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Abstract

This paper considers the problem of recovering a sparselsigpresentation according to a signal
dictionary. This problem is usually formalized as a peralizeast-squares problem in which sparsity is
usually induced by &;-norm penalty on the coefficient. Such an approach knownekaksoor Basis
Pursuit Denoisinghas been shown to perform reasonably well in some situatidawever, it has also
been proved that non-convex penalties lienorm with ¢ < 1 or SCAD penalty are able to recover
sparsity in a more efficient way than the Lasso. Several élgos have been proposed for solving the
resulting non-convex least-squares problem. This papmrgzes a generic algorithm to address such a
sparsity recovery problem with non-convex penalty. Themwintribution is that our methodology is
based on an iterative algorithm which solves at each iraticonvexweighted Lasso problem. It relies
on the decomposition of the non-convex penalty into a défiee of convex functions. This allows us
to apply difference of convex functions programming whistaigeneric and principled way for solving
non-smooth and non-convex optimization problem. We alsovdhat several algorithms in the literature
which solve such a problem are particular cases of our algoriExperimental results then demonstrate

that our method performs better than previously proposgdrihms.

I. INTRODUCTION

“Entia non sunt multiplicanda praeter necessitatem” is aestant attributed to tha4"™ century
philosopher, William of Occam. It is known as the Occam’soraprinciple. Roughly translated, this
principle becomes “entities should not be multiplied beyoecessity” and it is usually interpreted as a
preference for simple models rather than complex ones fplaaing a given phenomenon. This quest

for simple models, where simple is understood as sparséllipissued by many researchers in various
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domains where sparsity plays a key role. Indeed, recovesjiagse representation is of great interest in
the signal processing and the machine learning communigytdithe profileration of communications
technologies and the huge data streams that are now aeailabl

For instance, in several signal processing applications, looks for a sparse signal representation
according to a dictionary of elementary signals (waveleyrter, ...). Such a problem of sparsity recovery
arises for instance in compressed sensing problems [6], [14

Similarly, supervised machine learning problems are ofeéasing size both in terms of number of
examples and in dimensionality. In such a context, variablection becomes a core issue for knowledge

discovery and for building predictive model in high-dimemsal data space [3].

A. Problem formulation

Sparse approximation problems or variable selection pnoblare usually posed as the following

mathematical programming problem :

1
min - |y — X8|2 + \||8 1
%ﬁgw 17+ AllBllo (1)

wherey € R, 8 € R¢ andX an x d matrix. Within a sparse signal approximation contéktwould
be a matrix which columns are the elements of signal dictiprend y the target signal, while for a
machine learning problenX would be the observations-variables matrix gnthe target output.
Optimization problem (1) involves a term which measures gbedness of the approximation (the
least-squares term), a terjy8||o which measures the solution sparsity by counting the nurobeon-
zero components i and a trade-off parameterc R* that balances these two terms. This problem can
be understood as a penalized least-squares where the aitsnplethe model is related to the number of
variables involved in the model. However, since fhé, penalty function is non-convex, solving problem
(1) is NP-hard and hardly tractable whéeris large. Hence in order to overcome such an issue, several
works [34], [28], [7], [35] have proposed to relax the prohlend instead to consider the following
convex optimization problem :

1
&@jW—XMF+WMh (2)

This latter problem, known as theassq has been introduced in the nineties by Tibshirani [34] d@rhs
also been independently proposed by Chen et al. [11] aBalsés Pursuit Denoisingroblem. Since its
introduction, the Lasso problem has been of increasing poipyl This success story comes from the fact

that the problem can be easily solved either by quadratigrproming approach [34], [36], homotopy
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approaches [29], coordinate wise optimization [19], ordigat projection method [17]. Furthermore,
some theoretical arguments support the Lasso and stateritlat aertain conditions variable selection
with the Lasso can be consistent [41], [26]. Other works siethase proposed by Donoho et al. [12],
[13] and Tropp [35] have proved that in certain situatiors@hpenalization is able to recover the sparsity
profile of the true coefficienB™*.

However, Fan and Li [16] provided some arguments against tlsd,asince they have shown that
the /1 penalty associated to the Lasso tends to produce biasedaestifior large coefficients. They thus
suggested to replace tlie penalty with other penalty functions that lead to sparsewarlased models.
For these purposes, they advocate that penalty functiomsidibe singular at the origin for achieving
sparsity (the same argument was also developed in [2], 2¥])should be so that their derivatives vanish

for large values. These two conditions lead then to the faligeimore general) optimization problem

d
1 2
min 5 [ly - X0 +jZlgA (16;1) (3)
which involves a non-smooth and non-convex penalty funcgg(-) instead of the/; regularization
term. For some reasons that will be made clear on the seaqstbaid of problem (3), we will consider
the following equivalent problem, obtained by splitting into the difference of two positive terms
B =B — 87
1 2 d
in_ oy - X" - 80"+ Y e (87 +67) (4)

ﬁ+rg—eRd 5 -
El le

st B >0, 8720, Vj=1,---.d

where the vector@™ and 3~ are respectively composed of tkifgf and B -

B. Usual non-convex penalties

In this subsection, we focus on usual non-convex penaltiepgsed in the literature for recovering
sparsity from equation (3). Table | and Figure 1 give an owswwof the below-mentioned penalties (as
well as other classical convex penalties).

