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SATURATED FUSION SYSTEMS OVER 2-GROUPS

BOB OLIVER AND JOANA VENTURA

Abstract. We develop methods for listing, for a given 2-group S, all nonconstrained
centerfree saturated fusion systems over S. These are the saturated fusion systems
which could, potentially, include minimal examples of exotic fusion systems: fusion
systems not arising from any finite group. To test our methods, we carry out this
program over four concrete examples: two of order 27 and two of order 210. Our long
term goal is to make a wider, more systematic search for exotic fusion systems over
2-groups of small order.

For any prime p and any finite p-group S, a saturated fusion system over S is a
category F whose objects are the subgroups of S, whose morphisms are injective group
homomorphisms between the objects, and which satisfy certain axioms due to Puig
and described here in Section 2. Among the motivating examples are the categories
F = FS(G) where G is a finite group with Sylow p-subgroup S: the morphisms in
FS(G) are the group homomorphisms between subgroups of S which are induced by
conjugation by elements of G. A saturated fusion system F which does not arise in
this fashion from a group is called “exotic”.

When p is odd, it seems to be fairly easy to construct exotic fusion systems over
p-groups (see, e.g., [BLO2, §9], [RV], and [Rz]), although we are still very far from
having any systematic understanding of how they arise. But when p = 2, the only
examples we know are those constructed by Levi and Oliver [LO], based on earlier
work by Solomon [Sol] and Benson [Bs]. The smallest such example known is over a
group of order 210, and it is possible that there are no exotic examples over smaller
groups. Our goal in this paper is to take a first step towards developing techniques for
systematically searching for exotic fusion systems, a search which eventually can be
carried out in part using a computer.

A fusion system F is constrained (Definition 2.3) if it contains a normal p-subgroup
which contains its centralizer. Any constrained fusion system is the fusion system of
a unique finite group with analogous properties [BCGLO1, Proposition C]. A fusion
system F over S is centerfree (Definition 2.3) if there is no element 1 6= z ∈ Z(S) such
that each morphism in F extends to a morphism between subgroups containing z which
sends z to itself. By [BCGLO2, Corollary 6.14], if there is such a z, and if F is exotic,
then there is a smaller exotic fusion system F/〈z〉 over S/〈z〉. Thus all minimal exotic
fusion systems must be nonconstrained and centerfree, and these conditions provide a
convenient class of fusion systems to search for and list.

If F is a saturated fusion system over any p-group S, then the F-essential sub-
groups of S are the proper subgroups P � S which “contribute new morphisms” to
the category F : it is the smallest set of objects such that each morphism in S is a
composite of restrictions of automorphisms of essential subgroups and of S itself. We
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refer to Definition 2.3, Proposition 2.5, and Corollary 2.6 for more details. We define
a critical subgroup of S to be one which could, potentially, be essential in some fusion
system over F . The precise definition (Definition 3.1) is somewhat complicated (and
stated without reference to fusion systems), and involves the existence of subgroups of
Out(P ) which contain strongly embedded subgroups. Thus Bender’s classification of
groups with strongly embedded subgroups (at the prime 2) plays a central role in our
work. In addition, one important thing about critical subgroups is that the 2-groups
we have studied contain very few of them (even those 2-groups which support many
“interesting” saturated fusion systems), and we have developed some fairly efficient
techniques for listing them.

Thus, the first step when trying to find all saturated fusion systems over a 2-group S
is to list its critical subgroups. Afterwards, for each critical P (and for P = S), one com-
putes Out(P ), and determines which subgroups of Out(P ) can occur as AutF(P ) if P
is F -essential. The last step is then to put this all together: to see which combinations
of essential subgroups and their automorphism groups can generate a nonconstrained
centerfree saturated fusion system F .

To illustrate how this procedure works in practice, we finish by listing all noncon-
strained centerfree saturated fusion systems over two groups of order 27 and two groups
of order 210. We chose them because each is the Sylow subgroup of several “interesting”
simple or almost simple groups; in fact, each is the Sylow 2-subgroup of at least one
sporadic simple group. The groups we chose are the Sylow 2-subgroups of M22, M23,
and McL; J2 and J3; He, M24, and GL5(2); and Co3. The last case is particularly in-
teresting because it is also the Sylow subgroup of the only known exotic fusion system
over a 2-group of order ≤ 210.

