
HAL Id: hal-00308841
https://hal.science/hal-00308841

Preprint submitted on 2 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering sparse signals with non-convex penalties and
DC programming

Gilles Gasso, Alain Rakotomamonjy, Stéphane Canu

To cite this version:
Gilles Gasso, Alain Rakotomamonjy, Stéphane Canu. Recovering sparse signals with non-convex
penalties and DC programming. 2008. �hal-00308841�

https://hal.science/hal-00308841
https://hal.archives-ouvertes.fr

1

Recovering sparse signals with non-convex

penalties and DC programming
Gilles Gasso, Alain Rakotomamonjy, Stéphane Canu

LITIS, EA 4108 - INSA / Universite de Rouen

Avenue de l’Universit́e - 76801 Saint-Etienne du Rouvray Cedex

{gilles.gasso, alain.rakotomamonjy, stephane.canu}@insa-rouen.fr

Abstract

This paper considers the problem of recovering a sparse signal representation according to a signal

dictionary. This problem is usually formalized as a penalized least-squares problem in which sparsity is

usually induced by aℓ1-norm penalty on the coefficient. Such an approach known as the Lassoor Basis

Pursuit Denoisinghas been shown to perform reasonably well in some situations. However, it has also

been proved that non-convex penalties likeℓq-norm with q < 1 or SCAD penalty are able to recover

sparsity in a more efficient way than the Lasso. Several algorithms have been proposed for solving the

resulting non-convex least-squares problem. This paper proposes a generic algorithm to address such a

sparsity recovery problem with non-convex penalty. The main contribution is that our methodology is

based on an iterative algorithm which solves at each iteration aconvexweighted Lasso problem. It relies

on the decomposition of the non-convex penalty into a difference of convex functions. This allows us

to apply difference of convex functions programming which is a generic and principled way for solving

non-smooth and non-convex optimization problem. We also show that several algorithms in the literature

which solve such a problem are particular cases of our algorithm. Experimental results then demonstrate

that our method performs better than previously proposed algorithms.

I. I NTRODUCTION

“Entia non sunt multiplicanda praeter necessitatem” is a statement attributed to the14th century

philosopher, William of Occam. It is known as the Occam’s razor principle. Roughly translated, this

principle becomes “entities should not be multiplied beyond necessity” and it is usually interpreted as a

preference for simple models rather than complex ones for explaining a given phenomenon. This quest

for simple models, where simple is understood as sparse, is still pursued by many researchers in various

August 1, 2008 DRAFT

2

domains where sparsity plays a key role. Indeed, recoveringsparse representation is of great interest in

the signal processing and the machine learning community due to the profileration of communications

technologies and the huge data streams that are now available.

For instance, in several signal processing applications, one looks for a sparse signal representation

according to a dictionary of elementary signals (wavelet, Fourier, ...). Such a problem of sparsity recovery

arises for instance in compressed sensing problems [6], [14].

Similarly, supervised machine learning problems are of increasing size both in terms of number of

examples and in dimensionality. In such a context, variableselection becomes a core issue for knowledge

discovery and for building predictive model in high-dimensional data space [3].

A. Problem formulation

Sparse approximation problems or variable selection problems are usually posed as the following

mathematical programming problem :

min
β∈Rd

1

2
‖y − Xβ‖2 + λ‖β‖0 (1)

wherey ∈ R
n, β ∈ R

d andX a n × d matrix. Within a sparse signal approximation context,X would

be a matrix which columns are the elements of signal dictionary and y the target signal, while for a

machine learning problem,X would be the observations-variables matrix andy the target output.

Optimization problem (1) involves a term which measures thegoodness of the approximation (the

least-squares term), a term‖β‖0 which measures the solution sparsity by counting the numberof non-

zero components inβ and a trade-off parameterλ ∈ R
+ that balances these two terms. This problem can

be understood as a penalized least-squares where the complexity of the model is related to the number of

variables involved in the model. However, since the‖·‖0 penalty function is non-convex, solving problem

(1) is NP-hard and hardly tractable whend is large. Hence in order to overcome such an issue, several

works [34], [28], [7], [35] have proposed to relax the problem and instead to consider the following

convex optimization problem :

min
β∈Rd

1

2
‖y − Xβ‖2 + λ‖β‖1 (2)

This latter problem, known as theLasso, has been introduced in the nineties by Tibshirani [34] and it has

also been independently proposed by Chen et al. [11] as theBasis Pursuit Denoisingproblem. Since its

introduction, the Lasso problem has been of increasing popularity. This success story comes from the fact

that the problem can be easily solved either by quadratic programming approach [34], [36], homotopy

August 1, 2008 DRAFT

3

approaches [29], coordinate wise optimization [19], or gradient projection method [17]. Furthermore,

some theoretical arguments support the Lasso and state that under certain conditions variable selection

with the Lasso can be consistent [41], [26]. Other works such as those proposed by Donoho et al. [12],

[13] and Tropp [35] have proved that in certain situations the ℓ1 penalization is able to recover the sparsity

profile of the true coefficientβ⋆.

However, Fan and Li [16] provided some arguments against the Lasso, since they have shown that

the ℓ1 penalty associated to the Lasso tends to produce biased estimates for large coefficients. They thus

suggested to replace theℓ1 penalty with other penalty functions that lead to sparse andunbiased models.

For these purposes, they advocate that penalty functions should be singular at the origin for achieving

sparsity (the same argument was also developed in [2], [27])and should be so that their derivatives vanish

for large values. These two conditions lead then to the following (more general) optimization problem

min
β∈Rd

1

2
‖y − Xβ‖2 +

d
∑

j=1

gλ (|βj |) (3)

which involves a non-smooth and non-convex penalty function gλ (·) instead of theℓ1 regularization

term. For some reasons that will be made clear on the sequel, instead of problem (3), we will consider

the following equivalent problem, obtained by splittingβj into the difference of two positive terms

βj = β+

j − β−
j

min
β+,β−∈Rd

1

2

∥

∥y − X(β+ − β−)
∥

∥

2
+

d
∑

j=1

gλ

(

β+

j + β−
j

)

(4)

s.t. β+

j ≥ 0, β−
j ≥ 0, ∀ j = 1, · · · , d

where the vectorsβ+ andβ− are respectively composed of theβ+

j andβ−
j .

B. Usual non-convex penalties

In this subsection, we focus on usual non-convex penalties proposed in the literature for recovering

sparsity from equation (3). Table I and Figure 1 give an overview of the below-mentioned penalties (as

well as other classical convex penalties).

Historically, one of the first non-convex penalty function used for sparse approximation was the

Smoothly Clipped Absolute Deviation (SCAD) penalty (see Table I). Indeed, after having highlighted the

drawbacks of theℓ1 penalty, Fan and Li [16] proposed such a penalty to circumvents Lasso weak points.

They then proved that the resulting estimate has interestingtheoretical properties such as unbiasness.