Historically, one of the first non-convex penalty functionedsfor sparse approximation was the
Smoothly Clipped Absolute Deviation (SCAD) penalty (see &dhl Indeed, after having highlighted the
drawbacks of the; penalty, Fan and Li [16] proposed such a penalty to circunsveasso weak points.
They then proved that the resulting estimate has interegtiegretical properties such as unbiasness.

Among all other penalty functions which lead to sparsityopylar one is the so-called Bridge penalty

function also known as th&, pseudo-norm whefl < ¢ < 1 (see table I). This type of penalty has been
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firstly used by Frank and Friedman [18] and Fu [20]. It has been showprovide sparser solutions than
the Lasso. For instance, Knight and Fu [24] provided a thezaetesult which justifies the use of such a
penalty for variable selection. Due to recent interestssfiarse approximations and compressed sensing,
other works have brought back the attention/gipenalty [9], [31]. Despite the difficulties raised by the
optimization problem, some theoretical guarantees canrdeeg when using, penalty [22], [24].

Another popular non-convex penalty is the logarithm pgnélamed in the sequel log penalty). This
penalty was used as an approximation of {j#gl, pseudo-norm by Weston et al. in a context of variable
selection [37]. For sparse signal approximations, @anet al. [8] have also investigated the use of this
log penalty and empirically proves the nice capability of tlesulting estimator for recovering sparsity.
As depicted in Table I, for this log penalty, we shift the dméénts by a small valu® < ¢ <« 1 to
avoid infinite value when the parameter vanishes. The contgamt—\log(c) ensures that the penalty
function is non-negative and avoids the trivial soluti@r= 0 to problem (3).

Finally, we can consider another non-convex penalty, we daaseZhang's penalty. It corresponds to
an interpretation of a two-stage reweightedenalized optimization problem. The first stage corresponds
to the genuine Lasso whereas the second stage correspontdagsaafor which large parameters are not

penalized anymore [39]. This penalty can also be seen as a lapproximation of the SCAD penalty.

L, Penalty L. Penalty SCAD Penalty
2 : 0.35
4 2
35 03
3 15 0.25
> > >
= 2 = 1 T
E] El g o1s
S 15 & a
0.1
1 05
05 0.05
0, 0, 0
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Parameter B Parameter B Parameter B
Concave L_Penalty (g=0.5) Logarithm Penalty: A log(|B| + €)— A log(e) Zhang Penalty
q 20 0.35
15
03
15 0.25
a ! [ a
g = § 0.2
2 210 =
< g g o1s
[ [ [
o o o
05 0.1
5 .
0.05
0, 0, 0
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Fig. 1. lllustration of some common penalty functions described in Table I.
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TABLE |

SOME EXAMPLES OF USUAL PENALTY FUNCTIONS

Penalty Formula

Ridge g\ (B;) = \B;/?

Lasso g\ (8;) = A5l

AlBj] 13| <A
SCAD (1) = | PRI <y <0
% |85 > aX
lq gr(B5) = ABile, 0<g<1

Log & (f;) = Alog(|B;] + ) — Alog(e)

MGl i8] <n
Zhang g\ (83;) =

An otherwise

C. Previous algorithms for solving least-squares with nomex penalties

Using non-convex penalties instead of convex ones leadssfmaeser estimatiop at the expense of
introducing a more challenging optimization problem. IistBubsection, we briefly review some of the
algorithms available in the literature for solving (3) whegn(-) is non-convex.

When dealing with the SCAD penalty, Fan and Li [16] initializéir method with the least-squares
solution. Then they locally approximated the non-convexaftgrfunction with a quadratic function and
a single Newton step is used for optimizing the resultingeotiye function. In the same flavor, Zou and
Li [43] suggested to replace the local quadratic with a logaddr approximation (LLA) of the penalty
function leading to a one-step linear local approximatistingator. Note that since these two algorithms
are initialized with the least-squares solution, they asgeatially restricted to situations whefe< n.

Following a discussion on the one-step SCAD estimate of Zoularjd3], Bihlmann and Meier [5]
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have suggested that multi-step LLA can be used for improvirags#fy of the solution. Indeed, they
introduced a weighted multi-step Lasso, for which weightpemel on both current solution and on
user-defined regularization parameters.

When considering thé, with ¢ < 1, the functiong, (3;) is not differentiable as soon as its argu-
ment vanishes. To deal with this issue, Huang et al. [22] lmeposed a parameterized differentiable
approximation of the/, penalty. The approximation has been built so that it congetgeards the/,
function as the parameter goes (o For solving the resulting optimization problem, the authase
a gradient descent technique. In the context of compressesirgy, Chartrand et al. [10], [31] use an
iteratively reweighted least-squares algorithm. As a sioigribution, they also investigate the properties
of a reweighted’; algorithm.

A reweighting procedure is also the main algorithm propaseithe literature for solving problem (3)
with a log penalty. Indeed, Cagéd et al. [8] have used a linear approximation of the log pereld then
have iteratively solved a weighteq-penalized optimization problem. At each step, the weiglesend

on the log penalty derivative at the current solution.