Not surprisingly, we found no new exotic fusion systems over any of these four
groups, and a much wider and more systematic search will be needed to have much
hope of finding new exotic examples. For example, over the group S = UT5(2) of upper
triangular 5×5 matrices over F2, we show (Theorem 6.10) that the only nonconstrained
centerfree saturated fusion systems are those of the simple groups He, M24, and GL5(2).
Likewise, over the Sylow 2-subgroup of Co3, we show (Theorem 7.8) that each such
fusion system is either the fusion system of Co3, or that of the almost simple group
Aut(PSp6(3)), or the exotic fusion system Sol(3) constructed in [LO]. Thus in these
cases, we repeat in part the well known results of Held [He] and Solomon [Sol], except
that we classify fusion systems over these 2-groups, and do not try to list all groups
which realize a given fusion system. But the techniques we use are somewhat different,
and we hope that they can eventually make possible a more systematic search for exotic
fusion systems.

This approach also makes it easy to determine all automorphisms of the fusion
systems we classify. We don’t state it here explicitly, but using the information given
about the fusion systems over the four 2-groups we study, one can easily determine
their automorphisms, and check they all extend to automorphisms of the associated
groups.

The paper is organized as follows. The first section contains background results on
finite groups, their automorphism groups, and strongly embedded subgroups, while
Section 2 contains background results on fusion systems. Then, in Section 3, critical
subgroups are defined, and techniques developed for determining the critical subgroups
of a given 2-group. Afterwards, in Sections 4–7, we present our examples, describing
the nonconstrained centerfree saturated fusion systems over four different 2-groups.
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We would like in particular to thank Kasper Andersen, who helped revive our interest
in this program by doing a computer search for some critical subgroups; and Andy
Chermak, for (among other things) suggesting we look at the Sylow subgroup of the
Janko groups J2 and J3. We also give special thanks to the referee, whose many detailed
suggestions helped us to make considerable improvements in the paper.

Notation : Most of the time, when α ∈ Aut(P ) for some group P , we write [α]
for the class of α in Out(P ). The one exception to this is the case of automorphisms
defined via conjugation: cg denotes conjugation by g, as an element of a group Aut(P )
or Out(P ) (for some P normalized by g) which will be specified each time. Occasionally,
the same letter will be used to describe a subgroup of Aut(P ) and its image in Out(P ),
but that will be stated explicitly in each case.

Since the two authors are topologists, some of our notation clashes with that usually
used by group theorists. Commutators are defined [g, h] = ghg−1h−1, and cg denotes
conjugation by g in the sense cg(x) = gxg−1. Homomorphisms are written on the
left and composed from right to left. When a matrix is used to describe a linear map
between vector spaces with respect to given bases, each column contains the coordinates
of the image of one basis element. Finally, in what is standard notation, we write Zn(P )
for the n-th term in the upper central series of a p-group P ; thus Z1(P ) = Z(P ) and
Zn(P )/Zn−1(P ) = Z(P/Zn−1(P )).

1. Background results

We collect here some results about groups and their automorphisms which will be
needed later. Almost all of them are either well known, or follow from well known
constructions.

We first recall some standard notation. For any group G and any prime p, Op(G)
denotes the largest normal p-subgroup (the intersection of the Sylow p-subgroups of
G), and Op(G) denotes the smallest normal subgroup of p-power index. Also, Op′(G)
denotes the largest normal subgroup of order prime to p, and Op′(G) denotes the
smallest normal subgroup of index prime to p.

1.1 Automorphisms of p-groups and group cohomology

We first consider conditions which can be used to show that certain automorphisms
of a p-group P lie in Op(Aut(P )). Recall that the Frattini subgroup Fr(P ) of a p-
group P is the subgroup generated by commutators and p-th powers; i.e., the smallest
normal subgroup whose quotient is elementary abelian. It has the property that if
g1, . . . , gk ∈ P are elements whose classes generate P/Fr(P ), then they generate P .

