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Abstract. In the renewal risk model, several strong hypotheses may be found too restrictive to
model accurately the complex evolution of the reserves of an insurance company. In the case
where claim sizes are heavy-tailed, we relax independence and stationarity assumptions and
extend some asymptotic results on finite-time ruin probabilities, to take into account possible
correlation crises like the one recently bred by the sub-prime crisis: claim amounts, in general
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1 Introduction
In the Solvency II framework, computing the Solvency Capital Requirement (SCR) and the risk
margin often involves approximation of finite-time ruin probabilities in internal models. For
several kinds of insurance risks, heavy-tailed distributions may be used to model individual
claim amounts. Pareto distributions, or more generally regular variation distributions are often
preferred to log-normal distributions to fit empirical data. A natural way to tackle this kind of
problem could be to use the classical compound renewal risk model with heavy-tailed claim
size distribution. In the classical Sparre Andersen risk model, the classical risk process (Rt)t≥0
is defined as follows: for t ≥ 0,

R(t) = u + ct − S(t),

where u is the non-negative amount of initial reserves, c > 0 is the premium income rate. The
cumulated claim amount up to time t is described by the compound renewal process

S(t) =

N(t)∑
i=1

Xi,

where amounts of claims Xi, i = 1, 2, ... are non-negative independent, identically distributed
random variables, distributed as X. As usual St = 0 if N(t) = 0. The number of claims N(t)
until t ≥ 0 is modeled by a renewal process (N(t))t≥0 defined from the inter-occurrence times
(Tk)k≥1 by Nt =

∑
k≥1 1{Tk≤t}. Claim amounts and inter-occurrence times times are assumed to be

mutually independent.
What we want to compute is the probability of ruin before time t with initial reserve u denoted
by ψ(u, t):

ψ(u, t) = P(∃s ∈ [0, t], R(s) < 0 | R(0) = u), u ≥ 0, t > 0.

Note that as we consider finite-time ruin probabilities, no profit condition has to be satisfied
from a theoretical point of view. In this framework it is possible to adapt directly properties of
sums of independent random variables with regular variation with index −α > 0 to derive the
asymptotics of ψ(u, t) as u tends to infinity (see Section 2 for definitions and details):

ψ(u, t) ∼
1

E(T1)
u−α as u→ +∞. (1.1)

The problem is that in real world, the mutual independence of X1, . . . ,Xn, . . . ,T1, . . . ,Tn, . . .
is not realistic for a certain number of reasons. First, the claim amounts Xk, k ≥ 1 are not inde-
pendent in practice, and may present complex forms of positive dependence: some factors may
have an impact on those amounts; some claims of a certain type may have identical (in the sense
of comonotonicity) severities depending on the outcomes of trials at the court. Second, weather
or economic conditions can create as well strong positive dependence on claim amounts, which
can be weakly dependent and independent in the usual regime, and suddenly become strongly
positively dependent if a so-called correlation crisis breaks out. The marginal distribution of
the claim amount may be modified as well, or remain identical. The most remarkable recent
example of such a crisis is certainly the sub-prime crisis. Not only did the number of losses
increase, but correlation was also raised.
Dependence between claim amounts has been investigated by Ignatov et al. (2001) and by
Lefèvre and Loisel (2008) who provide recursive formulas that involve Appell-type properties
for the finite-time ruin probability with dependent claim amounts. Sums of dependent ran-
dom variables have been studied by many authors, in particular by Barbe et al. (2006) and by
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Kortschak and Albrecher (2008). Dependence and non-stationarity have been partially taken
into account for infinite-time ruin probabilities by Boudreault et al. (2006), and Albrecher and
Boxma (2004) who assume that the sequence (Tk,Xk), k ≥ 1 is i.i.d. or that the (Xk,Tk1), k ≥ 1 are
i.i.d., and by Asmussen (1989) and many others who assume that the risk process is modulated
by a Markovian environment process.
The natural question that arises is the following: what is the impact of this dependence on the
level of SCR in internal models of Solvency II, that is can we derive expressions equivalent to
(1.1) when those independence and stationarity assumptions are relaxed? What is the impact
of potential correlation crises on the asymptotic behavior of finite-time ruin probabilities for
heavy-tailed claim amounts? This is the question we address in this paper, in the case where
the Xk, k ≥ 1 have distributions with regular variation.
Our paper is organized as follows: in Section 2, we study a first example to show that the effect
of positive dependence between claim amounts may vary a lot. In Section 3, we study a basic
model with dependent claim amounts. We also consider stochastic correlation between claim
amounts and use stochastic orderings to study the impact of stochastic correlation. In Section
4, we consider more complex dependence structures between the claim amounts. In Section 5,
we use the results of the first Sections to analyze our main model, with possible outbreaks of
correlation crises. We derive the corresponding of the finite-time ruin probability as the initial
reserve tends to infinity. We illustrate our method on two examples in which the stationarity
and independence properties mentioned above are relaxed.
Throughout the paper, we assume that claim amount distributions belong to the regular varia-
tion class:

Definition 1.1 (Regular variation). A distribution function F is regularly varying of index −α with
α ≥ 0 (written F ∈ R−α) if

lim
x→∞

F(xy)

F(x)
= y−α, for y > 0.

Before studying the correlation crisis model, let us first discuss preliminary models with static
or stochastic dependence between claim amounts.

2 Varying effects of positive dependence
It is often believed that positive dependence between risks increases the probability of ruin
over any given time horizon. This seems to be natural, for example, if the different claims are
subjected to some exterior environment. Conclusions in that direction are indeed pointed out,
e.g., in Cossette and Marceau (2000), Frostig (2003) and Picard et al. (2003).

In this section, we show through a simple illustration that ruin probabilities can not only in-
crease, but also decrease owing to the presence of positive dependence between claim amounts.
Such a decreasing effect is possible in a different model where each claim size depends on the
previous claim interval (as, e.g., in Albrecher and Boxma (2004) and Boudreault et al. (2006). In
that case, positive dependence corresponds to a kind of mutualisation that plays a protective
role. For the present example, the decreasing effect obtained comes rather from the claim size
distribution itself as it is a consequence of the max-sum-equivalence property for heavy-tailed
distributions.