Among all other penalty functions which lead to sparsity, a popular one is the so-called Bridge penalty

function also known as theℓq pseudo-norm when0 < q < 1 (see table I). This type of penalty has been

August 1, 2008 DRAFT

4

firstly used by Frank and Friedman [18] and Fu [20]. It has been shown to provide sparser solutions than

the Lasso. For instance, Knight and Fu [24] provided a theoretical result which justifies the use of such a

penalty for variable selection. Due to recent interests forsparse approximations and compressed sensing,

other works have brought back the attention onℓq penalty [9], [31]. Despite the difficulties raised by the

optimization problem, some theoretical guarantees can be proved when usingℓq penalty [22], [24].

Another popular non-convex penalty is the logarithm penalty (named in the sequel log penalty). This

penalty was used as an approximation of the‖β‖0 pseudo-norm by Weston et al. in a context of variable

selection [37]. For sparse signal approximations, Candès et al. [8] have also investigated the use of this

log penalty and empirically proves the nice capability of the resulting estimator for recovering sparsity.

As depicted in Table I, for this log penalty, we shift the coefficients by a small value0 < ǫ ≪ 1 to

avoid infinite value when the parameter vanishes. The constantterm −λ log(ε) ensures that the penalty

function is non-negative and avoids the trivial solutionβ = 0 to problem (3).

Finally, we can consider another non-convex penalty, we named as Zhang’s penalty. It corresponds to

an interpretation of a two-stage reweightedℓ1 penalized optimization problem. The first stage corresponds

to the genuine Lasso whereas the second stage corresponds to aLasso for which large parameters are not

penalized anymore [39]. This penalty can also be seen as a linear approximation of the SCAD penalty.

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

L
2
 Penalty

Parameter β

P
en

al
ty

 g
(β

)

−2 −1 0 1 2
0

0.5

1

1.5

2

L
1
 Penalty

Parameter β

P
en

al
ty

 g
(β

)

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SCAD Penalty

Parameter β

P
en

al
ty

 g
(β

)

−2 −1 0 1 2
0

0.5

1

1.5

Concave L
q
 Penalty (q=0.5)

Parameter β

P
en

al
ty

 g
(β

)

−2 −1 0 1 2
0

5

10

15

20
Logarithm Penalty: λ log(|β| + ε)− λ log(ε)

Parameter β

P
en

al
ty

 g
(β

)

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Zhang Penalty

Parameter β

P
en

al
ty

 g
(β

)

Fig. 1. Illustration of some common penalty functions described in Table I.

August 1, 2008 DRAFT

5

TABLE I

SOME EXAMPLES OF USUAL PENALTY FUNCTIONS

Penalty Formula

Ridge gλ (βj) = λ|βj |
2

Lasso gλ (βj) = λ|βj |

SCAD gλ (βj) =



















λ|βj | |βj | ≤ λ

−|βj |
2+2aλ|βj |−λ2

2(a−1) λ < |βj | ≤ aλ

(a+1)λ2

2 |βj | > aλ

ℓq gλ (βj) = λ|βj |
q, 0 < q < 1

Log gλ (βj) = λ log(|βj | + ε) − λ log(ε)

Zhang gλ (βj) =



















λ|βj | if |βj | < η

λη otherwise

C. Previous algorithms for solving least-squares with non-convex penalties

Using non-convex penalties instead of convex ones leads to asparser estimation̂β at the expense of

introducing a more challenging optimization problem. In this subsection, we briefly review some of the

algorithms available in the literature for solving (3) whengλ (·) is non-convex.

When dealing with the SCAD penalty, Fan and Li [16] initializedtheir method with the least-squares

solution. Then they locally approximated the non-convex penalty function with a quadratic function and

a single Newton step is used for optimizing the resulting objective function. In the same flavor, Zou and

Li [43] suggested to replace the local quadratic with a local linear approximation (LLA) of the penalty

function leading to a one-step linear local approximation estimator. Note that since these two algorithms

are initialized with the least-squares solution, they are essentially restricted to situations whered < n.

Following a discussion on the one-step SCAD estimate of Zou andLi [43], Bühlmann and Meier [5]

August 1, 2008 DRAFT

6

have suggested that multi-step LLA can be used for improving sparsity of the solution. Indeed, they

introduced a weighted multi-step Lasso, for which weights depend on both current solution and on

user-defined regularization parameters.

When considering theℓq with q < 1, the functiongλ (βj) is not differentiable as soon as its argu-

ment vanishes. To deal with this issue, Huang et al. [22] haveproposed a parameterized differentiable

approximation of theℓq penalty. The approximation has been built so that it converges towards theℓq

function as the parameter goes to0. For solving the resulting optimization problem, the authors use

a gradient descent technique. In the context of compressed sensing, Chartrand et al. [10], [31] use an

iteratively reweighted least-squares algorithm. As a sidecontribution, they also investigate the properties

of a reweightedℓ1 algorithm.

A reweighting procedure is also the main algorithm proposedin the literature for solving problem (3)

with a log penalty. Indeed, Candès et al. [8] have used a linear approximation of the log penalty and then

have iteratively solved a weightedℓ1-penalized optimization problem. At each step, the weightsdepend

on the log penalty derivative at the current solution.

D. Our contribution

Most of the above-described algorithms are actually based on the same idea: using an iterative reweighted

ℓ1 or ℓ2 algorithms for solving the non-convex problem. Some authorspropose to use only few iterations

(one or two steps) while other researchers suggest to iterate until a stopping criterion is met. While it is

clear that a single iteration is computationally cheap, theoptimality of such a scheme is disputable since

convergence to a local or global minimum of the optimizationproblem is not guaranteed. Bühlmann et

Meier [5] have proposed a full iterative scheme but they do not fit their algorithm into any optimization

problem so it is not clear which kind of non-convex penalty they are using in problem (3). Furthermore,

as stated by Candès et al. [8] in his concluding remarks, one of the main drawback of a reweightedℓ1

scheme is its lack of convergence guarantee.

In this paper, we propose a general algorithmic framework for solving the non-convex problem (3)

or (4) resulting from the use of non-convex penalties. The approach relies on Difference of Convex

(DC) functions programming [21]. Such a principled method for addressing non-convexity consists in

decomposing a non-convex objective function into the difference of convex functions, and then in solving

the resulting problem through a primal-dual approach.

Owing to such a framework, our main purposes in this paper arethen to :

August 1, 2008 DRAFT

7

• develop a generic algorithm for solving non-convex Lasso-type problems through an iterative convex

scheme based on reweighted Lasso,

• show that by fitting a reweighted algorithm into a proper framework, we can get some theoretical

guarantees about its convergence and give then a positive answer to an open issue raised by Candès

et al. [8],

• give empirical evidence that using our DC programming approach leads to better performance in

terms of sparsity recovery compared to the one-step algorithms like the one of Zou and Li [43],

• show that many of the above-described algorithms are actually particular cases of the methodology

we propose.

The paper is organized as follows: Section II presents our algorithm for solving such a non-convex

Lasso-like problem. After having introduced the DC programming and its convergence properties, its

application to our non-convex problem (4) yielding a reweighted Lasso algorithm is detailed. The

algorithms used to solve each iteration of the DC programming are also presented. The links of our

algorithm with existing procedures are highlighted in Section III. In section IV, empirical results are

reported with comparison to the previously mentioned algorithms. Conclusions and perspectives of this

work are discussed in Section V. The software related to this work and used for producing all the figures

will be released on the author’s website.