Lemma 1.1. Fix a prime p, a p-group P , and a sequence of subgroups

P0 C P1 C · · · C Pk = P

such that P0 ≤ Fr(P ). Set

A =
{
α ∈ Aut(P )

∣∣ x−1α(x) ∈ Pi−1, all x ∈ Pi, all i = 1, . . . , k
}
≤ Aut(P ) :

the group of automorphisms which leave each Pi invariant and which induce the identity
on each quotient group Pi/Pi−1. Then A is a p-group. If the Pi are all characteristic
in P , then A C Aut(P ), and hence A ≤ Op(Aut(P )).
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Proof. To prove that A is a p-group, it suffices to show that each element α ∈ A has
p-power order. This follows, for example, from [G, Theorems 5.1.4 & 5.3.2]. The last
statement is then clear. �

We next turn to the problem of determining Out(P ) for a p-group P . In the next
lemma, for any group G and any normal subgroup H C G, we let Aut(G,H) ≤ Aut(G)
denote the group of automorphisms α of G such that α(H) = H, and set Out(G,H) =
Aut(G,H)/Inn(G).

Lemma 1.2. Fix a group G and a normal subgroup H C G such that CG(H) ≤ H
(i.e., H is centric in G). Then there is an exact sequence

1 −−−→ H1(G/H;Z(H))
η−−−−−→ Out(G,H)

R−−−−−→

NOut(H)(OutG(H))/OutG(H)
χ−−−−−→ H2(G/H;Z(H)), (1)

where R is induced by restriction, and where all maps except (possibly) χ are homo-
morphisms. If, furthermore, H is abelian and the extension of H by G/H is split, then
R is onto.

Proof. Throughout the proof, g = gH ∈ G/H denotes the class of g ∈ G.

We first prove that there is an exact sequence of the following form:

1 −−−→ Z1(G/H;Z(H))
η̃−−−−−→ Aut(G,H)

Res−−−−−→

NAut(H)(AutG(H))
χ̃−−−−−→ H2(G/H;Z(H)). (2)

Here, Z1(G/H;Z(H)) denotes the group of 1-cocycles for G/H with coefficients in
Z(H) (“crossed homomorphisms” in the terminology of [Mc, §IV.4]). Explicitly,

Z1(G/H;Z(H)) =
{
ω : G/H −−−→ Z(H)

∣∣ω(g1g2) = ω(g1) · g1ω(g2)g
−1
1 ∀ g1, g2 ∈ G

}
.

For ω ∈ Z1(G/H;Z(H)), η̃(ω) is defined by setting η̃(ω)(g) = ω(g)·g for g ∈ G. For
g1, g2 ∈ G,

η̃(ω)(g1g2) = ω(g1g2) · g1g2 = ω(g1) · g1ω(g2)g
−1
1 · g1g2 = η̃(ω)(g1) · η̃(ω)(g2),

so η̃(ω) ∈ Aut(G,H). To see that η̃ is a homomorphism, fix ω1, ω2 ∈ Z1(G/H;Z(H));
then for g1, g2 ∈ G,(

η̃(ω1) ◦ η̃(ω2)
)
(g) = η̃(ω1)(ω2(g)g) = ω1(g) · ω2(g)g = (ω1ω2)(g) · g = η̃(ω1ω2)(g)

(since ω2(g)g = g). Clearly, η̃ is injective, and η̃(ω)|H = IdH for each ω.

The map Res sends α ∈ Aut(G,H) to α|H ∈ Aut(H); this lies in the normalizer
of AutG(H) since for all g ∈ G, (α|H)cg(α|H)−1 = cα(g) ∈ AutG(H). Assume α ∈
Ker(Res); we want to show that α ∈ Im(η̃). Since α ∈ Aut(G) and α|H = IdH , we
have cg = cα(g) ∈ Aut(H) for all g ∈ G. Hence α(g) ≡ g (mod Z(H)), and the element
α(g)·g−1 depends only on g ∈ G/H. So we can define ω : G/H → Z(H) by setting
ω(g) = α(g)·g−1 for g ∈ G, and α takes the form α(g) = ω(g)·g. Also, for all g1, g2 ∈ G,

ω(g1g2) = α(g1g2) · (g1g2)
−1 = α(g1)(α(g2)g

−1
2 )g−1

1 = ω(g1) · g1ω(g2)g
−1
1 ,

and hence ω ∈ Z1(G/H;Z(H)). This proves the exactness of (2) at Aut(G,H).