Specifically, let us consider two particular risk models in which the successive claim amounts
(Xn)n≥1 have the same distributions but are dependent in a comonotonic way. For both models,
we will compare the ruin probability ψ(u, t) in the independent case, i.e. when the Xn are
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independent identically distributed, and in a comonotonic case when all the Xn = X1 almost
surely, i.e. under an extremal positive dependence.

(i) Let us assume that the successive claim amounts have a common biatomic distribution
given by

P(X1 = 1) = 0.99 and P(X1 = 1000) = 0.01. (2.1)

Note that this law may be considered as heavy-tailed. Let us take λ = c = 1, an horizon of
length t = 10 and u = 990 as initial surplus.

Intuitively, as the average number of claims up to t is equal to λt = 10, ruin will occur when
u = 990 if there arises (at least) one large claim (of size 1000) before time t, or if there arise
sufficiently many small claims (of size 1), this event being however of small probability. In
addition, the probability of getting at least one large claim is clearly smaller in the comonotonic
case than in the independent case. Thus, one expects that the ruin probability before time t = 10
will be also smaller in the comonotonic case.

Let us show this rigourously. By definition,

ψ(990, 10) = P[S(τ) ≤ 990 + τ for some τ ≤ 10].

>From (2.1) and since P[N(10) ≥ 991] < 10−500 is negligible, we can approximate ψ(990, 10) by
a quantity ψa(990, 10) given by

ψa(990, 10) =

990∑
j=1

P[N(10) = j and at least one these j claims is of size 1000]. (2.2)

In the comonotonic case, (2.2) yields the approximation ψcom
a (990, 10) given by

ψcom
a (990, 10) = P(X1 = 1000) P[1 ≤ N(10) ≤ 990],

while in the independent case, the corresponding approximation ψ⊥a (990, 10) is

ψ⊥a (990, 10) =

990∑
j=1

[
1 − P(X1 = 1) j

]
P[N(10) = j].

We so see that

[ψ⊥a − ψ
com
a ](990, 10) > P[2 ≤ N(10) ≤ 990]

{[
1 − P(X1 = 1)2

]
− P(X1 = 1000)

}
' 0.00227 >> 10−500 > P[N(10) ≥ 991].

Thus, as for the exact ruin probabilities ψ⊥ and ψcom, we get the inequality ψ⊥(990, 10) >
ψcom(990, 10).

(ii) Let us consider another situation where the common claim amount distribution is still
a biatomic law but now given by

P(X1 = 1) = 0.99 and P(X1 = 10) = 0.01. (2.3)

In comparison with (2.1), this law may be viewed as light-tailed. Let us take λ = c = 1, a n
horizon of length t = 10 and u = 100 as initial surplus.

This time, large claims (of size 10) will cause ruin before time t = 10 only if they are also rel-
atively numerous, which is more probable in the comonotonic case. So, one expects intuitively
that the comonotonic case could provide a higher ruin probability than the independent case.
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Let us establish this result. First, we observe that ruin is sure when there arise 11 large
claims before t = 10. Thus, the ruin probability for the comonotonic case, ψcom(100, 10), satisfies

ψcom(100, 10) > P[N(10) ≥ 11] P(X1 = 10) ' 0.00417. (2.4)

On the other hand, occurrence of ruin before t = 10 implies necessarily that the the total claim
amount at t is larger than u = 100. Using (2.3), we then have

ψ(100, 10) ≤ P[S(10) > 100] = 1 −
100∑
j=0

P[N(10) = j, S(10) ≤ 100].

For 0 ≤ j ≤ 10, the event [N(10) = j, S(10) ≤ 100] is equivalent to [N(10) = j]. For 11 ≤ j ≤ 100,
the event [N(10) = j, S(10) ≤ 100] means that the number of large claims, k say, satisfies the
relation 10k + ( j − k) ≤ 100; so, in the independent case,

P[N(10) = j, S(10) ≤ 100] = P[N(10) = j]
b(100− j)/9c∑

k=0

(
j
k

)
[P(X1 = 10)]k [P(X1 = 1)] j−k.

Thus, the ruin probability for the independent model, ψ⊥(100, 10), satisfies

ψ⊥(100, 10) ≤ 1 −
100∑
j=0

P[N(10) = j]


b(100− j)/9c∑

k=0

(
j
k

)
[P(X1 = 10)]k P(X1 = 1)] j−k

 ' 10−14. (2.5)

Comparing (2.4) with (2.5) then gives the inequality ψ⊥(100, 10) < ψcom(100, 10).

Clearly, in general positive dependence will not affect ruin probabilities in a monotone way.
Nevertheless, the two examples above show that asymptotically as u → ∞, such a property
could be true for certain classes of dependent claim amounts with heavy-tailed distributions,
as in example (i), or with light-tailed distributions, as in example (ii).

3 A basic situation with heavy-tailed claims
Following the previous illustration, we are going to establish that for certain heavy-tailed claim
amount laws, positive dependence affects ruin probabilities in a monotone way, increasing or
decreasing, when the initial surplus is large enough. For related questions on the asymptotic
tail behaviour of sums of dependent risks, the reader is referred to, e.g., Alink et al. (2004),
Albrecher et al. (2006), Kortschak and Albrecher (2008) and Barbe et al. (2006).

In the model under study, the different claim amounts have the same law but they are either
independent or with a common level. Clearly, this assumption makes them exchangeable and
positively correlated. A notation ∼will mean that the ratio tends to 1 as u→∞.