II. DC PROGRAMMING FOR LASSO-TYPE PROBLEMS

Due to the non-convexity of functiongλ (·), solving Problem (4) is not an easy task. We address this

difficulty by using an iterative procedure known as DC (Difference of Convex functions) programming

[21]. This section introduces our algorithm used for solvingproblem (4). Before delving into the details,

we start by reviewing some important notions about DC programming that will be useful for developing

our algorithm.

A. Difference of Convex functions Algorithm

Let us consider the general minimization problem

min
β∈Rd

J(β) (5)

whereJ(·) is a non-convex (possibly non-smooth) criterion. The main idea of DC programming [21] is

to decomposeJ(·) as:

J(β) = J1(β) − J2(β) (6)

August 1, 2008 DRAFT

8

Algorithm 1 DC Algorithm

Set t = 0 and an initial estimationβ0 ∈ domJ1

with domJ1 = {β ∈ R
d : J1(β) < ∞}

repeat

(Dt) Determineαt ∈ ∂J2(β
t)

(Pt) Determineβt+1 ∈ ∂J∗
1 (αt)

t = t + 1

until convergence

whereJ1(·) and J2(·) are lower semi-continuous, proper convex functions onR
d. Then, according to

duality properties, it can be shown that the dual of the minimization problem is given by

min
α∈Rd

J∗
2 (α) − J∗

1 (α) (7)

whereJ∗
1 andJ∗

2 are respectively the conjugate function ofJ1 andJ2 and they are defined as

J∗
k (α) = sup

β∈Rd

{〈β, α〉 − Jk(β)} k = {1, 2}

The DC approach is a robust algorithm based on an iterative chain-rule consisting in iteratively optimizing

the primal (5)-(6) and dual (7) problems. The algorithm we useis a simplified version of the complete

DC algorithm [21] and it can be summarized as follows.

From an initial estimationβ0, the algorithm consists in building two sequences{βt}t∈N and{αt}t∈N

as illustrated in Algorithm 1. The first step of the iteration solves an approximation of the dual problem

(7). Indeed,∂J2(β) is the subdifferential ofJ2 defined as

∂J2(β)=
{

α ∈ R
d :J2(w)≥J2(β) + 〈w−β, α〉, ∀w ∈ R

d
}

For differentiable criterion, the subdifferential is a singleton so that∂J2(β) = {∇J2(β)}. Using standard

results on convex optimization [30], the following equations also hold for a givenβ′ andα′

∂J2(β
′) = argmin

α∈Rd

{

J∗
2 (α) − 〈α, β′〉

}

∂J∗
1 (α′) = argmin

β∈Rd

{

J1(β) − 〈β, α′〉
}

From these definitions, we can see that by replacingJ∗
1 (α) in (7) by its affine minorizationJ∗

1 (αt) +

〈α−αt, βt〉 at the pointαt, the dual problem (7) becomes equivalent to find∂J2(β
t). Hence, choosing

an αt ∈ ∂J2(β
t) is equivalent to solve an approximation of problem (7). Similarly, by replacing the

August 1, 2008 DRAFT

9

convex functionJ2(β) in (6) by its affine minorizationJ2(β
t) + 〈β − βt, αt〉 at the neighborhood of

βt leads to the primal problem(Pt). According to all these points, the iterative primal-dual resolution

of problem (5) leads to Algorithm 1.

Before explaining how we have adapted this algorithm to our non-convex problem (4), we state that

the local convergence of the algorithm is guaranteed and depends on the adopted DC decomposition and

the initial point [33]. These convergence properties rely onthe following theorem.

Theorem 1:Assume a DC decomposition of the functionJ asJ = J1−J2 with J1, J2 : R
d → R∪{∞}

lower semi-continuous, proper convex functions such asdomJ1 ⊂ domJ2 anddomJ∗
2 ⊂ domJ∗

1 (The

finiteness of the minimum of the functionJ implies these conditions). It holds that

(i) The sequence{βt}t∈N (respectively{αt}t∈N) is well defined or equivalentlydom∂J1 ⊂ dom∂J2

(respectivelydom∂J∗
2 ⊂ dom∂J∗

1).

(ii) The primal objective value sequence{J1(β
t) − J2(β

t)}t∈N (respectively dual objective value se-

quence{J∗
2 (βt) − J∗

1 (βt)}t∈N) is monotonically decreasing (resp. increasing).

(iii) If the minimum of J is finite and the sequence{βt}t∈N (respectively{αt}t∈N) is bounded, every

limit point β̂
⋆

(respectivelyα̂⋆) is a critical point ofJ1 − J2 (respectivelyJ∗
2 − J∗

1), that is this

point satisfies the local optimality condition.

Remarks

(i) If the objective functionJ(·) is defined over a convex setX ⊂ R
d, the DC framework is still

valid by applying the previous analysis to the unconstrained minimization problem over the objective

value functionJ(β) + ΓX (β) where ΓX (β) is the indicator function defined asΓX (β) = 0 if β ∈

X andΓX (β) = +∞ otherwise.

(ii) Notice that Yuille and Rangarajan [38] have independently proposed a similar approach based on

a concave-convex decomposition of the objective function.The DC algorithm is also highly related to

the surrogate maximization (or minorization-maximization) algorithms which extend the spirit of the EM

algorithm. The basic idea is to consider a two-step algorithm: a surrogate step consisting in bounding

the objective function as a surrogate at the current solution and a maximization step which yields the

next estimation of the parameters by optimizing the surrogate function. The key point of this approach

is the construction of the surrogate function. A recent paper of Zhang and al. [40] nicely review how to

build such a surrogate function in different machine learning problems. Unlike DC programming, these

related approaches do not suit to non-smooth objective function.

August 1, 2008 DRAFT

10

B. Formulating Lasso-type problems as a DC program

With these elements on DC programming in hands, let us turn back to the original optimization problem

(4). The first step for applying DC programming is to decompose the penaltygλ (·) as the difference of

two convex functions :

gλ (·) = gvex (·) − h(·) (8)

Then according to this decomposition,we define

J1(β
+, β−) =

1

2

∥

∥y−X(β+ − β−)
∥

∥

2
+

d
∑

j=1

gvex

(

β+

j + β−
j

)

J2(β
+, β−) =

d
∑

j=1

h(β+

j + β−
j)

As we will show in the sequel, for the penalty functionsgλ (·) we use, the functionh is explicitly known.

Hence, at each iterationt, we are able to analytically determine an element of the subdifferential αt of

J2(β
+, β−). Thus, if h(·) is differentiable, we haveαt

j = h′(β+t
j + β−t

j), j = 1, · · · , d whereas ifh(·)

is not differentiable, the procedure still holds by pickingarbitrarily any element of∂h(β+t
j +β−t

j) at the

points whereh is not differentiable as in [1], [25].