We next define χ̃ and prove that Im(Res) = χ̃−1(0). Fix some ϕ ∈ NAut(H)(AutG(H)),
and let ψ ∈ Aut(G/Z(H)) be defined by ψ(gZ(H)) = g′Z(H) if ϕcgϕ

−1 = cg′ in
Aut(H). This defines ψ uniquely since CG(H) = Z(H) (H is centric). Intuitively,
the obstruction to extending ϕ and ψ to an automorphism of G is the same as the
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obstruction to two extensions of H by G/H (with the same outer action of G/H on
H) being isomorphic, and thus lies in H2(G/H;Z(H)) (cf. [Mc, Theorem IV.8.8]).

To show this explicitly, we first choose a map of sets ϕ̂ : G −−−→ G such that for all
g ∈ G and h ∈ H,

ϕ(ghg−1) = ϕ̂(g)ϕ(h)ϕ̂(g)−1, ϕ̂(hg) = ϕ(h)ϕ̂(g), and ϕ̂(gh) = ϕ̂(g)ϕ(h) (3)

(any two of these imply the third). To construct ϕ̂, let X = {g1, . . . , gk} be a set of
representatives for cosets in G/H. For each i, let ϕ̂(gi) be any element of the coset
ψ(giZ(H)) ∈ G/Z(H). Then ϕ(gihg

−1
i ) = ϕ̂(gi)ϕ(h)ϕ̂(gi)

−1 for all h ∈ H by definition
of ψ. So if we set ϕ̂(hgi) = ϕ(h)ϕ̂(gi) for all h ∈ H, then (3) holds for all g and h.

For all g1, g2 ∈ G, ϕ̂(g1g2) ≡ ϕ̂(g1)ϕ̂(g2) (mod Z(H)), since the two elements have the
same conjugation action onH by (3). So there is a function τ : G/H×G/H −−−→ Z(H)
such that

ϕ̂(g1g2) = ϕ(τ(g1, g2)) · ϕ̂(g1)ϕ̂(g2).

That τ(g1, g2) depends only on the classes of g1 and g2 in G/H follows from the last
two identities in (3). For each triple of elements g1, g2, g3 ∈ G,

ϕ̂(g1g2g3) = ϕ(τ(g1g2, g3)) · ϕ̂(g1g2)ϕ̂(g3) = ϕ(τ(g1g2, g3) · τ(g1, g2)) · ϕ̂(g1)ϕ̂(g2)ϕ̂(g3)

= ϕ(τ(g1, g2g3)) · ϕ̂(g1)ϕ̂(g2g3) = ϕ(τ(g1, g2g3)) · ϕ̂(g1)ϕ(τ(g2, g3))ϕ̂(g2)ϕ̂(g3)

= ϕ
(
τ(g1, g2g3) · g1τ(g2, g3)g

−1
1

)
· ϕ̂(g1)ϕ̂(g2)ϕ̂(g3);

and hence
τ(g1g2, g3) · τ(g1, g2) = τ(g1, g2g3) · g1τ(g2, g3)g

−1
1 . (4)

This is precisely the relation which implies τ is a 2-cocycle (cf. [Mc, §IV.4, (4.8)]).

Assume ϕ̃ : G −−−→ G is another map satisfying (3), and let τ̃ be the 2-cocycle
defined using ϕ̃. Then ϕ̂(g) ≡ ϕ̃(g) (mod Z(H)) for each g. So using (3) again, we
define σ : G/H −−−→ Z(H) so that ϕ̃(g) = ϕ(σ(g))ϕ̂(g) for all g. Then for g1, g2 ∈ G,

τ̃(g1, g2) = ϕ−1
(
ϕ̃(g1g2)ϕ̃(g2)

−1ϕ̃(g1)
−1

)
= ϕ−1

(
ϕ(σ(g1g2))ϕ̂(g1g2)ϕ̂(g2)

−1ϕ(σ(g2)
−1)ϕ̂(g1)

−1ϕ(σ(g1)
−1)

)
= σ(g1g2) · τ(g1, g2) · g1σ(g2)

−1g−1
1 · σ(g1)

−1.

In the notation of [Mc, §IV.4], τ̃ = τ ·δ(σ)−1, and thus τ̃ and τ represent the same
element inH2(G/H;Z(H)). We now define χ̃ by setting χ̃(ϕ) = [τ ] ∈ H2(G/H;Z(H)).