Proposition 3.1 Suppose that premiums arrive at a constant rate c and claims occur according to
some point process N(t)t≥0. Moreover, independently of this arrival claim process, the successive claim
amounts (Xn)n≥1 are described by

Xn = InW0 + (1 − In)Wn, n ≥ 1, (3.1)
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where (Wn)n≥0 is a sequence of i.i.d positive random variables of distribution function FW with

FW ∈ R−α, α ≥ 0, (3.2)

and (In)n≥1 is a sequence of i.i.d Bernoulli random variables with

P(I1 = 1) = p ∈ [0, 1], (3.3)

these two sequences being mutually independent. Let u be the initial reserve u and denote by ψp(u, t) the
corresponding ruin probability over any fixed finite-time horizon (0, t). Then, asymptotically for u large
enough,

ψp(u, t) ∼
{
(1 − p) E[N(t)] + E

[
Zp(t)

]α}
FW(u + ct), (3.4)

where Zp(t) denotes a mixed binomial random variable Bin[N(t), p].

Proof. Let

Sp(t) =

N(t)∑
n=1

Xn

be the aggregate claim amount. To establish (3.4), we first calculate P[Sp(t) > x] for large x, and
we then approximate ψp(u, t) by P[Sp(t) > u].

Step 1. A key point is the convolution closure property and the max-sum-equivalence
property of the regular variation class (see, e.g., Cai and Tang (2004)). Specifically, when F1 and
F2 belong to R−α, α ≥ 0, the convolution closure states that

F1 ∗ F2 belongs to R−α,

and the max-sum-equivalence means that

F1 ∗ F2(x) ∼ F1(x) + F2(x) for large x.

Since FW ∈ R−α by assumption, these properties allow us to write that for any k ≥ 1 and any
pairwise distinct n1, ...,nk− j ≥ 1 with 0 ≤ j ≤ k − 1,

P
(
Wn1 + ... + Wnk− j + jW0 > x

)
∼ (k − j)FW(x) + FW

(
x/ j

)
∼

k − j +
FW

(
x/ j

)
FW(x)

 FW(x)

∼
(
k − j + jα

)
FW(x). (3.5)

Thus, (3.5) yields, for any k ≥ 1 and 0 ≤ j ≤ k − 1,

P

Sp(t) > x|N(t) = k,
k∑

i=1

Ii = j

 ∼ (k − j + jα) FW(x). (3.6)

We also have, for k ≥ 1 and j = k,

P

Sp(t) > x|N(t) = k,
k∑

i=1

Ii = k

 = P(kW0 > x) =
FW (x/k)

FW(x)
FW(x) ∼ kα FW(x), (3.7)
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and for k = j = 0,
P[Sp(t) > x|N(t) = 0] = 0. (3.8)

>From (3.6), (3.7) and (3.8), and since N(t)t≥0, (Wn)n≥0, (In)n≥0 are mutually independent, we
then get

P[Sp(t) > x] ∼


∞∑

k=1

P[N(t) = k]
k∑

j=0

(
k
j

)
p j(1 − p)k− j (k − j + jα

) FW(x). (3.9)

Obviously, (3.9) can be rewritten as

P[Sp(t) > x] ∼
{
(1 − p)E[N(t)] + E

[
Zp(t)

]α}
FW(x), (3.10)

Step 2. Let us show that for any c, t > 0,

ψp(u, t) ∼ P[Sp(t) > u + ct], (3.11)

as u→∞. Indeed, we observe that

0 ≤
ψp(u, t) − P[Sp(t) > u + ct]

ψp(u, t)

≤
ψp(u, t) − P[Sp(t) > u + ct]

P[Sp(t) > u + ct]

≤
P[Sp(t) > u] − P[Sp(t) > u + ct]

P[Sp(t) > u + ct]

∼
FW(u)

FW(u + ct)
− 1, (3.12)

using (3.10). For any x ∈ R, one knows that FW(u)/FW(u + x) → 1 as u → ∞ (see Lemma 1.3.5
in Embrechts et al. (1997)). Therefore, the approximation (3.11) follows from (3.12). Finally,
combining (3.10) and (3.11) yields the formula (3.4). �

By the approximation (3.4), ψp(u, t) is simply given as a product of two distinct factors, the
former in terms of N(t), p and α, and the latter in terms of FW, u and c. Note that the claim
amount distribution plays a role in both factors. For example, choose FW(x) ∼ l(x) x−α, x > 0,
where α > 1 and l(x) is slowly varying. This covers the Pareto law and the loggamma law, inter
alia. From (3.4), if α increases, FW(u + ct) decreases while E[Zp(t)]α increases.

Let us observe that in particular, (3.4) gives, if p = 0 (i.e. when Xn = Wn are i.i.d.),

ψp(u, t) ∼ E[N(t)] FW(u + ct),

while if p = 1 (i.e. when Xn = W0 for all n),

ψp(u, t) ∼ E[N(t)]α FW(u + ct).

Let us also indicate that by (3.1), any pair of claim amounts (Xn,Xm), n , m, has a correlation
corr(Xn,Xm) = p2 var(W), which is positive and increasing in p as expected.

Proposition 3.1 can be extended to the case where the type of claim amount, either Wn or
W0, is influenced by a random environment. More precisely, suppose that the indicators (In)n≥1
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have now a common random parameter P, with some distribution on [0, 1]. Let ψP(u, t) be the
ruin probability over (0, t). Then, as u→∞,

ψP(u, t) ∼
{
[1 − E(P)] E[N(t)] + E [ZP(t)]α

}
FW(u + ct), (3.13)

ZP(t) being of mixed law MBin[N(t),P]. One easily checks that now, corr(Xn,Xm) = E(P2) var(W),
n , m, which is again positive but increasing in E(P2) (i.e. in var(P) if the mean E(P) is fixed).

Let us examine how the law of P can affect ψp(u, t). For that, we use the concept of s−convex
stochastic ordering (see Lefèvre and Utev (1996) and Denuit et al. (1998)). By definition, given
two random variables Y and Z, then for any s = 1, 2, . . .,

X ≤Ds−cx Y if E[φ(Y)] ≤ E[φ(Z)] for all s-convex function φ : D→ R, (3.14)

i.e. in short, for any function φ on D whose s-th derivative exists and satisfies φ(s)
≥ 0. Note

that the first s − 1 moments of Y and Z are then necessarily equal. The order ≤D1−cx is just the
stochastic order, ≤D2−cx is the usual convex order (which implies var(Y) ≤ var(Z)) and≤D3−cx is also
very popular (it means that Y has smaller right-side risk than Z). Put α[s] = α(α−1) . . . (α− s+1),
and δs,1 = 1 (0) if s = 1 (, 1).