Now, according to the (Pt) step of Algorithm1 and to equation (8), onceαt is known, the next value

of β can be found by minimizing with respects toβ+ andβ− the following objective function

1

2

∥

∥y − X(β+ − β−)
∥

∥

2
+

d
∑

j=1

gvex

(

β+

j + β−
j

)

− 〈β+

j + β−
j , αt

j〉 (9)

We then get the iterative scheme summarized by Algorithm 2.

C. DC decomposition of non-convex penalty functions

Now let us detail how we have decomposed the non-convex penalties into a difference of convex

functions. It is easy to show that for any functiongλ (·) such a decomposition is not unique and that its

choice may be crucial in order to make the problem (9) tractable.

In this work, we have chosen a decomposition so that problem (9) is a Lasso problem. By doing so,

we are then able to adapt or re-use efficient algorithms developed for the Lasso. The decomposition is

as following

gvex (·) = λ| · | (10)

h(·) = λ| · | − gλ (·) (11)

August 1, 2008 DRAFT

11

Algorithm 2 Iterative optimization based on DC programming

Set an initial estimationβ0, t = 0

repeat

Determineβ+,t+1 andβ−,t+1 by minimizing

1

2

∥

∥y−X(β+−β−)
∥

∥

2
+

d
∑

j=1

gvex

(

β+

j + β−
j

)

− αt
j(β

+

j + β−
j)

with αt
j = h′(β+t

j + β−t
j)

t = t + 1

until convergence ofβ

whereh(·) is a convex function. Due to the non-negativity ofgλ(·), we necessarily haveh(β) ≤ λ|β|.

From Equations (10-11), we can derive the expressions ofh(·) for the non-convex penalties of Table

I. These expressions are gathered in Table II. Graphical illustrations of these DC decompositions are

depicted in Figure 2.

From these figures, we can note that the functionsh(·) for the log andℓq penalties are actually not

convex onR. However, their restrictions on the intervalR+ are convex and since in our problemβ+

j

andβ−
j are positive, our difference of convex functions decomposition still holds for these two penalties.

This is the main reason why we consider problem (4) instead of problem (3).

D. Solving each DC iteration

According to the proposed decomposition and the problem formulation, we now detail how each DC

iteration can be solved. At each iterationt, the minimization problem is

min
β+,β−

1

2

∥

∥y − X(β+ − β−)
∥

∥

2
+

d
∑

j=1

λ(β+

j + β−
j) (12)

−
d

∑

j=1

αt
j(β

+

j + β−
j)

s.t. β+

j ≥ 0, β−
j ≥ 0, ∀j = 1, · · · , d

whereαt
j ∈ ∂h(β+t

j +β−t
j). This supposes that at each iteration, we are able to compute the subdifferential

of h for any βj .

August 1, 2008 DRAFT

12

TABLE II

ASSUMINGgVEX (βj) = λ|βj | OF THE DC DECOMPOSITION, THIS TABLE PRESENTS THE CORRESPONDING FUNCTIONh OF

THE NON-CONVEX PENALTIES OFTABLE I.

Penalty Expression ofh

SCAD hScad(βj) =



















0 if |βj | ≤ λ

|βj |
2−2λ|βj |+λ2

2(a−1) , λ < |βj | ≤ aλ

λ|βj | −
(a+1)λ2

2 , |βj | > aλ

ℓq hℓq
(βj) = λ (|βj | − |βj |

q)

Log hlog(βj) = λ (|βj | − log(|βj | + ε) + log(ε))

Zhang hZhang(βj) =







0 if |βj | < η

λ|βj | − λη otherwise

For differentiable penalty like SCAD, the subdifferential is equivalent to the derivative. For other

penalties like the Zhang’s one, at any point where the subdifferential is not reduced to a singleton due

to the non-differentiability, we can setα as any element of the subdifferential. Using such a trick does

not harm the convergence guarantee. For penalties functionthat are not differentiable at zero, we have

used the classical trick (used for instance, by Candès et al. [8] and Chartrand et al. [31]) which consists

in adding aε term to the coefficientβj for avoiding a division by zero. All the subgradients we use for

the different penalties are summarized in Table III.

After having decomposed the coefficient vectorβ in order to cope with the DC programming formu-

lation, we see that problem (12) can be formulated as a weighted Lasso problem :

min
β

1

2
‖y − Xβ‖2 +

d
∑

j=1

λj |βj | (13)

whereλj = λ − αt
j = λ − h′(|βt

j |).

Recently, several authors have proposed very efficient algorithms for ℓ1 penalized least-squares [23],

[19], [17]. Among all these methods, the work of Figueiredo etal. [17] and the one of Friedman et al.

[19] can be applied or extended to problem (13).

We extended the coordinate-wise optimization idea of Friedman et al which is known to be very

August 1, 2008 DRAFT

13

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Parameter β

P
en

al
tie

s

SCAD Penalty Decomposition

SCAD Penalty
Convex part
Function h(β)

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Parameter β

P
en

al
tie

s

Zhang Penalty Decomposition

Zhang Penalty
Convex part
Function h(β)

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

Parameter β

P
en

al
tie

s

L
q
 Penalty Decomposition

L
q
 Penalty

Convex part
Function h(β)

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

Parameter β

P
en

al
tie

s

Log Penalty Decomposition

Log Penalty
Convex part
Function h(β)

Fig. 2. Illustration of the proposed difference of convex functions decompositions. From the left to the right, Top row) SCAD

penalty and Zhang penalty, Bottom row)ℓq and the log-penalty. For clarity sake, the plotted convex part of the log penalty is

6λ|β|.

efficient and competitive compared to homotopy or quadratic programming approaches [15], [29], [34].

The algorithm we developed for solving the problem (13) is based on coordinate-wise optimization

but takes into account the optimality constraints for selecting the variable to optimize. This makes the

algorithm still more efficient (see for instance [32]). Early comparisons of this algorithm with the gradient

projection of Figueiredo et al. have shown that the latter algorithm is more suited to the kind of problem

we solve and thus is more efficient. For this reason, we have decided to use the code of Figueiredo et

al. which is available online on the first author website.

Note that although all algorithms which address aℓ1 penalized least-squares can be used for solving

problem (13), one particularity of the global DC algorithm has to be taken into account when choosing

an algorithm for solving the weighted Lasso. Indeed, the DC procedure iteratively solves problem (13)

several times with an update of the weightsλj at each iteration. Thus since, it is expected that between

two iterations the optimal coefficientβt changes a little, it would be interesting from a computational

demand viewpoint that the algorithm used for solving (13) can benefit from a good initialization. Both

coordinate-wise and the gradient projection algorithms are able to do so. Hence after the first DC iteration,

we use the solution of the previous iteration as an initialization of the current one. This simple trick,

August 1, 2008 DRAFT

14

TABLE III

EXPRESSION OF THE SUBDIFFERENTIAL OF THE FUNCTIONSh PRESENTED INTABLE II.