D. Our contribution

Most of the above-described algorithms are actually basgd@same idea: using an iterative reweighted
£1 or ¢5 algorithms for solving the non-convex problem. Some autpoopose to use only few iterations
(one or two steps) while other researchers suggest toeteratl a stopping criterion is met. While it is
clear that a single iteration is computationally cheap,dpgmality of such a scheme is disputable since
convergence to a local or global minimum of the optimizagwoblem is not guaranteed.UBImann et
Meier [5] have proposed a full iterative scheme but they dofitdheir algorithm into any optimization
problem so it is not clear which kind of non-convex penaltgytiare using in problem (3). Furthermore,
as stated by Card et al. [8] in his concluding remarks, one of the main drakbaf a reweighted’;
scheme is its lack of convergence guarantee.

In this paper, we propose a general algorithmic frameworksfiving the non-convex problem (3)
or (4) resulting from the use of non-convex penalties. Ther@ggh relies on Difference of Convex
(DC) functions programming [21]. Such a principled method dddressing non-convexity consists in
decomposing a non-convex objective function into the diffiee of convex functions, and then in solving
the resulting problem through a primal-dual approach.

Owing to such a framework, our main purposes in this papettae to :
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« develop a generic algorithm for solving non-convex Lasgietyroblems through an iterative convex
scheme based on reweighted Lasso,

» show that by fitting a reweighted algorithm into a proper frammek, we can get some theoretical
guarantees about its convergence and give then a positveearno an open issue raised by Casd
et al. [8],

» give empirical evidence that using our DC programming apgioleads to better performance in
terms of sparsity recovery compared to the one-step afgositlike the one of Zou and Li [43],

« show that many of the above-described algorithms are dgtpaiticular cases of the methodology

we propose.

The paper is organized as follows: Section Il presents ourrighgo for solving such a non-convex
Lasso-like problem. After having introduced the DC prograngnand its convergence properties, its
application to our non-convex problem (4) yielding a reviégl Lasso algorithm is detailed. The
algorithms used to solve each iteration of the DC programgndre also presented. The links of our
algorithm with existing procedures are highlighted in Sactlll. In section IV, empirical results are
reported with comparison to the previously mentioned atlyors. Conclusions and perspectives of this
work are discussed in Section V. The software related to thikwaod used for producing all the figures

will be released on the author’'s website.

II. DC PROGRAMMING FOR LASSGTYPE PROBLEMS

Due to the non-convexity of functiog, (-), solving Problem (4) is not an easy task. We address this
difficulty by using an iterative procedure known as DC (Diffiece of Convex functions) programming
[21]. This section introduces our algorithm used for solvimgblem (4). Before delving into the details,
we start by reviewing some important notions about DC pnogning that will be useful for developing

our algorithm.

A. Difference of Convex functions Algorithm

Let us consider the general minimization problem

min J(3) (5)

BeR4

where J(-) is a non-convex (possibly non-smooth) criterion. The magaidf DC programming [21] is
to decomposeJ/(-) as:

J(B) = J1(B) — J2(B) (6)
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Algorithm 1 DC Algorithm
Sett = 0 and an initial estimatior8’ € dom J;

with dom J; = {B € R? : J;1(B) < oo}
repeat
(Dy) Determinea! € 0.J5(3")
(P)) Determines'™ € 9.J; (o)
t=t+1

until convergence

where J(-) and Jy(-) are lower semi-continuous, proper convex functionsRSn Then, according to

duality properties, it can be shown that the dual of the mimdttion problem is given by

min J5 (o) — Jj () (7)

acRd
where J; and J; are respectively the conjugate function.of and .J, and they are defined as

Jip(a) = sup {(B,c) = Jk(B)}  k={1,2}

BeRd

The DC approach is a robust algorithm based on an iteratiie-chke consisting in iteratively optimizing
the primal (5)-(6) and dual (7) problems. The algorithm we igsa simplified version of the complete
DC algorithm [21] and it can be summarized as follows.

From an initial estimatior’, the algorithm consists in building two sequené@};cn and {a!}sen
as illustrated in Algorithm 1. The first step of the iteratiorives an approximation of the dual problem
(7). Indeed,0.J2(3) is the subdifferential of/; defined as

015(8)={ o € RY: Jy(w) > Jo(8) + (w—B, ), Vw € R*}
For differentiable criterion, the subdifferential is agieton so that.J»(8) = {VJ2(8)}. Using standard
results on convex optimization [30], the following equasacalso hold for a give® and o’

dJo(B") = argmin {J;(a)— (a,3)}

acRd

dJi(a’) = argmin {J;(8) — (8,&)}
BeR!

From these definitions, we can see that by replacifig) in (7) by its affine minorization/; (') +
(o —at, B") at the pointa!, the dual problem (7) becomes equivalent to fiht}(3'). Hence, choosing

an o' € 0J2(B") is equivalent to solve an approximation of problem (7). Samy, by replacing the
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convex functionJ;(3) in (6) by its affine minorization/s(3') + (3 — B', ') at the neighborhood of
3" leads to the primal probleri?;). According to all these points, the iterative primal-duasalution
of problem (5) leads to Algorithm 1.

Before explaining how we have adapted this algorithm to am-convex problem (4), we state that
the local convergence of the algorithm is guaranteed andrabgpon the adopted DC decomposition and
the initial point [33]. These convergence properties relytlom following theorem.