Property 3.2 Asymptotically for u large enough, given any s = 1, 2, . . .,

if α[s] ≤ (resp. ≥) δs,1, then P ≤[0,1]
s Q implies ψP(u, t) ≥ (resp. ≤) ψQ(u, t). (3.15)

Proof. From (3.4), we have

ψP(u, t) − ψQ(u, t) ∼
(
E
{
[ZP(t)]α − ZP(t)

}
− E

{[
ZQ(t)

]α
− ZQ(t)

})
FW(u + ct). (3.16)

A binomial law Bin(n, p) is stochastically s−convex in the parameter p (see Dnuit and Lefèvre
(2001)). Thus, if P ≤[0,1]

s Q, then MBin(n,P) ≤{0,...,n}s MBin(n,Q), so that ZP(t) ≤Ns ZQ(t). Now,
consider the function f (x) ≡ xα − x, x ∈ {0, 1, . . .}. We see that f (x) (resp. − f (x)) is s−convex
when α[s] ≥ (resp. ≤) δs,1. Therefore, from (3.16), we deduce the announced implication (3.15).
�

So, Property 3.2 states that if P ≤[0,1]
1 Q, then

ψP(u, t) ≥ (≤) ψQ(u, t) for α ≤ (≥) 1.

In particular, this is true if P and Q reduce to two constants p and q such that p ≤ q.
An identical conclusion holds under the condition P ≤[0,1]

2 Q, but remember that E(P) = E(Q)
here. For instance, one has Pmin

2 ≤
[0,1]
2 P ≤[0,1]

2 Pmax
2 , where Pmin

2 = E(P) and Pmax
2 is a variable

with two atoms, 0 and 1, such that P(Pmax
2 = 1) = E(P). This yields

ψPmin
2

(u, t) ≥ (≤) ψP(u, t) ≥ (≤) ψPmax
2

(u, t) for α ≤ (≥) 1,

where
ψPmax

2
(u, t) ∼ [1 − E(P)] {E[N(t)] + E[N(t)]α} FW(u + ct).

If P ≤[0,1]
3 Q, then

ψP(u, t) ≥ (≤) ψQ(u, t) for α ≤ 1 or α ≥ 2 (1 ≤ α ≤ 2).

Let us recall that this time, E(P) = E(Q) and E(P2) = E(Q2). For instance, one might now
use the inequality Pmin

3 ≤
[0,1]
3 P ≤[0,1]

3 Pmax
3 , where Pmin

3 is a variable with two atoms, 0 and
E(P2)/E(P), such that P(Pmin

3 = 0) = var(P)/E(P2), and Pmax
3 is a variable with two atoms,

[E(P) − E(P2)]/[1 − E(P)] and 1, such that P(Pmax
3 = 1) = var(P)/{[(1 − E(P)]2 + var(P)}.
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4 More complex dependent cases
In this part, the framework of Section 3 is retained except that the claim amounts (Xi)i≥1 are no
longer of the form (3.1), but with a dependence structure described by a specific copula. Denote
by C(n) the copula of the vector (X1,X2, ...,Xn). To satisfy the condition of independence, the
following relation must be hold

C(n)(u1, ...,un−1, 1) = C(n−1)(u1, ...,un−1) , n ≥ 2. (4.1)

4.1 A non-standard class of copulas
In section 3 we studied the asymptotic behavior of the finite-time ruin probability ψ(u, t) from
initial reserve u within time t for regular variation claim amounts Xi, i ≥ 0 such that each Xi is
equal to W0 with probability p ∈ [0, 1] or equal to Wi with probability 1− p, where the Wk, k ≥ 0
are i.i.d. regular variation random variables. We extend here the result to the more general
model case where for n ≥ 2,

(X1, . . . ,Xn)

has again identical marginals but with copula C(n) defined below. Let P ([1,n]) denotes the
set of partitions of [1,n]. For A(n)

∈ P ([1,n]), consider all the subsets a in A(n) and define the
associated copula

CA(n)(u1, . . . ,un) =
∏

a∈A(n)

min
k∈a

(uk). (4.2)

Then, the copula C(n) is represented as a weighted average of these copulas over all possible
partitions A(n), i.e.

C(n) =
∑

A(n)∈P([1,n])

λA(n)CA(n) , (4.3)

where the nonnegative weights must satisfies, for all n ≥ 1 and A(n)
∈ P[1,n] :

∑
A(n)∈P([1,n])

λA(n) = 1,∑
A(n+1)

∈P[1,n+1]
A(n+1)

\{n+1}=A(n)

λA(n+1) = λA(n) , (4.4)

A(n+1)
\{n + 1}meaning that {n + 1} is removed from all subsets of A(n+1) that contain {n + 1}.

Proposition 4.1 For all n ≥ 2, C(n) defined by (4.3) satisfies the condition (4.1).
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Proof. By (4.2) and (4.3), we get

C(n)(u1, ...,un−1, 1) =
∑

A(n)∈P([1,n])

λA(n)CA(n)(u1, ...,un−1, 1)

=
∑

A(n)∈P([1,n])

λA(n)

∏
a∈A(n)

min
k∈a\{n}

(uk)

=
∑

A(n−1)∈P([1,n−1])

∑
A(n)
∈P[1,n]

A(n)
\{n}=A(n−1)

λA(n)

∏
a∈A(n)

min
k∈a\{n}

(uk)

=
∑

A(n−1)∈P([1,n−1])

∑
B∈P[1,n]

B\{n}=A(n−1)

λA(n)

∏
a∈A(n−1)

min
k∈a

(uk)

=
∑

A(n−1)∈P([1,n−1])

λA(n−1)

∏
a∈A(n−1)

min
k∈a

(uk)

= Cn−1(u1, ...,un−1),

hence (4.1). �

Proposition 4.2 For claim amounts (Xi)i≥1 that have the same marginal distribution F with F ∈ R−α,
α > 0, and such that (X1, ...,Xn), n ≥ 2 has a copula C(n) given by (4.3), then for large u and any t > 0,
we have