Penalty Expression of∂h

SCAD h′
Scad(βj) =



















0, |βj | ≤ λ

2βj−(2a−1)λsign(βj)
2(a−1) , λ < |βj | ≤ aλ

λsign(βj), |βj | > aλ

ℓq h
′

ℓq
(βj) = λsign(βj)

(

1 − q
|βj |1−q+ε

)

Log h
′

log(βj) = λsign(βj)
(

1 − 1
|βj |+ε

)

Zhang h
′

Zhang(βj) =







0 if |βj | < η

λ sign(βj) otherwise

known as warm-start technique, makes the overall algorithmjust slightly more expensive than a one-step

Lasso resolution. Furthermore, warm-start can also be used when solving the DC problem for different

values ofλ.

E. Algorithm termination

For solving problem (3), we use two nested algorithms which both need a termination criterion in

order to get a solution in a finite time.

By writing down the Lagrangian associated to problem (13), the KKT optimality conditions are

x
T

j (y − Xβ) − λjsign(βj) = 0 if βj 6= 0 (14)

|xT

j (y − Xβ)| < λj if βj = 0

wherexj represents thejth column of the matrixX. Then, we can consider a coefficient vectorβ as

optimal if it satisfies the KKT conditions up to a toleranceτ . Thus, we stop the Lasso algorithm when

(xT

j (y − Xβ)) − λjsign(βj) < τ if βj 6= 0

|xT

j (y − Xβ)| < λj + τ if βj = 0

or when we reach a maximal number of iterations. In our numerical experiments, we have setτ = 0.001.

August 1, 2008 DRAFT

15

For the DC algorithm, we stop iterations when either the infinite norm of the coefficient vector

difference between two consecutive iterations is below10−4 or the maximal number of50 iterations

is reached.

III. D ISCUSSIONS

In this section, we provide some discussions about the relation between our DC algorithm and other

methods for solving Lasso-type problems. We also provide some comments about the technical issues

concerning our algorithm as well as theoretical perspectives related to our work.

A. Relations with other Lasso-type problems

As we stated in the introduction, recently they have been a lot of works dealing with the Lasso problem.

For instance, Zhang has proposed a two-stage Lasso [39], Zou hasintroduced the adaptive Lasso [42],

while Zou and Li improved the SCAD of Fan and Li by using Local Linear Approximation [43]. All

these approaches can be considered as particular cases of our general way of solving the non-convex

problem when the appropriate penalty function is used.

For instance, the two-stage Lasso of Zhang consists firstly in solving a genuine Lasso. Then according

to the resulting estimatêβ and a user-defined thresholdη, the second stage is a weighted Lasso where

the weights are

λj =







λ if |β̂j | ≤ η

0 otherwise

It is easy to see that, if an initial estimationβ0 = 0 is used, according to our definition of the Zhang’s

penalty and to the expression ofh
′

Zhang(βj), the first two DC iterations of our algorithm exactly recover

the two-stage approach of Zhang. This connection gives a more intuitive interpretation of Zhang’s two-

stage Lasso. Indeed, it makes clear that the overall penalty he suggests, is actually a non-convex penalty

which is a linear approximation of SCAD penalty.

SCAD penalty function is a non-convex and differentiable function which nicely fits in our DC

algorithm. The first algorithm, proposed by Fan and Li [16] is based on a local quadratic approximation.

This leads to an iterative ridge regression which is computationally more expensive than the Lasso and is

subject to some numerical instabilities. Recently, Zou and Liadvocate the use of local linear approximation

(LLA) around a least-squares initial estimationβ̂MC and compute the final solution through a weighted

Lasso. Thus, Zou and Li algorithm corresponds to one-step of our DC procedure withβ0 = β̂MC.

August 1, 2008 DRAFT

16

In the adaptive Lasso promoted by Zou [42], the authors suggesta theoretically-justified single-step

weighted Lasso. The weight of each parameterβj in the penalty is set asλj ∝ 1

|β′

j |
γ where γ is an

user-defined hyperparameter andβ′ is an initial vector solution. Owing to our DC approach, we can

relate the adaptive Lasso approach to a non-convex penalty function. As far as our knowledge goes, this

relation is novel is the literature. Indeed, when considering the log and theℓq penalty, it is easy to see

that at each iteration, the weightsλj in our DC iteration are given by

(log) λj =
λ

|βt
j | + ε

(ℓq) λj =
λq

|βt
j |

1−q + ε
(15)

Like the previous described algorithm, the adaptive Lasso is is a particular case of our DC algorithm

using log penalty and considering only two iterations.

From the above comparisons, we note that the above-describedLasso-type algorithms attempt to solve

a non-convex problem by using few reweighted Lasso iterations (typically two steps). Using our DC

approach, more iterations can occur until the stopping condition is met. Hence, our algorithm insures a

smaller optimization error owing to a better convergence ofthe non-convex optimization problem to a

local minimum. As stated by Bottou and Bousquet [4], optimization error may be of primary importance in

statistical estimation. Although, we have not theoretically studied the impact of reducing the optimization

error compared to the estimation or approximation error, wehave empirically shown in the sequel, that

using more iterations than two can considerably improve thesparsity estimation.

In the literature, two recent algorithms proposed by Chartrand and Yin [10] and Candès et al. [8] share

the same spirit of solving a non-convex problem using an iterative reweighted scheme until complete

convergence. These algorithms was applied in the context of compressive sensing: the first paper addresses

the exact recovery of sparse signal while the second paper also considers sparsity recovery in noisy

situations. In [10], the authors have proposed an iterativereweightedℓ2 for solving the non-convex

problem with aℓq penalty. To our point of view, the overall computational cost of such an approach

can be high due the square scaling of the least-squares solution. The algorithm of Cand̀es et al. is the

one closest to our DC procedure. Indeed, they have solved theproblem with a log penalty through a

reweightedℓ1 minimization scheme. In this paper, we provide a generic framework and efficient algorithm

for dealing with non-convex penalties. Another fact to be pointed out is the issue raised by Candès et al.

concerning the convergence properties of their algorithm.By fitting such an iterative scheme into the DC

framework and using the well established results of DC programming theory, we can provide a positive

answer to that question.

Recently, another multi-step (typically three or four) adaptive Lasso has been proposed by Bühlmann

August 1, 2008 DRAFT

17

and Meier [5]. At each iteration, they used a reweighted Lassofor which weights are similar to those

provide in equation (15) for the log penalty. Furthermore, they have added to each weight some hyper-

parameters. Since, adaptive Lasso is related to the log penalty, if we omit the hyperparameters, their

algorithm is exactly the one proposed by Candès et al. and thus is equivalent to our DC approach when

using log penalty.

B. Comments on initialization

Our DC algorithm is initialized with a coefficient vectorβ0 so that the first iteration is a Lasso iteration.

This corresponds to a coefficient vector equals to zero for somepenalties like the SCAD or Zhang’s

penalty. However, since the problem we solve is non-convex,it is expected that different initializations

lead to different optimal coefficient vectorŝβ. In the results section, an empirical analysis of initialization

impact on the solution is carried out. We show there that starting with a Lasso iteration is a reasonable

approach.