Theorem 1:Assume a DC decomposition of the functidras.J = J; —Jy with J1, Jo : R? — RU{co}
lower semi-continuous, proper convex functions sucll@s J; C dom J, anddom J5 C dom J} (The

finiteness of the minimum of the function implies these conditions). It holds that

(i) The sequencéB'};cn (respectively{a’}cn) is well defined or equivalentlfiorn 0.J; C dom 0.Js
(respectivelydom 0J5 C dom 0J7).
(i) The primal objective value sequendd;(3") — Jo(8")}ien (respectively dual objective value se-
quence{J3(8") — J;(8")}+en) is monotonically decreasing (resp. increasing).
(iii) If the minimum of J is finite and the sequendg3’};cn (respectively{a'};cn) is bounded, every
limit point B* (respectivelya™) is a critical point of J; — J» (respectivelyJ; — Ji), that is this

point satisfies the local optimality condition.

Remarks

(i) If the objective functionJ(-) is defined over a convex se&t c R¢, the DC framework is still
valid by applying the previous analysis to the unconstrinmenimization problem over the objective
value functionJ(83) + I'x(8) whereT'x(3) is the indicator function defined dsy(3) = 0if B €
X andT'y(B) = +oo otherwise.

(ii) Notice that Yuille and Rangarajan [38] have indeperitjeproposed a similar approach based on
a concave-convex decomposition of the objective functitihe DC algorithm is also highly related to
the surrogate maximization (or minorization-maximizajialgorithms which extend the spirit of the EM
algorithm. The basic idea is to consider a two-step algorittansurrogate step consisting in bounding
the objective function as a surrogate at the current salutiod a maximization step which yields the
next estimation of the parameters by optimizing the sut®d@anction. The key point of this approach
is the construction of the surrogate function. A recent pajpe&hang and al. [40] nicely review how to
build such a surrogate function in different machine leagnproblems. Unlike DC programming, these

related approaches do not suit to non-smooth objectivetimc
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B. Formulating Lasso-type problems as a DC program
With these elements on DC programming in hands, let us tuck teathe original optimization problem
(4). The first step for applying DC programming is to decompéseptenaltyg) (-) as the difference of

two convex functions :
gx (1) = gvex (-) — k(") (8)

Then according to this decomposition,we define

JL(BT,87) = *Hy X(B H +ngex<ﬁ +/8 )

7j=1
d
(B%,87) = Y _h(B +05;)
j=1

As we will show in the sequel, for the penalty functians(-) we use, the function is explicitly known.
Hence, at each iteratio) we are able to analytically determine an element of the iffebential o of
Jo(BT,B7). Thus, if h(-) is differentiable, we have/! = h’(ﬁ;ﬁt + Bj‘t), j=1,---,d whereas ifh(-)
is not differentiable, the procedure still holds by pickiadpitrarily any element oﬁh(ﬁ}“t +ﬂj_t) at the
points whereh is not differentiable as in [1], [25].

Now, according to the;) step of Algorithm1 and to equation (8), once! is known, the next value

of B can be found by minimizing with respects @& and 3~ the following objective function
Sy~ X8+ - ) +ngex(ﬁ + 85 ) — {85 + 67 ,ab) (©)

We then get the iterative scheme summarized by Algorithm 2.

C. DC decomposition of non-convex penalty functions

Now let us detail how we have decomposed the non-convex frenahto a difference of convex
functions. It is easy to show that for any functign(-) such a decomposition is not unique and that its
choice may be crucial in order to make the problem (9) trdetab

In this work, we have chosen a decomposition so that prob@nis(a Lasso problem. By doing so,
we are then able to adapt or re-use efficient algorithms dpeéldor the Lasso. The decomposition is

as following

guex() = Al-] (10)

h() = Al-l—-ax() (11)
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Algorithm 2 Iterative optimization based on DC programming
Set an initial estimatior8’, t = 0

repeat

Determine@™!"! and 3~**1 by minimizing
1 2 d
+_ g + . 5 t(at L -
) HY_X(IB -8 )H +j§::1gvex (ﬁj +/8j ) _Oéj(ﬁj +ﬁj )
with of = 1'(8" + ;")
t=t+1

until convergence of8

whereh(-) is a convex function. Due to the non-negativity ©f(-), we necessarily have(3) < \|3].
From Equations (10-11), we can derive the expressions(of for the non-convex penalties of Table
I. These expressions are gathered in Table Il. Graphicadtiitions of these DC decompositions are
depicted in Figure 2.

From these figures, we can note that the functibig for the log and/, penalties are actually not
convex onR. However, their restrictions on the intenvigl, are convex and since in our proble;zﬂ;L
andﬁ; are positive, our difference of convex functions decomimsistill holds for these two penalties.

This is the main reason why we consider problem (4) instead-aflem (3).

D. Solving each DC iteration

According to the proposed decomposition and the problemmditation, we now detail how each DC

iteration can be solved. At each iterationthe minimization problem is

min 5 Ly - x(8* - )| +ZA B +6;) (12)

el )
j=1
st.  fgf>0, p7>0, Vji=1,---,d

wherea} € 0h(ﬁj+t+ﬁj‘t). This supposes that at each iteration, we are able to compaigubdifferential
of h for any j;.
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TABLE I
ASSUMING gvex (8;) = A|B;| OF THEDC DECOMPOSITION THIS TABLE PRESENTS THE CORRESPONDING FUNCTIOR OF

THE NON-CONVEX PENALTIES OFTABLE I.