ψ(u, t) ∼


∞∑

k=1

P [N(t) = k]
∑

A(k)∈P([1,k])

λA(k)

 ∑
a∈A(k)

Card(a)α

 F(u + ct). (4.5)

Proof. As in the proof of Proposition 3.1, we start by computing P (St > x). For all n ≥ 1

and A(n)
∈ P[1,n] denote (X(A(n))

1 , ...,X(A(n))
n ) a copy of the vector (X1, . . . ,Xn) with a dependence

structure described by the copula CA(n) defined in (4.2).
For all k ≥ 1 and x > 0, we have

P (X1 + ... + Xk > x) =
∑

A(k)∈P[1,k]

λA(k)P
(
X(A(k))

1 + ... + X(A(k))
k > x

)

For all subsets a ∈ A(n), denote X(A(n),a) the common variable the variables in (X(A(n))
1 , ...,X(A(n))

n )
whose index belongs to a are equal to ; then,

P (X1 + ... + Xk > x) =
∑

A(k)∈P[1,k]

λA(k)P

∑
a∈A

Card(a)X(A(k),a) > x

 .
Arguing as in Step 1 of Proposition 3.1, we obtain that

P (X1 + ... + Xk > x) ∼
∑

A(k)∈P[1,k]

λA(k)

∑
a∈A(k)

P
(
Card(a)X(A(k),a) > x

)
∼

 ∑
A(k)∈P[1,k]

λA(k)

 ∑
a∈A(k)

Card(a)α

 F(x).
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Thus, we may conclude in the same way as in Step 2 of Proposition 3.1. �
We note that the sequence (λA(k))k≥1 can be built using a tree and appropriate transition proba-
bilities. For all k ≥ 1, A(k)

∈ P([1, k]) and A(k+1)
∈ P([1, k + 1]), let pA(k)→A(k+1) be the probability

that (X1, ...,Xk+1) has its dependence structure described by CA(k+1) knowing that (X1, ...,Xk) has
its dependence structure described by CA(k) . This is illustrated in Figure 1. Then, for all k ≥ 1,
A(k)
∈ P([1, k]), we have

λA(k) =

k−1∏
i=1

pA(i)→A(i+1) .

Figure 1: Step-by-step construction of the sequence (λA(k))k≥1 with transition probabili-
ties pA(k)→A(k+1) .

4.2 Classical copulas

4.2.1 A general result

Definition 4.3 (Multivariate regular variation). A random vector X = (X1, ...,Xn) belongs to
MR−α, α ≥ 0 if there exists a θ ∈ Sn−1, where Sn−1 is the unit sphere with respect to a norm |·|,
such that

P (|X| > tu,X/ |X| ∈ ·)
P (|X| > u)

v
→ t−αPSn−1 (θ ∈ ·) ,

where v
→ denotes vague convergence on Sn−1.

Definition 4.4 (Extreme value copula). A copula such that

C(ut
1, ...,u

t
k) = Ct(u1, ...,uk) , ∀t > 0,

is called an extreme value copula.

Definition 4.5 (Domain of attraction of copula). Let C be a copula and let C∗ be an extreme
value copula. The copula C belongs to the domain of attraction of C∗, written C ∈ CDA(C∗), if
for all u

lim
m→∞

Cm(u1/m) = C∗(u).
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Proposition 4.6 For claim amounts (Xi)i≥1, such that for all n ≥ 1, (X1, ...,Xn) ∈ MR−α with
the same marginal distribution F and their dependence structure is described by a copula C(n)

which belongs to the domain of attraction of C(n)∗, then for large u and any t > 0,

ψ(u, t) ∼

 ∞∑
k=1

P [N(t) = k] qk,α

 F(u + ct), (4.6)

where
qk,α =

∫
Tk

(
p1/α

1 + ... + p1/α
k

)α
dUk(p),

where Tk denotes the k-dimensional unit simplex and Uk is the measure such that :

C(k)∗(x1, .., xk) = exp
(
−

∫
Tk

max
1≤ j≤k

{
−p jlog(x j)

}
dUk(p)

)
.

Proof. This result follows directly from a theorem of Barbe et al. (2006). Indeed under
the assumptions made above, these authors show that

P

 k∑
p=1

Xp > x

 ∼ qk,αF(x).

With the same method as in Proposition 3.1 (step 1 and step 2), we then obtain the
approximation 4.6. �
Remark. Another relation links C∗ with qk,α. From Resnick (2004) and Barbe et al.
(2006), there exists a Radon measure ν on the punctured space E = [0,∞]k

\{0} such that

qk,α = ν(Ω), (4.7)

where Ω =
{
(p1, ..., pk) ∈ [0,∞)k : p1/α

1 + ... + p1/α
k > 1

}
and

ν([0, x]c) = −log
{
C∗(e−x)

}
, ∀x ∈ [0,∞)k. (4.8)

Property 4.7 Under the assumptions of Proposition 4.6, comparing the case where (X1, . . . ,Xn) ∈
MR−α, with the case where (X1, . . . ,Xn) ∈ MR−β yield for large u

α ≤ (resp. ≥ ) β⇒ ψα(u, t) ≤ (resp. ≥ ) ψβ(u, t).

Proof. Directly by checking that for fixed p ∈ Tk,
(
p1/α

1 + ... + p1/α
k

)α
is an increasing

function of α. �

4.2.2 Independent copula

Definition 4.8 The independent copula is

Cind(u1, ...,uk) =

k∏
i=1

ui. (4.9)
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Remark. The independent copula is an extreme copula since

Ct
ind(u1, ...,uk) =

 d∏
i=1

ui


t

=

d∏
i=1

ut
i = Cind(ut

1, ...,u
t
k).

It is easily seen that (4.6) simplifies here as follow.

Proposition 4.9 Under the assumptions of Proposition 4.6, with in addition C(n)
ind as copula,

then for large u
ψ(u, t) ∼ λtF(u + ct).