For the adaptive Lasso [42] and the one-step LLA [43], whend < n, these algorithms are initialized

with the ordinary least-squares coefficients. Indeed, they need a consistent estimator of theβ for initial-

izing and for computing the adaptive weight in order to guarantee some theoretical properties. In both

cases, oracle properties of these algorithms have been proved according to these hypotheses. In the same

situation, if our algorithm is initialized in the same way, our estimatêβ shares the same oracle properties

since we exactly solve the same optimization problem but theoptimization error of our solution (for

finite n) is better.

C. Other comments

The parameterε in the log andℓq penalty definition acts as a barrier that prevents numerical instabilities.

Indeed, the weightsαt
j can be large or undefined for small or null values ofβt

j . The optimal choice of this

parameter can be done using the strategies suggested in [10]or [8]. The first option is to implement an

annealing design ofε: beginning with a large value,ε is iteratively decreased towards zero. An alternative

is to setε as a function of the magnitude of the coefficientsβt
j at the current iteration. In our experimental

analysis, we have kept this parameter fixed (ε = 0.01) and left for further studies its influence.

The performance evaluation of the algorithm requires the determination of the regularization parameter

λ. Using a grid search, the computation of the regularizationpath can be carried out efficiently owing to

the warm-start property of the coordinate-wise and gradient projection algorithms devised in Section II.

August 1, 2008 DRAFT

18

IV. N UMERICAL EXPERIMENTS

In this section, we present some experiments that demonstrate the benefits of using non-convex penalties

and DC programming. First, we aim at confirming the evidence that non-convex penalties are performing

better than theℓ1 penalty for recovering sparse signals. Then, we also empirically prove that using a DC

algorithm and thus a reweighted iterative scheme leads to better performance than a one-step estimator

such as the adaptive Lasso [42] or the one-step SCAD [43].

For these purposes, we have designed an experiment where thetrue coefficient vectorβ⋆ is known. For

each trial, we have done the following. We have selected a coefficient vectorβ of dimensiond = 256 for

which the numberk of active elements in the dictionary is varying. Thek non-zeros positions are chosen

randomly and the non-zeros values are either drawn from zero-mean unit variance Gaussian distribution

or a symmetric Bernouilli distribution with±1 values. We have sampled a random matrixX of dimension

n × d with columns drawn uniformly from the surface of a unit hypersphere withn = 128. Then, the

target vector is obtained as

y = Xβ + ξ

where ξ is a noise vector drawn from i.i.d Gaussian distribution with zero-mean and varianceσ2
b

determined from a given Signal-To-Noise as

σ2
b =

1

n
‖Xβ‖2 · 10−SNR/10

For each trial, we have run our algorithm with different non-convex penalties as well as the Lasso. As

a performance measure, we have used the F-measure between thesupport of the true coefficient vector

β⋆ and the estimated onêβ. The support of a given vectorβ is defined as

supp(β) = {j : βj > γ}

whereγ is a threshold that allows us to neglect some true non-zero coefficients that may be obliterate

by the noise. The FmeasureFmeas is then obtained as :

Fmeas = 2
Pr · Re
Pr+ Re

with

Pr =
|supp(β⋆) ∩ supp(β̂)|

|supp(β̂)|
and Re=

|supp(β⋆) ∩ supp(β̂)|

|supp(β⋆)|

In all reported results, we have usedγ = 0.001. Note that all the algorithms we used share the same

structure (penalized least-squares) with the same hyperparameter. Thus, the results we reported here do

not consider the problem of selecting that hyperparameterλ. This makes algorithms comparison easier

August 1, 2008 DRAFT

19

1 2 3 4 5
−0.185

−0.18

−0.175

−0.17

DC iterations

O
bj

ec
tiv

e
va

lu
e

1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

DC iterations

E
vo

lu
tio

n
of

 th
e

β’
s

Fig. 3. Example of (left) objective value and (right) coefficientβ evolution along DC iterations. The example corresponds to a

signal of dimension128 and a dictionary size of256. The number of non-zeros coefficients is equal to10. This example clearly

illustrates our point that i) more DC iterations lead to better convergence, ii) more DC iterations improve the estimation of the

β’s sparsity support (see iteration 3 and 4 where the fifth coefficient from top vanishes). True coefficient values are represented

in dotted lines.

since difference in performances can not be attributed to poor model selection (which in any case can

be performed by using the same method and criterion).

We have also run some empirical study using a Dirac-Fourier dictionary but since the empirical results

we get are similar to those obtained with random dictionary,for a sake of space saving, we do not present

those results.

A. Illustration of algorithm correctness

In this first part, we aim at checking the correctness of our algorithm. Indeed, we briefly show that

several (compared to two as used by the adaptive Lasso or the LLA SCAD) DC iterations lead to a

decrease of the objective value and thus to a better convergence to a local minimum.

Figure 3 shows an example of objective value evolution as wellas the coefficient vector variation

with respects to the DC algorithm iterations. We can see thatthe objective value keeps decreasing along

the iterations. And while only slight objective decrease may be achieved, more DC iterations yield a

better estimation of the true coefficient sparsity support. This example is just an illustration of how our

algorithm behaves. The next paragraph gives a more detailed analysis of its performance.

August 1, 2008 DRAFT

20

B. Performance analysis

In this paragraph, we report the performance averaged over30 trials of the different sparsity-inducing

penalties (including the Lasso). In Figure 4, we have plotted the variation of the F-measure score with

respects to the numberk of active elements in the dictionary, as well as the performance gain when

using two DC iterations compared to full convergence of DC iterations. Experimental results from two

signal-to-noise ratio (30 dB and10 dB) have been reported.

From these plots, we can see that compared to the Lasso, non-convex penalties allow better recovery of

sparsity support of underlying signals regardless to the different experimental settings (low/high signal-

to-noise ratio or Gaussian/ Bernouilli coefficient entries)and this up to a given value ofk. Indeed,

when the sparsity degree of the coefficient vector reaches such a value, the Lasso algorithm gives better

performances on average than other non-convex penalties. We suspect that this poorer performance is

essentially due to the algorithm being trapped in some “bad”local minimal. Such a hypothesis will be

confirmed in the sequel. When comparing performances of the different non-convex penalties we can

note that they all perform similarly with the log penalty being slightly more competitive than the others.

When analyzing the utility of a fully-optimized DC algorithm compared to two-iteration optimization

(which is equivalent to the one-step estimation [43] or the adaptive Lasso [42]), we note that there

exists3 regimes: for small and large values ofk, a fully-optimized DC program leads to nearly similar

performances as a two-step solution. Our rationale for thisis that, on one hand when the problem is easy

(for small values ofk), few iterations already yield good sparsity recovery performances. On the other

hand, when the problem is difficult (large values ofk) with many local minima, one can be trapped in

“bad” ones. Usefulness of DC programming is made clear essentially for medium values ofk. For these

situations, gain in performance reaches10% for some penalties.

According to these results, the log penalty performance deserves a special comment. Indeed, we can see

that when the problem is “easy”, this penalty leads to the best performance but as soon as the number of

active elements in the dictionary is too high, the log penalty yields the poorest performance and besides,

the fully optimized DC algorithm performs worse than the two-iteration solution. This again suggests

that bad local minima may be in cause but more theoretical analysis and experimental studies still have

to be carried out in order to fully understand this point.