Penalty Expression o
0 it [5;] <A
. 2_ . 2
SCAD  hscadfj) = { ELZZARIERE X < 16;] < 0

a 2
ABj| = 22135 > aA

tq he, (B7) = A (1851 = 15;17)
Log hiog(B;) = A (1551 —log(|83;] + ) + log(e))

0 if ‘ﬂj| <n

Zhang hZhang(ﬁj) = ]
A Bj| —An  otherwise

For differentiable penalty like SCAD, the subdifferential @quivalent to the derivative. For other
penalties like the Zhang’s one, at any point where the sudgeifitial is not reduced to a singleton due
to the non-differentiability, we can set as any element of the subdifferential. Using such a tricksdoe
not harm the convergence guarantee. For penalties funtiatnare not differentiable at zero, we have
used the classical trick (used for instance, by @anet al. [8] and Chartrand et al. [31]) which consists
in adding as term to the coefficient; for avoiding a division by zero. All the subgradients we use f
the different penalties are summarized in Table IlI.

After having decomposed the coefficient vectbin order to cope with the DC programming formu-
lation, we see that problem (12) can be formulated as a wagighasso problem :

d

1

min 5 [y = XBJ* + 3 A5 (13)
j=1

where); = A — ol = X — 1'(|3}]).

Recently, several authors have proposed very efficient ighgas for ¢, penalized least-squares [23],
[19], [17]. Among all these methods, the work of Figueiredakt[17] and the one of Friedman et al.
[19] can be applied or extended to problem (13).

We extended the coordinate-wise optimization idea of Friedrat al which is known to be very
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SCAD Penalty Decomposition Zhang Penalty Decomposition
0.8 0.8
0.7 —— SCAD Penalty 0.7 —— Zhang Penalty
Convex part Convex part
0.6 - = =Function h(B) 0.6 - = =Function h(B)
n 05 n 0.5
2 N ’ £
= . K =
S 041 K S 04—\ —
5} 3, / @ \ \ /
Q03 D 0 Qoo3f % \ /
. 0 *, /
S, K AN \\ /
0.2 N \ / v 0.2 \\ \ /
AN \ / 0 D \ /
0.1 \ \. / L, 0.1 \ \. /
~ \ / . \
. \ / . \ /
0 = 0 L
-2 -1 0 1 2 -2 -1 0 1 2
Parameter Parameter
L_Penalty Decomposition Log Penalty Decomposition
q
0.8 °
R Lq Penalty 6
0.6 Convex part 4
\ - = = Function h(B)
2
0.4 8
g 0
J5
a

Penalties

0.2, ——Log Penalty

Convex part

|
IS

- - -Function h(B)
0 = ~ 3
SN -6 >
-0.2 8
-2 -1 0 1 2 -2 -1 0 1 2
Parameter Parameter B

Fig. 2. lllustration of the proposed difference of convex functionsodgmositions. From the left to the right, Top row) SCAD
penalty and Zhang penalty, Bottom ro#) and the log-penalty. For clarity sake, the plotted convex part of the logliyeis
6A[B.

efficient and competitive compared to homotopy or quadratig@mming approaches [15], [29], [34].
The algorithm we developed for solving the problem (13) isedasn coordinate-wise optimization
but takes into account the optimality constraints for délgcthe variable to optimize. This makes the
algorithm still more efficient (see for instance [32]). Earbmaparisons of this algorithm with the gradient
projection of Figueiredo et al. have shown that the latteortigm is more suited to the kind of problem
we solve and thus is more efficient. For this reason, we havieledd¢o use the code of Figueiredo et
al. which is available online on the first author website.

Note that although all algorithms which addresg, gpenalized least-squares can be used for solving
problem (13), one particularity of the global DC algorithrashto be taken into account when choosing
an algorithm for solving the weighted Lasso. Indeed, the D@ @dure iteratively solves problem (13)
several times with an update of the weightsat each iteration. Thus since, it is expected that between
two iterations the optimal coefficien#’ changes a little, it would be interesting from a computaiion
demand viewpoint that the algorithm used for solving (13) banefit from a good initialization. Both
coordinate-wise and the gradient projection algorithnesadrie to do so. Hence after the first DC iteration,

we use the solution of the previous iteration as an initian of the current one. This simple trick,
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TABLE 1l

EXPRESSION OF THE SUBDIFFERENTIAL OF THE FUNCTIONB PRESENTED INTABLE II.

Penalty Expression a¥h

0, 18] < A
SCAD  hgeed ;) = {  2A=CprDRsOi) -\ 3] < a)
Asign(3;), 185 > aA

b e, (8) = Asion(3;) (1 - ez )
’ _ . 1
Log Piog(835) = Asign(5;) (1 - W)

0 it |61 <n

Zhang  hgpand i) =
Zhangy Asign(3;) otherwise

known as warm-start technique, makes the overall algorjtrenhslightly more expensive than a one-step
Lasso resolution. Furthermore, warm-start can also be used whlving the DC problem for different

values of\.

E. Algorithm termination

For solving problem (3), we use two nested algorithms whiothineed a termination criterion in
order to get a solution in a finite time.

By writing down the Lagrangian associated to problem (13, KIKT optimality conditions are
x; (y = XB) — Ajsign(;) = 0 if  §; #0 (14)
[ (y =XB)l <A if B;=0

wherex; represents thg’” column of the matrixX. Then, we can consider a coefficient vectdias

optimal if it satisfies the KKT conditions up to a toleranceThus, we stop the Lasso algorithm when

(x] (y = XB)) = \sign(3;) <7 if 53 #0
|xJT(y—X,8)| <AN+7 if B;=0

or when we reach a maximal number of iterations. In our nuraégxperiments, we have set= 0.001.
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For the DC algorithm, we stop iterations when either the itdimorm of the coefficient vector
difference between two consecutive iterations is beldw?* or the maximal number o$0 iterations

is reached.