4.2.3 Fréchet upper bound

Definition 4.10 The comonotonic copula is

Ccom(u1, ...,uk) = min(u1, ...,uk). (4.10)

Remark. The comonotonic copula is an extreme copula since

Ct
com(u1, ...,uk) = min(u1, ...,uk)t = min(ut

1, ...,u
t
k) = Ccom(ut

1, ...,u
t
k)

Proposition 4.11 Under the assumptions of Proposition 4.6, with in addition C(n)
com as copula,

then for large u
ψ(u, t) ∼ E[N(t)]αF(u + ct).

4.2.4 Gaussian copula

Definition 4.12 The Gaussian or normal copula is

CGa,Σ(u1, ...,uk) = Φk
Σ

(
Φ−1(u1), ...,Φ−1(uk)

)
, (4.11)

where Φk
Σ denotes the joint distribution function of the k−variate standard normal distribution

with correlation matrix Σ and Φ−1 denotes the inverse of the distribution function of the
univariate standard normal distribution.

Remark. The Gaussian copula satisfies the condition (4.1) if the correlation matrix is
adapted, that is if

C(k)
Ga,Σk

(u1, ...,uk−1,uk = 1) = C(k−1)
Ga,Σk−1

(u1, ...,uk−1), (4.12)

with Σk−1 is formed with the first k − 1 rows and columns of Σk.

Lemma 4.13 (Demarta (2002)) The Gaussian copula belongs to the domain of attraction of the
independent copula.

Proposition 4.14 Under the assumptions of Proposition 4.6, with in addition C(n)
Ga,Σn

as copula,
such 4.12 is satisfied, then for large u

ψ(u, t) ∼ λtF(u + ct).
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4.2.5 Archimedean copulas

Definition 4.15 Let φ : [0, 1]→ [0,∞] be continuous and strictly decreasing with φ(0) ≤ ∞
and φ(1) = 0. A pseudo inverse of φ is defined as

φ[−1](t) =

{
φ−1(t) 0 ≤ t ≤ φ(0)
0 φ(0) ≤ t ≤ ∞ ,

where φ−1 is the classical inverse of φ. Functions φ are called generators of Archimedean
copulas. If φ(0) = ∞, then φ is called a strict generator.

Definition 4.16 A decreasing (resp. increasing) function f : R→ R is completely monotonic
on an interval I if it is continuous on I and satisfies

(−1)k dk

dtk
f (t) ≥ 0,

(
resp. (−1)k−1 dk

dtk
f (t) ≥ 0

)
,

for all t in the interior of I and any k ≥ 1.

As a consequence, if f is completely monotonic on [0,∞] and f (c) = 0 for some
c > 0, then f must be identically zero on [0,∞]. So if the pseudo-inverse φ[−1] of an
Archimedean generator φ is completely monotonic, it must be positive on [0,∞], i.e. φ
is a strict generator and φ[−1] = φ−1.

Lemma 4.17 (see Nelsen (2006)) Let φ be a continuous strictly decreasing function from [0, 1]
to [0,∞] such that φ(0) = ∞ and φ(1) = 0. If C is the function from [0, 1]d to [0, 1] given by

Cφ(u1, ...,uk) = φ[−1]
(
φ(u1) + ... + φ(uk)

)
, (4.13)

then C is a k−copula for all k ≥ 2 if and only if φ[−1] is completely monotonic on [0,∞].

Cφ given by (4.13) is named an Archimedean copula with generatorφ. Sinceφ(1) = 0,
the condition (4.1) is well satisfied.

Proposition 4.18 Under the assumptions of Proposition 4.6, with in addition C(n)
φ as copula,

such that φ(1 − 1/t) ∈ R−β for some β > 1, then for large u

ψ(u, t) ∼

 ∞∑
k=1

P [N(t) = k]
∫
Tk

 k∑
i=1

p1/α
i


α

uk,β(p)dp

 F(u + ct),

where uk,β(p) =
{∏k−1

i=1 (iβ − 1)
} (∏k

i=1 pi

)−β−1 (∑k
i=1 p−βi

)1/β−k
.

Proof. This follows from Barbe et al. (2006) who proved that

P (X1 + ... + Xk > x) ∼

 ∞∑
k=1

P [N(t) = k]
∫
Tk

 k∑
i=1

p1/α
i


α

uk,β(p)dp

 F(x),

in the above notation. �
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4.3 Mixture of copulas

Proposition 4.19 Under the assumptions of Proposition 4.6, with in addition C̃ =
n∑

i=1
γiCi as

copula with γi ∈ R+ and
n∑

i=1
γi = 1 and if we assume that Ci ∈ CDA(C∗i ) for i = 1, ...,n, and C∗i

is linked with a q(i)
k,α like in (4.7) and (4.8). Then, for large u,

ψ(u, t) ∼

 ∞∑
k=1

P [N(t) = k]
n∑

i=1

γiq
(i)
k,α

 F(u + ct). (4.14)

Proof. This is immediate since if (X(i)
1 , ...,X

(i)
k ) is a copy of (X1, ...,Xk) with dependence

structure described by Ci, then, for all k ≥ 1 and large x,

P (X1 + ... + Xk > x) =

n∑
i=1

γiP(X(i)
1 + ... + X(i)

k > x)

∼

 n∑
i=1

γiq
(i)
k,α

 F(x).

�

Example. Let us consider a sequence of r.v. (Xi)i≥1 such that for i ≥ 1,

• P(Xi = Yi) = p,

• P(Xi = Zi) = 1 − p,

where p ∈ [0, 1] and for all k ≥ 1, (Z1, ...,Zk) and (Y1, ...,Yk) belongs to MR−α with
common cdf F. The dependence structure of (Y1, ...,Yk) is described by a Gaussian
copula which satisfies (4.1) and the dependence structure of (Z1, ...,Zk) is described by
the copula (4.3).
Now, consider the risk process R(t) = u + ct −

∑N(t)
i=1 Xi. By (4.5) and (4.14) we get large

u that

ψ(u, t) ∼

pλt + (1 − p)
∞∑

k=1

P [N(t) = k]
∑

A(k)∈P([1,k])

λA(k)

∑
a∈A(k)

Card(a)α

 F(u + ct).