Similarly to the Lasso solvers mentioned in subsection II-D, our algorithm can benefit from warm-

start techniques when computing a set of different solutions (also denoted as the regularization path)

depending onλ . Figure 5 shows the performance of all considered penalties as λ varies as well as the

August 1, 2008 DRAFT

21

cumulative computational time needed for obtaining all these solutions. Again we can note that if the

regularization parameter is correctly selected, all algorithms perform similarly with a slight preference

for the log penalty. Regarding computational time, our DC algorithm leads to an overload of about5− 7

times the computational complexity of the Lasso, which is rather good compared to the number of Lasso

iterations involved. This gain in computational time is essentially due to warm-start approaches.

C. Influence of initialization

We have suggested that a good initialization of our DC algorithm could be so that the first iteration

is the Lasso iteration. We have seen in the above experiments that such an initialization indeed leads

to interesting performances. This next experiment aims at showing that this initialization is consistently

better than other random ones

The experiments we carried out is similar than those we performed above but for each trial, we have

run the algorithm one hundred times with the following initialization : one initialization withαj = 0

(which is the standard one we used above), one initialization with β̂ = XT (XXT)−1y, one initialization

with a ridge regression solution̂β = (XTX + λ0I)
−1XTy and for the remaining initialization, we use

with a random zero mean and unit variance Gaussian vector. Here, we have consideredk = 10 and

k = 50 number of active elements in the dictionary and true coefficient vector with Gaussian non-zero

entries.

Figure 6 depicts for each initialization the pairs (F-measure, objective value) for different penalty

functions. Results show that initialization matters at a different degree. At first note that, in most cases,

initializing with αj = 0 leads to very good performance while with random initialization, one can get

poor results. We can also note that the Lasso initialization frequently leads to better performance than

other non-random ones. Fork = 10, we can see that the log penalty is more sensitive than the other

penalties to a random initialization. Interestingly, for the Zhang’s and theℓq penalties, all initializations

we used converge towards the same solutionβ̂. This suggests that all the initializations belong to the

same attraction basin, and that fork = 10, the non-convexity of the objective function we are considering

is not “severe”.

However, when the number of non-zero elements in the coefficient vectorβ increases, all penalties

suffer from random initialization. This suggests that the “convexity” of the problem depends both on the

penalty function and the number of active elements in the dictionary. However, a more detailed analysis

of this phenomenon should be carried out in order to understand it.

August 1, 2008 DRAFT

22

V. CONCLUSIONS

Several works in the literature have already shown that non-convex penalties instead aℓ1 penalty lead

to better sparsity recovery in signal or variable selectionin machine learning problems. However, because

of such a non-convexity, the resulting optimization problem becomes more challenging. In this paper, we

have proposed a generic algorithm for solving such a problem, based on Difference of Convex functions

programming. We thus proposed an iterative algorithm whereat each iteration, we solve a lasso-like

problem. Hence, by fitting the resulting reweighted lasso into the DC programming framework, we can

benefit from all the theoretical and algorithmic results fromthese two domains i.e. fast algorithms for

solving Lasso and theoretical properties of DC programming such as convergence. Besides from being

generic, we have shown that several algorithms of the literature correspond to few iterations of the one

we propose. Experimental results we depicted clearly show the benefit of using our DC algorithm.

Future researches aim at investigating the theoretical guarantees on sparsity recovery provided by our

algorithm as well as extension to related problems such as the group-lasso.

REFERENCES

[1] L. T. H. An and P. D. Tao,DC programming approach and solution algorithm to multidimensional scalingproblem, ser.

Nonconvex optimization and its application. Kluwer Academic Publishers, 2001, pp. 231–276.

[2] A. Antoniadis and J. Fan, “Regularization of wavelet approximation,” Journal of the American Statistical Association,

vol. 96, no. 455, pp. 939–967, 2001.

[3] S. Balakrishnan and D. Madigan, “Algorithms for sparse liner classifiers in the massive data setting,”Journal of Machine

Learning Research, vol. 9, pp. 313–337, 2008.

[4] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances in Neural Information Processing

Systems. Cambridge, MA: MIT Press, 2008, vol. 20, to appear. [Online]. Available: http://leon.bottou.org/papers/bottou-

bousquet-2008

[5] P. Bühlmann and L. Meier, “Discussion on one-step sparse estimates in nonconcave penalized likelihood models,”The

Annals of Statistics, vol. 36, no. 4, pp. 1534–1541, 2008.

[6] E. Cand̀es and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Problems, vol. 23, no. 3, pp.

969–985, 2006.

[7] E. Cand̀es and T. Tao, “The dantzig selector: statistical estimation whenp is much larger thann,” The Annals of Statistics,

vol. 35, no. 6, pp. 2392–2404, 2007.

[8] E. Cand̀es, M. Wakin, and S. Boyd, “Enhancing sparsity by reweightedℓ1 minimization,” J. Fourier Analysis and

Applications, 2008.

[9] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,”IEEE Signal Processing Letters, vol. 14,

pp. 707–710, 2007.

[10] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in33rd International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 2008.

August 1, 2008 DRAFT

23

[11] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition bybasis pursuit,”SIAM Journal on Scientific Computing,

vol. 20, no. 1, pp. 33–61, 1998.

[12] D. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries viaℓ1-norm minimiza-

tion,” Proceedings of the National Academy of Sciences USA, vol. 1005, pp. 2197–2202, 2002.

[13] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic decompositions,”IEEE Trans. on Information Theory,

vol. 47, no. 2845-2863, 2002.

[14] D. Donoho and Y. Tsaig, “Extensions of compressed sensing,”Signal Processing, vol. 86, no. 3, pp. 533–548, 2006.

[15] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,”Annals of Statistics, vol. 32, no. 2, pp.

407–499, 2004. [Online]. Available: citeseer.ist.psu.edu/efron02least.html

[16] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties,”Journal of the American

Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.

[17] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection forsparse reconstruction: application to compressed sensing

and other inverse problems,”IEEE Journal of Selected Topics in Signal Processing: Special Issueon Convex Optimization

Methods for Signal Processing, vol. 1, no. 4, pp. 586–598, 2007.

[18] I. Frank and J. Friedman, “A statistical view of som chemometrics regression tools (with discussion),”Technometrics,

vol. 35, no. 109-148, 1993.

[19] J. Friedman, T. Hastie, H. Ḧofling, and R. Tibshirani, “Pathwise coordinate optimization,”The Annals of Applied Statistics,

vol. 1, no. 2, pp. 302–332, 2007.

[20] W. J. Fu, “Penalized regression: the bridge versus the lasso,”Journal of Computational and Graphical Statistics, vol. 7,

pp. 397–416, 1998.

[21] R. Horst and N. V. Thoai, “Dc programming: overview,”Journal of Optimization Theory and Applications, vol. 103, pp.

1–41, 1999.