Ill. DISCUSSIONS

In this section, we provide some discussions about theigaldétetween our DC algorithm and other
methods for solving Lasso-type problems. We also provideesoomments about the technical issues

concerning our algorithm as well as theoretical perspestielated to our work.

A. Relations with other Lasso-type problems

As we stated in the introduction, recently they have been aflworks dealing with the Lasso problem.
For instance, Zhang has proposed a two-stage Lasso [39], Zointhaduced the adaptive Lasso [42],
while Zou and Li improved the SCAD of Fan and Li by using Local Linegpfoximation [43]. All
these approaches can be considered as particular cases gémeral way of solving the non-convex
problem when the appropriate penalty function is used.

For instance, the two-stage Lasso of Zhang consists firstlyliingpa genuine Lasso. Then according
to the resulting estimat@ and a user-defined threshald the second stage is a weighted Lasso where
the weights are

A 1B <

0 otherwise
It is easy to see that, if an initial estimatig#? = 0 is used, according to our definition of the Zhang’s
penalty and to the expression b’{hang(ﬁj), the first two DC iterations of our algorithm exactly recover
the two-stage approach of Zhang. This connection gives a mtudive interpretation of Zhang’s two-
stage Lasso. Indeed, it makes clear that the overall penalgubgests, is actually a non-convex penalty
which is a linear approximation of SCAD penalty.

SCAD penalty function is a non-convex and differentiable ction which nicely fits in our DC
algorithm. The first algorithm, proposed by Fan and Li [16] isdshen a local quadratic approximation.
This leads to an iterative ridge regression which is computatly more expensive than the Lasso and is
subject to some numerical instabilities. Recently, Zou anathviocate the use of local linear approximation
(LLA) around a least-squares initial estimatiGy,. and compute the final solution through a weighted

Lasso. Thus, Zou and Li algorithm corresponds to one-step of @ip®cedure with3" = BMC.
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In the adaptive Lasso promoted by Zou [42], the authors suggdistoretically-justified single-step

weighted Lasso. The weight of each parameigrin the penalty is set ag; o where~ is an

1
AR
user-defined hyperparameter a@tlis an initial vector solution. Owing to our DC approach, wen ca
relate the adaptive Lasso approach to a non-convex penaityidn. As far as our knowledge goes, this
relation is novel is the literature. Indeed, when consiutptihe log and the, penalty, it is easy to see
that at each iteration, the weighks in our DC iteration are given by

A Aq
(log) A; = B+ (bg) Aj = e
J J

Like the previous described algorithm, the adaptive Lassa ia particular case of our DC algorithm

(15)

using log penalty and considering only two iterations.

From the above comparisons, we note that the above-desdrédssw-type algorithms attempt to solve
a non-convex problem by using few reweighted Lasso iterati@ypically two steps). Using our DC
approach, more iterations can occur until the stopping itimndis met. Hence, our algorithm insures a
smaller optimization error owing to a better convergencehef non-convex optimization problem to a
local minimum. As stated by Bottou and Bousquet [4], optatian error may be of primary importance in
statistical estimation. Although, we have not theorelycsiudied the impact of reducing the optimization
error compared to the estimation or approximation errorhaee empirically shown in the sequel, that
using more iterations than two can considerably improvestesity estimation.

In the literature, two recent algorithms proposed by Chadrand Yin [10] and Carni et al. [8] share
the same spirit of solving a non-convex problem using aratitez reweighted scheme until complete
convergence. These algorithms was applied in the contextropoessive sensing: the first paper addresses
the exact recovery of sparse signal while the second paper @insiders sparsity recovery in noisy
situations. In [10], the authors have proposed an iteratdveeighted/, for solving the non-convex
problem with af, penalty. To our point of view, the overall computational tco§ such an approach
can be high due the square scaling of the least-squaresosoliihe algorithm of Cargb et al. is the
one closest to our DC procedure. Indeed, they have solvegriitdem with a log penalty through a
reweighted?; minimization scheme. In this paper, we provide a generiméaork and efficient algorithm
for dealing with non-convex penalties. Another fact to benflxl out is the issue raised by Casdet al.
concerning the convergence properties of their algoritBynfitting such an iterative scheme into the DC
framework and using the well established results of DC gogning theory, we can provide a positive
answer to that question.

Recently, another multi-step (typically three or four) piilee Lasso has been proposed bifhBnann
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and Meier [5]. At each iteration, they used a reweighted Ldesavhich weights are similar to those
provide in equation (15) for the log penalty. Furthermoreythave added to each weight some hyper-
parameters. Since, adaptive Lasso is related to the log peifalte omit the hyperparameters, their
algorithm is exactly the one proposed by Casct al. and thus is equivalent to our DC approach when

using log penalty.

B. Comments on initialization

Our DC algorithm is initialized with a coefficient vectdf so that the first iteration is a Lasso iteration.
This corresponds to a coefficient vector equals to zero for spemalties like the SCAD or Zhang's
penalty. However, since the problem we solve is non-conites, expected that different initializations
lead to different optimal coefficient vecto,és In the results section, an empirical analysis of initiafian
impact on the solution is carried out. We show there thatistawith a Lasso iteration is a reasonable
approach.