In particular we deduce that

α > 1 resp. α < 1 ⇒ ψ(u, t)increases (resp. decreases) with p,

and if α = 1, ψ(u, t) = λtF(u + ct). Indeed,

∂ψ

∂p
=

λt −
∞∑

k=1

P [N(t) = k]
∑

A(k)∈P([1,k])

λA(k)

∑
a∈A(k)

Card(a)α

 F(u + ct),

and we see that for all k ≥ 1 and A ∈ P([1, k]),
∑

a∈A(k) Card(a)α


>
<
=

k if


α > 1
α < 1
α = 1

, and∑
∞

k=1 P [N(t) = k]
∑

A(k)∈P([1,k]) λA(k)k = λt.
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5 Dependence through an environment process

In this Section, we aim at taking into account the fact that one or several correlation
crises may occur: claim amounts, in general independent or weakly dependent, may
suddenly become comonotone or strongly positively dependent. The claim size dis-
tribution may become more dangerous as well. To this end, the dependence between
claim amounts and the claim size distribution and intensity are modulated by a Marko-
vian environment process. More precisely,

• there exists a Markovian environment process (J(t))t≥0 with states i = 1, . . . , J ≥ 2

– with initial distribution π0,

– and transition rate matrix Q.

• for i = 1, ..., J the claim amounts (Xi
n)n≥1 are J independent sequences defined as

in Proposition 3.1, i.e.

Xi
n = Ii

nWi
0 + (1 − Ii

n)Wi
n , n ≥ 1,

– where the (Wi
n)n≥0 are i.i.d. r.v.’s with cdf Fi

W ∈ R−αi ,

– the (Ii
n)n≥1 are i.i.d. Bernoulli r.v.’s with parameter pi

∈ [0, 1],

– the (Wi
n)n≥0, are independent from the (Ii

k)k≥1,

– and the (Wi
n)n≥0 and (Ii

k)k≥1 are independent from a Poisson process Ni(t) with
parameter λi.

Let us define the J independent processes

Yi(t) = cit −
Ni(t)∑
mi=1

Xi
mi , i = 1, ..., J.

Let Tp be the instant of the pth jump of the process (J(t))t≥0, and define (R(t))t≥0 by

R(t) = u +
∑
p≥1

∑
1≤i≤n

[
Yi(Tp) − Yi(Tp−1)

]
1{JTp−1 =i,Tp≤t}

+
∑
p≥1

∑
1≤i≤n

[
Yi(t) − Yi(Tp−1)

]
1{JTp−1 =i,Tp−1≤t<Tp}.

Thus, we have built a modulated risk process. For an illustration see figure 2.
We now discuss our model with two situations of special interest. In the first one,

the crisis causes the claim amounts to be more dangerous. In the second one, one pure
correlation crisis is considered : the dependence between claim amounts increases, but
the claim size distribution remains unchanged.
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Figure 2: A typical modulated risk process with two states (red and blue).

5.1 Correlation and severity crisis: case where one state dominates

In this Subsection, we suppose that the state 1 is more hazardous then the others states,
that is to, for all i ≥ 2, we have α1 < αi.

Proposition 5.1 As u→ +∞, we have for any t > 0

ψ(u, t) ∼

 J∑
i=1

π0(i)E
(
M⊥

i +
[([

Mcom
i

]α1)]) F̄1(u), (5.1)

• where W1
i (t) is the time spent by the environment process in state 1 during [0, t] given

that J(0) = i,

• M⊥

i follows a mixed Poisson distribution with random parameter λ1(1 − p1)W1
i (t),

• and Mcom
i follows a mixed Poisson distribution with random parameter λ1p1W1

i (t).

Proof. First, rewrite R(t) as follow,

R(t) = u + C(t) − S(t),

where

C(t) =
∑
p≥1

∑
1≤i≤J

(
ci(Tp − Tp−1)

)
1{JTp−1 =i,Tp≤t} +

∑
p≥1

∑
1≤i≤J

(
ci(t − Tp−1)

)
1{JTp−1 =i,Tp−1≤t≤Tp},

and where

S(t) =
∑
p≥1

∑
1≤i≤J


Ni(Tp)∑
mi=1

Xi
mi −

Ni(Tp−1)∑
mi=1

Xi
mi

1{JTp−1 =i,Tp≤t}+
∑
p≥1

∑
1≤i≤J


Ni(t)∑
mi=1

Xi
mi −

Ni(Tp−1)∑
mi=1

Xi
mi

1{JTp−1 =i,Tp−1≤t≤Tp}.

Then, notice that, for all t > 0, S(t) has the same distribution as

S̃(t) =

J∑
j=1

N j(W j(t))∑
m j=1

X j
m j ,
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where for j = 1, ..., J and t > 0, W j(t) is the time spent by the environment process in
state j during [0, t]. Thus,

P(R(t) < 0) =

J∑
j=1

π0(i)P(S(t) > u + C(t) |J(0) = i )

=

J∑
j=1

π0(i)P(S̃(t) > u + C(t) |J(0) = i ).

Let us define for i, j = 1, ..., J and t > 0, W j
i (t) as the time spent by the environment

process in state j during [0, t] knowing J(0) = i. We have, for all j = 1, ..., J, t > 0 and
large u,

P

N j(W j(t))∑
m j=1

X j
m j > u |J(0) = i

 = P


N j(W j

i (t))∑
m j=1

X j
m j > u


= P


N j(W

j
i (t))∑

m j=1

(I j
m jW

j
0 + (1 − I j

m j)W
j
m j

) > u


= P


Ncom

j (W j
i (t))∑

m j=1

W j
0 +

N⊥j (W j
i (t))∑

m j=1

W j
m j
> u

 ,
using the thinning property of the Poisson process and where Ncom

j (W j
i (t)) is a Poisson

process with parameter λ jp jW j
i (t) and N⊥j (W j

i (t)) is a Poisson process with parameter

λ jp jW j
i (t). For i, j = 1, ...J, t > 0 and large u, we have

P


Ncom

j (W j
i (t))∑

m j=1

W j
0 > u

 = P
(
Ncom

j (W j
i (t))W

j
0 > u

)
=

∞∑
n=0

P
(
Ncom

j (W j
i (t)) = n

)
P
(
W j

0 >
u
n

)
∼

∞∑
n=0

P
(
Ncom

j (W j
i (t)) = n

)
nα

j
F(u)