If ϕ ∈ Im(Res), then ϕ̂ can be chosen to be an automorphism of G, so τ = 1, and
ϕ ∈ Ker(χ̃). Conversely, if ϕ ∈ Ker(χ̃), then for any choice of ϕ̂ (with τ defined as
above), there is σ : G/H −−−→ Z(H) such that τ = δ(σ). So if we define ϕ̃ by setting
ϕ̃(g) = ϕ(σ(g))ϕ̂(g) for all g, the above computations show that τ̃ = 1, and thus that
ϕ̃ ∈ Aut(G,H) and ϕ ∈ Im(Res).

This proves the exactness of (2). The following sequence is clearly exact:

1 −−−→ AutZ(H)(G)
incl−−−−−−→ Inn(G)

restr.−−−−−−→ AutG(H) −−−→ 1.

So if we replace the first three terms in (2) by their quotients modulo these three
subgroups, the resulting sequence

1 −−−→ Z1(G/H;Z(H))/η̃−1(AutZ(H)(G))
η−−−−−→ Aut(G,H)/Inn(G)

R−−−−−→ NAut(H)(AutG(H))/AutG(H)
χ−−−−−→ H2(G/H;Z(H)). (5)

is still exact. For z ∈ Z(H), cz(g) = (zgz−1g−1)g for g ∈ G, and hence cz = η̃(ωz) where
ωz(g) = (zgz−1)g−1. The group of all such ωz is precisely the group B1(G/H;Z(H))
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of all 1-coboundaries (cf. [Mc, §IV.2]), and hence the first term in (5) is equal to to
H1(G/H;Z(H)). This finishes the proof that (1) is defined and exact.

It remains to prove the last statement. Assume H is abelian, and G = HK where
H ∩ K = 1. Thus K projects isomorphically onto G/H ∼= OutG(H), and so we can
identify these groups. Fix β ∈ Aut(H) = Out(H), and assume β ∈ NAut(H)(AutG(H)).
Let γ ∈ Aut(K) be the automorphism of K ∼= AutG(H) induced by conjugation by β.
Then there is an automorphism α ∈ Aut(G) such that α|H = β and α|K = γ, and thus
R is surjective in this case. �

Lemma 1.2 will frequently be applied in the following special case:

Corollary 1.3. Let G be a finite 2-group with centric characteristic subgroup H C G.
Assume Z(H) has exponent two, and has a basis over F2 which is permuted freely under
the conjugation action of G/H. Then there is an isomorphism

R : Out(G)
∼=−−−−−→ NOut(H)(OutG(H))/OutG(H)

which sends the class of α ∈ Aut(G) to the class of α|H ∈ Aut(H).

Proof. The condition on Z(H) implies that H i(G/H;Z(H)) = 0 for all i > 0. Also,
Out(G) = Out(G,H) since H is characteristic in G, and so the result follows directly
from Lemma 1.2. �

The following slightly related lemma was suggested to us by the referee.

Lemma 1.4. Let G be a finite 2-group, with normal subgroup H C G of index two.
Assume there is x ∈ GrH of order two. Assume also there is a sequence

1 = H0 ≤ H1 ≤ · · · ≤ Hm = H

of subgroups all normal in G, such that for each 1 ≤ i ≤ m, Vi
def
= Hi/Hi−1 is elementary

abelian and CVi
(x) = [x, Vi] (equivalently, |Vi| = |CVi

(x)|2). Then all involutions in
xH = GrH are conjugate by elements of H.

Proof. We show this by induction on m. When m = 1, all involutions in xH are
conjugate since H1(〈x〉;H) ∼= CH(x)/[x,H] = 1 (cf. [A1, 17.7]).

If m > 1, then by the induction hypothesis applied to G/H1, all involutions in xH
are conjugate modulo H1. Thus if y ∈ xH is another involution, then y is H-conjugate
to some y′ ∈ xH1, and y′ is H1-conjugate to x by the first part of the proof. �

1.2 Strongly embedded subgroups

Strongly embedded subgroups of a finite group play a central role in this paper. We
begin with the definition.

Definition 1.5. Fix a prime p. For any finite group G, a subgroup G0 � G is called
strongly embedded at p if p

∣∣|G0|, and for all g ∈ GrG0, G0 ∩ gG0g
−1 has order prime

to p. A subgroup G0 � G is strongly embedded if it is strongly embedded at 2.