For the adaptive Lasso [42] and the one-step LLA [43], whHen n, these algorithms are initialized
with the ordinary least-squares coefficients. Indeed, tle®mdra consistent estimator of tf¥efor initial-
izing and for computing the adaptive weight in order to gngga some theoretical properties. In both
cases, oracle properties of these algorithms have beeegamcording to these hypotheses. In the same
situation, if our algorithm is initialized in the same wayrastimate3 shares the same oracle properties
since we exactly solve the same optimization problem butaobtmization error of our solution (for

finite n) is better.

C. Other comments

The parametes in the log and/, penalty definition acts as a barrier that prevents numensshbilities.
Indeed, the Weighta§- can be large or undefined for small or null value$3§)f The optimal choice of this
parameter can be done using the strategies suggested ior[]8] The first option is to implement an
annealing design of: beginning with a large value, is iteratively decreased towards zero. An alternative
is to set= as a function of the magnitude of the coeﬁicieﬁ}sat the current iteration. In our experimental
analysis, we have kept this parameter fixed=(0.01) and left for further studies its influence.

The performance evaluation of the algorithm requires therdghation of the regularization parameter
A. Using a grid search, the computation of the regularizapiatih can be carried out efficiently owing to

the warm-start property of the coordinate-wise and gradieojection algorithms devised in Section II.
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IV. NUMERICAL EXPERIMENTS

In this section, we present some experiments that demom st benefits of using non-convex penalties
and DC programming. First, we aim at confirming the evidencernba-convex penalties are performing
better than theé/; penalty for recovering sparse sigaalhen, we also empirically prove that using a DC
algorithm and thus a reweighted iterative scheme leads tterbgerformance than a one-step estimator
such as the adaptive Lasso [42] or the one-step SCAD [43].

For these purposes, we have designed an experiment whereehmefficient vectos™ is known. For
each trial, we have done the following. We have selected #Hicieat vector3 of dimensiond = 256 for
which the numbek of active elements in the dictionary is varying. Th@on-zeros positions are chosen
randomly and the non-zeros values are either drawn fromme@n unit variance Gaussian distribution
or a symmetric Bernouilli distribution witk-1 values. We have sampled a random maXixf dimension
n x d with columns drawn uniformly from the surface of a unit hyg@rere withn = 128. Then, the

target vector is obtained as
y=XB+¢

where ¢ is a noise vector drawn from i.i.d Gaussian distributionhwitero-mean and variance?

determined from a given Signal-To-Noise as
o 1 2 1 n—SNR/10
op = EHXﬁH -10

For each trial, we have run our algorithm with different remvex penalties as well as the Lasso. As
a performance measure, we have used the F-measure betwesuptit of the true coefficient vector

B* and the estimated on@. The support of a given vectg is defined as

supHB) = {j : B; > 7}

where~ is a threshold that allows us to neglect some true non-zeefficents that may be obliterate

by the noise. The Fmeasufémneas is then obtained as :

Pr-Re
Fmeas = 2Pr+ Re
with R .
pr— [SUPRAT) OSUPHB)| -y R [SUPHS™) O SUPHG)
supp3)| supp3”)|

In all reported results, we have used= 0.001. Note that all the algorithms we used share the same
structure (penalized least-squares) with the same hypermder. Thus, the results we reported here do

not consider the problem of selecting that hyperparametdrhis makes algorithms comparison easier
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Fig. 3. Example of (left) objective value and (right) coefficighevolution along DC iterations. The example corresponds to a
signal of dimensioni 28 and a dictionary size df56. The number of non-zeros coefficients is equal@o This example clearly
illustrates our point that i) more DC iterations lead to better convergencepii¢ MC iterations improve the estimation of the
3's sparsity support (see iteration 3 and 4 where the fifth coefficient tap vanishes). True coefficient values are represented

in dotted lines.

since difference in performances can not be attributed twr pwodel selection (which in any case can
be performed by using the same method and criterion).

We have also run some empirical study using a Dirac-Fouri@iodary but since the empirical results
we get are similar to those obtained with random dictiontanya sake of space saving, we do not present

those results.

A. lllustration of algorithm correctness

In this first part, we aim at checking the correctness of ouorgigm. Indeed, we briefly show that
several (compared to two as used by the adaptive Lasso or the LLADFOC iterations lead to a
decrease of the objective value and thus to a better convezge a local minimum.

Figure 3 shows an example of objective value evolution as althe coefficient vector variation
with respects to the DC algorithm iterations. We can seetti@bbjective value keeps decreasing along
the iterations. And while only slight objective decreaseyrba achieved, more DC iterations yield a
better estimation of the true coefficient sparsity supports Bxample is just an illustration of how our

algorithm behaves. The next paragraph gives a more detail@gisis of its performance.
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B. Performance analysis

In this paragraph, we report the performance averaged 3tvéials of the different sparsity-inducing
penalties (including the Lasso). In Figure 4, we have plotteriviariation of the F-measure score with
respects to the numbér of active elements in the dictionary, as well as the perferreagain when
using two DC iterations compared to full convergence of D&ations. Experimental results from two
signal-to-noise ratio30) dB and10 dB) have been reported.