∼ E(Ncom
j (W j

i (t)))
α j

F j(u) ∈ R−α j ,
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and

P


N⊥j (W j

i (t))∑
m j=1

W j
m j
> u

 =

∞∑
n=0

P
(
N⊥j (W j

i (t)) = n
)

P

 n∑
m j=1

W j
m j
> u

 (5.2)

∼

∞∑
n=0

P
(
N⊥j (W j

i (t)) = n
)

nF(u)

∼ E(N⊥j (W j
i (t)))F

j(u) ∈ Rα j . (5.3)

Since for all i, j = 1, ...J
∑Ncom

j (W j
i (t))

m j=1 W j
0 and

∑N⊥j (W j
i (t))

m j=1 W j
m j

are independent and belong to
R−α j , we have for t > 0 and large u,

P

N j(W j(t))∑
m j=1

X j
m j > u |J(0) = i

 ∼ (
E(N⊥j (W j

i (t))) + E(Ncom
j (W j

i (t)))
α j
)

F j(u) ∈ R−α j

Since for all j = 2, ..., J, α1 < α j, and for all i, j = 1, ..., J, i , j (Xi
mi

)mi≥1 and (X j
m j

)m j≥1 we
have for t > 0 and large u,

P (S(t) > u) =

J∑
j=1

π0(i)P(S̃(t) > u |J(0) = i )

=

J∑
j=1

π0(i)P(
J∑

j=1

N j(W j(t))∑
m j=1

X j
m j > u |J(0) = i )

∼

J∑
j=1

π0(i)P(
N1(W1(t))∑

m1=1

X1
m1 > u |J(0) = i )

∼

J∑
j=1

π0(i)
(
E(N⊥1 (W1

i (t))) + E(Ncom
1 (W1

i (t)))α
1
)

F1(u)

∼

 J∑
i=1

π0(i)E
(
M⊥

i +
[([

Mcom
i

]α1)]) F̄1(u).

and since for all s ∈ R, we have for large u F1(u + s) ∼ F1(u),

P

S(t) > u + sup
j=1,...,J

c jt

 ∼
 J∑

i=1

π0(i)E
(
M⊥

i +
[([

Mcom
i

]α1)]) F̄1(u).

We conclude with the inequality :

P

S(t) > u + sup
j=1,...,J

c jt

 ≤ P(R(t) < 0) ≤ P (S(t) > u) .
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�

The next Theorem gives a way to compute the moments of Ncom(t) when α1
∈ N

using a result in Castella et al. (2007)

Proposition 5.2 If besides α1
∈N, we have

E
(
M⊥

i

)
= λ1(1 − p1)E

[
W1

i (t)
]

= λ1(1 − p1)D1
i (1, t),

and

E
([

Mcom
i

]α1)
= E

 α1∑
k=0

S(α1, k)(λ1p1)k
(
W1

i (t)
)k


=

α1∑
k=0

S(α1, k)(λ1p1)kD1
i (k, t),

where S(α1, k) is the (α1, k) Stirling number of the second kind, and where

for m ≥ 1, D1
i (m, t) = E

[(
W1

i (t)
)m
| J(0) = i

]
is the ith component of vector D1(m, t) defined by D1(0, t) = 1 and for m ≥ 1,

D1(m, t) = r
∫ t

0
eQ(t−u)A11D1(m − 1,u)du where A11 is J × J with coeff. δi1δ j1.

Proof. Castella et al. (2007) gives the way to compute D1
i (m, t) for m ≥ 1 and i = 1, ..., J.

Moreover we know that the moments of a Poisson distribution X with parameter λ are
given by, for m ≥ 1,

EXm =

m∑
k=1

S(m, k)λk.

�

5.2 Pure correlation crisis: a typical case

In this Subsection, let us assume that there exist three states such that

• in state 1, the X1
n, n ≥ 1 are i.i.d.,

• in state 2, there is a light correlation: the X2
n, n ≥ 1 have Gaussian copulas,

• and in state 3, the X3
n, n ≥ 1 are given by the basic dependence model with

parameter p3.

Moreover claim amounts are identically distributed with common c.d.f. F such that
F ∈ R−α for some α > 0 and for all n ≥ 1 (X2

1, ...,X
2
n) belongs toMR−α.
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Proposition 5.3 We have for any t > 0, as u→ +∞,

ψ(u, t) ∼

 3∑
i=1

π0(i)[λ1D1
i (1, t) + λ2D2

i (1, t) + λ3
(
1 − p3

)
D3

i (1, t) +

α∑
k=0

S(α, k)(λ3p3)kD3
i (k, t)]

 F̄(u).

Proof. Since (X1
n)n≥1, (X2

n)n≥1 and (X3
n)n≥1 are independent, we have for t > 0 and large

u,

P(S(t) > u) = P

 3∑
j=1

N j(W j(t))∑
m j=1

X j
m j > u

 see the proof of Proposition 5.1,

∼

3∑
m j=1

P

N j(W j(t))∑
m j=1

X j
m j > u

 .
We have for t > 0 and large u, we have

P

N1(W1(t))∑
m1=1

X1
m1 > u

 ∼ λ1E(W1(t))F(u),

from Proposition 4.14, we have

P

N2(W2(t))∑
m2=1

X2
m2 > u

 ∼ λ2E(W2(t))F(u),

and from (5.3), we have

P

N3(W3(t))∑
m3=1

X3
m3 > u

 ∼ λ3
(
E(W3(t)) + E

[
(N3(W3(t)))α

])
F(u),

We conclude with Proposition 5.2. �
Similar results may be obtained with classical copulas, and dependence between dif-
ferent state processes.
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