) = 2k + 1 2 E 3 (2k, 2j + 1) - √ k + 1E 3 (2k + 2, 2j + 1).
Lemma 10. For m, n ∈ N ∪ {0}, let I(m, n) be as in Lemma 7,

E 3 (m, n) = 1 c m c n ∞ 0 1 1 + r 2 h m (r)h n (r)e -r 2 dr, E 4 (m, n) = 1 c m c n ∞ 0 r 1 + r 2 h m (r)h n (r)e -r 2 dr. Then E 3 (0, 0) = 2e 1 0 e -t 2 dt + e √ π, E 4 (0, 0) = e √ π ∞ 1 e -t t dt, E 3 (m + 1, 0) = 1 √ m + 1 E 4 (m, 0) - √ mE 3 (m -1, 0) , E 4 (m + 1, 0) = 1 √ m + 1 √ 2I(m, 0) - √ 2E 3 (m, 0) - √ mE 4 (m -1, 0) , E 3 (m + 1, n + 1) = 1 (m + 1)(n + 1) 2I(m, n) -2E 3 (m, n)+ - √ 2mE 4 (m -1, n) - √ 2nE 4 (m, n -1) + √ mnE 3 (m -1, n -1) E 4 (m + 1, n + 1) = 1 (m + 1)(n + 1) 2(n + 1)I(m, n + 1) -2E 4 (m, n)+ √ 2nE 3 (m, n -1) - √ 2mE 4 (m -1, n) + √ mnE 3 (m -1, n -1) .
Proof. The recursions for E 3 and E 4 , follow from (3.11). 1 -γ 2 ≈ 0.866025. We have deliberately chosen small dimensions n for the test spaces, in order to illustrate approximation of the method. The residual error is actually much smaller that the one predicted by Theorem 1, see Table 3. 5. In this table we fit by least squares the data of Figure 8 
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Figure 1 .Figure 2 .

 12 Figure1. Portion of Spec 2 (H -1 , L n ) in thin boxes around[-3, 3] for the purely coulombic potential with γ = -1/2. The bottom image shows details of the picture near 1. Here we superimpose two values of n, 500 and 1000. According to Theorem 1 there are approximate energy states at E ≈ 0.8661 ± 0.0236, E ≈ 0.9662 ± 0.0086 and E ≈ 0.9853 ± 0.0041. These correspond to the actual eigenvalues E 0 ≈ 0.866025, E 1 ≈ 0.965925 and E 2 ≈ 0.985121.

Figure 4 .Figure 5 .Figure 6 .Figure 7 .

 4567 Figure 4. The graph captures the evolution of E 0 as it crosses the spectral gap of H -1 where φ el (r) = γ/(1 + r 2 ) for γ = -5 : .5 : 0. We consider three choices of pairs (N, M) such that dim(L N M ) = 120. The curve corresponds to Re(λ n ) for λ = λ n in (3.4) and (3.15). The vertical bars on the curve measure | Im(λ n )| . We superimpose the image with the eigenvalues of L in (3.1) for G = H -1 , that is the Galerkin approximation.

Figure 8 .

 8 Figure 8. Log-log plots of | Im(λ)| for Re(λ) close to an eigenvalue, E 0 , for different choices of pairs (N, M)as n = N + M increases. Left: κ = -1, φ el (r) = -1 2r and E 0 ≈ 0.86602. Right: κ = -1, φ el (r) = -21+r 2 and E 0 ≈ 0.61399. See Table5.

  and find a and b such that|λ n -E 0 | ≤ | Im(λ n )| ∼ bn a for n = N + M.

Table 3 .

 3 Here we compare both sides of (3.4), for the computation of the approximate eigenfunctions of Figure 2. We approximate d E = E 1 -E 0 ≈ 0.0999004. Computation of the ground energy value for H -1 and φ el (r) = -1 2r β . We depict E 0 against β. The vertical bars correspond to the error predicted by Theorem 1.

	0.176115 0.680599
	25 0.084527 0.514205
	35 0.072552 0.457034

Table 4 .

 4 Data depicted in Figure3
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