From these plots, we can see that compared to the Lasso, neaexqoenalties allow better recovery of
sparsity support of underlying signals regardless to tifferéint experimental settings (low/high signal-
to-noise ratio or Gaussian/ Bernouilli coefficient entri@sid this up to a given value df. Indeed,
when the sparsity degree of the coefficient vector reachds awalue, the Lasso algorithm gives better
performances on average than other non-convex penaltiessuapect that this poorer performance is
essentially due to the algorithm being trapped in some “dadal minimal. Such a hypothesis will be
confirmed in the sequel. When comparing performances of tffierelt non-convex penalties we can
note that they all perform similarly with the log penalty bgislightly more competitive than the others.

When analyzing the utility of a fully-optimized DC algorithcompared to two-iteration optimization
(which is equivalent to the one-step estimation [43] or tldapive Lasso [42]), we nhote that there
exists3 regimes: for small and large values kf a fully-optimized DC program leads to nearly similar
performances as a two-step solution. Our rationale forighibat, on one hand when the problem is easy
(for small values ofk), few iterations already yield good sparsity recovery perfances. On the other
hand, when the problem is difficult (large valuesi)fwith many local minima, one can be trapped in
“bad” ones. Usefulness of DC programming is made clear ¢isdlgrfor medium values ok. For these
situations, gain in performance reach@®$: for some penalties.

According to these results, the log penalty performancerdes a special comment. Indeed, we can see
that when the problem is “easy”, this penalty leads to thé pedormance but as soon as the number of
active elements in the dictionary is too high, the log psngiklds the poorest performance and besides,
the fully optimized DC algorithm performs worse than the fitf@yation solution. This again suggests
that bad local minima may be in cause but more theoreticdysisaand experimental studies still have
to be carried out in order to fully understand this point.

Similarly to the Lasso solvers mentioned in subsection 1l-Dr, algorithm can benefit from warm-
start techniques when computing a set of different solsti(also denoted as the regularization path)

depending on\ . Figure 5 shows the performance of all considered penaliés\aries as well as the
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cumulative computational time needed for obtaining allsthsolutions. Again we can note that if the
regularization parameter is correctly selected, all allgors perform similarly with a slight preference
for the log penalty. Regarding computational time, our D@oathm leads to an overload of abdut- 7
times the computational complexity of the Lasso, which iseaggood compared to the number of Lasso

iterations involved. This gain in computational time is edsdly due to warm-start approaches.

C. Influence of initialization

We have suggested that a good initialization of our DC atboricould be so that the first iteration
is the Lasso iteration. We have seen in the above experimeatsstich an initialization indeed leads
to interesting performances. This next experiment aims atvsty that this initialization is consistently
better than other random ones

The experiments we carried out is similar than those we pmaddrabove but for each trial, we have
run the algorithm one hundred times with the following lization : one initialization witho; = 0
(which is the standard one we used above), one initialimatith 3 = X7 (XX”)~'y, one initialization
with a ridge regression solutiof = (XTX + \I)~'X™y and for the remaining initialization, we use
with a random zero mean and unit variance Gaussian vectoe, Kee have considered = 10 and
k = 50 number of active elements in the dictionary and true coefficiector with Gaussian non-zero
entries.

Figure 6 depicts for each initialization the pairs (F-measwoigective value) for different penalty
functions. Results show that initialization matters at fedent degree. At first note that, in most cases,
initializing with o; = 0 leads to very good performance while with random initictiaa, one can get
poor results. We can also note that the Lasso initializatrequently leads to better performance than
other non-random ones. Fér= 10, we can see that the log penalty is more sensitive than ther oth
penalties to a random initialization. Interestingly, foetZhang's and thé, penalties, all initializations
we used converge towards the same soluforiThis suggests that all the initializations belong to the
same attraction basin, and that fore= 10, the non-convexity of the objective function we are consitg
iS not “severe”.

However, when the number of non-zero elements in the coeffisiector 3 increases, all penalties
suffer from random initialization. This suggests that therieexity” of the problem depends both on the
penalty function and the number of active elements in th&atfiary. However, a more detailed analysis

of this phenomenon should be carried out in order to undealsita
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V. CONCLUSIONS

Several works in the literature have already shown that rmmwvex penalties instead/a penalty lead
to better sparsity recovery in signal or variable selectiomachine learning problems. However, because
of such a non-convexity, the resulting optimization probleecomes more challenging. In this paper, we
have proposed a generic algorithm for solving such a probbeEsed on Difference of Convex functions
programming. We thus proposed an iterative algorithm wlatreach iteration, we solve a lasso-like
problem. Hence, by fitting the resulting reweighted lasso the DC programming framework, we can
benefit from all the theoretical and algorithmic results frdmse two domains i.e. fast algorithms for
solving Lasso and theoretical properties of DC programminghsas convergence. Besides from being
generic, we have shown that several algorithms of the titeeacorrespond to few iterations of the one
we propose. Experimental results we depicted clearly shewb#nefit of using our DC algorithm.

Future researches aim at investigating the theoreticalagtees on sparsity recovery provided by our

algorithm as well as extension to related problems such egtbup-lasso.
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Fig. 6. Examples of couples (objective values, performance meagunr different initializations and for the following non-
convex penalty functions. (From left to right) Log, Zharig,penalty. (Top row) Number of active elemerits= 10. (Bottom

row) k = 50. The results involves different trials and thu$ optimal pairs (objective value, performance).
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