[22] J. Huang, J. Horowitz, and S. Ma, “Asymptotic properties of bridge estimators in sparse high-dimensional regression

models,”Annals of Statistics, vol. 36, no. 2, pp. 587–613, 2008.

[23] S.-J. Kim, K. Koh, M. Lustig, and a. D. G. S. Boyd, “A method forlarge-scale l1-regularized least squares,”IEEE Journal

on Selected Topics in Signal Processing, vol. 4, no. 1, pp. 606–617, 2007.

[24] K. Knight and W. Fu, “Asymptotics for lasso-type estimators,”Annals of Statistics, vol. 28, pp. 1356–1378, 2000.

[25] Y. Liu, X. Shen, and H. Doss, “Multicategoryψ-learning and support vector machines: computational tools,”Journal of

Computational and Graphical Statistics,, vol. 14, no. 1, pp. 219–236, 2005.

[26] N. Meinshausen and P. Bühlmann, “High dimensional graphs and variable selection with the lasso,”Annals of Statistics,

vol. 34, no. 3, pp. 1436–1462, 2006.

[27] M. Nikolova, “Local strong homogeneity of a regularized estimator,” SIAM Journal of Applied Mathematics, vol. 61, no. 2,

pp. 633–658, 2000.

[28] M. Osborne, B. Presnell, and B. Turlach, “A new approach to variable selection in least squares problems,”IMA Journal

of Numerical Analysis, vol. 20, no. 3, pp. 389–403, 2000.

[29] ——, “On the lasso and its dual,”Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 319–337, 2000.

[30] R. Rockafellar,Convex Analysis. Princeton University Press, 1996.

[31] R. Saab, R. Chartrand, andÖzg̈ur Yilmaz, “Stable sparse approximations via nonconvex optimization,” in33rd International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2008.

August 1, 2008 DRAFT

24

[32] S. Shevade and S. Keerthi, “A simple and efficient algorithm for gene selection using sparse logistic regression,”

Bioinformatics, vol. 19, no. 17, pp. 2246–2253, 2003.

[33] P. D. Tao and L. T. H. An, “Dc optimization algorithms for solving the trust region subproblem,”SIAM Journal of

Optimization, vol. 8, no. 2, pp. 476–505, 1998.

[34] R. Tibshirani, “Regression shrinkage and selection via the lasso,”Journal of the Royal Statistical Society, vol. 46, pp.

431–439, 1996.

[35] J. Tropp, “Just relax: Convex programming methods for identifying sparse signals,”IEEE Trans. Info. Theory, vol. 51,

no. 3, pp. 1030–1051, 2006.

[36] B. A. Turlach, W. N. Venables, and S. J. Wright, “Simultaneous variable selection,”Technometrics, vol. 27, pp. 349–363,

2005.

[37] J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping, “The useof zero-norm with linear models and kernel methods,”

Journal of Machine Learning Research, vol. 3, pp. 1439–1461, 2003.

[38] A. L. Yuille and A. Rangarajan, “The concave-convexe procedure,” in Proc. of Advances in Neural Information Processing

Systems, 2001.

[39] T. Zhang, “Some sharp performance bounds for least squares regression withl1 regularization,” Dept. of Statistics, Rutgers

University, Tech. Rep., 2007.

[40] Z. Zhang, J. T. Kwok, and D.-Y. Yeung, “Surrogate maximixation/minimization algorithms,”Machine Learning, pp. 1–33,

2007.

[41] P. Zhao and B. Yu, “On model selection consistency of lasso,”Journal of Machine Learning Research, vol. 7, pp. 2541–

2563, 2006.

[42] H. Zou, “The adaptive lasso and its oracle properties,”Journal of the American Statistical Association, vol. 101, no. 476,

pp. 1418–1429, 2006.

[43] H. Zou and R. Li, “One-step sparse estimates in nonconcave penalized likelihood models,”The Annals of Statistics, vol. 36,

no. 4, pp. 1509–1533, 2008.

August 1, 2008 DRAFT

25

10 20 30 40 50 60 70 80 90 100 110
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 supp (β)

F
m

ea
su

re

Lasso
Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 supp (β)

F
m

ea
su

re

Lasso
Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90 100 110
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

 supp (β)

ra
tio

 fu
ll/

tw
o

ite
ra

tio
ns

Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

 supp (β)

ra
tio

 fu
ll/

tw
o

ite
ra

tio
ns

Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90 100 110
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

 supp (β)

F
m

ea
su

re

Lasso
Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 supp (β)

F
m

ea
su

re

Lasso
Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90 100 110
0.94

0.96

0.98

1

1.02

1.04

1.06

 supp (β)

ra
tio

 fu
ll/

tw
o

ite
ra

tio
ns

Log
Zhang
Scad
Lq

10 20 30 40 50 60 70 80 90
0.9

0.95

1

1.05

1.1

1.15

 supp (β)

ra
tio

 fu
ll/

tw
o

ite
ra

tio
ns

Log
Zhang
Scad
Lq

Fig. 4. F-measure of the different penalty functions with respects to the number of active elements. The four top figure

are related to a signal to noise ratio of 30 dB while for the four bottom ones, we used SNR=10 dB. Left and right columns

respectively depict results with Gaussian and Bernouilli entries of the non-zero elements.

August 1, 2008 DRAFT

26

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

F
m

ea
su

re

Lasso
Log
Zhang
Scad
Lq

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

λ

cu
m

ul
at

iv
e

tim
e

in
 s

ec
on

ds

Lasso

Log

Zhang

Scad

Lq

Fig. 5. Examples of regularization paths for different sparsity inducingpenalties and the related cumulative computational

time (averaged over30 iterations). Note that since we start from large values ofλ, for the cumulative time the x-axis has been

reverted. Again in this examplen = 128 andd = 256.

0 0.2 0.4 0.6 0.8 1
−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

Fmeasure

O
bj

ec
tiv

e
V

al
ue

Random
Lasso
LS minimal norm
Ridge

0.94 0.95 0.96 0.97 0.98 0.99 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fmeasure

O
bj

ec
tiv

e
V

al
ue

Random
Lasso
LS minimal norm
Ridge

0.94 0.95 0.96 0.97 0.98 0.99 1
0.1

0.15

0.2

0.25

0.3

0.35

Fmeasure

O
bj

ec
tiv

e
V

al
ue

Random
Lasso
LS minimal norm
Ridge

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

Fmeasure

O
bj

ec
tiv

e
V

al
ue

Random
Lasso
LS minimal norm
Ridge

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Fmeasure

O
bj

ec
tiv

e
V

al
ue

Random
Lasso
LS minimal norm
Ridge

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Fmeasure

O
bj

ec
tiv

e
V

al
ue

Random

Lasso

LS minimal norm

Ridge

Fig. 6. Examples of couples (objective values, performance measure) for different initializations and for the following non-

convex penalty functions. (From left to right) Log, Zhang,ℓq penalty. (Top row) Number of active elementsk = 10. (Bottom

row) k = 50. The results involve5 different trials and thus5 optimal pairs (objective value, performance).

August 1, 2008 DRAFT