The classification of all finite groups with strongly embedded subgroups at 2 is due
to Bender.

Theorem 1.6 (Bender). Let G be a finite group with strongly embedded subgroup at the
prime 2. Fix a Sylow 2-subgroup S ∈ Syl2(G). Then either S is cyclic or quaternion,
or O2′(G/O2′(G)) is isomorphic to one of the simple groups PSL2(2

n), PSU3(2
n), or

Sz(2n) (where n ≥ 2, and n is odd in the last case).
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Proof. See [Bd]. �

The following lemma about F2-representations of groups with strongly embedded
subgroups (at the prime 2) will be needed in Section 3, and plays a key role in later
applications. When α is an automorphism of a vector space V , we write

[α, V ] = Im[V
α−Id−−−−→ V ].

Lemma 1.7. Let G be a finite group with strongly embedded subgroup at the prime
2, and let V be an F2-vector space on which G acts linearly and faithfully. Fix some
S ∈ Syl2(G), and let 1 6= s ∈ S be any nonidentity element. Then the following hold.

(a) If |S| = 2k, then dimF2(V ) ≥ 2k.

(b) If Z(S) ∼= Cn
2 , then dimF2([s, V ]) ≥ n.

(c) If S is cyclic of order 4, then dimF2([s, V ]) ≥ 2. If S is cyclic or quaternion of
order 2k ≥ 8, then dimF2(V ) ≥ 3·2k−2 and dimF2([s, V ]) ≥ 2k−2.

Proof. The result is clear when |S| = 2 (dim(V ) ≥ 2· dim([s, V ]) ≥ 2), so we assume
|S| ≥ 4. If s ∈ S has order ≥ 4, then [s2, V ] ⊆ [s, V ] ((s2− Id)(v) = (s− Id)(v+ s(v))),
so it suffices to prove (b) and the statements about [s, V ] in (c) when s is an involution.
Also, since all involutions in G are conjugate by [Sz2, Lemma 6.4.4], it suffices to prove
(b) for just one involution s in S. We handle the case where Z(S) is noncyclic in Case
1, and the case where S is cyclic or quaternion in Case 2.

Case 1: Assume first that O2′(G/O2′(G)) ∼= L where L is simple. There are three
subcases to consider. In all cases, we set |S| = 2k and |Z(S)| = 2n.

Case 1A: Assume L ∼= PSL2(q), where q = 2k. Then S ∼= Ck
2 . Also, L contains

a dihedral subgroup D of order 2(q + 1). Let h1, h2 ∈ L be a pair of involutions

which generate D, and let h1, h2 ∈ G be a pair of liftings to involutions. Then 〈h1, h2〉
is dihedral of order a multiple of 2(q + 1), and in particular, G also has a dihedral
subgroup D of order 2(q + 1). Write D = 〈g, h〉, where |g| = q + 1 and |h| = 2.

By Zsigmondy’s theorem (see [Z] or [Ar, p.358]), there is a prime p such that
p|(22k−1) and p-(2`−1) for ` < 2k — unless 2k = 6 in which case we take p = 9.
Thus p|(q + 1). Since g acts faithfully and p is a prime power, there is at least one

eigenvalue λ ∈ F2 of g with order a multiple of p. Since the set of eigenvalues is stable
under (λ 7→ λ2), the number of eigenvalues (hence the dimension of V ) is at least equal

to the order of 2 modulo p; thus dim(V ) ≥ 2k. Furthermore, the 2k eigenvalues {λ2i}
are permuted in pairs under the action of h, and so dim([h, V ]) ≥ k.

Case 1B: Next assume L ∼= Sz(q) for q = 2n ≥ 8, where n is odd. Then |S| = q2 = 22n

and Z(S) ∼= Cn
2 . By Zsigmondy’s theorem again, there is a prime p such that 2 has

order 4n modulo p. Since

24n − 1 = q4 − 1 = (q +
√

2q + 1)(q −
√

2q + 1)(q2 − 1),

p divides at least one of the factors m = q ±
√

2q + 1. By [HB3, Theorem XI.3.10], L
contains a dihedral subgroup of order 2m. Hence by the same argument as that used
in Case 1A, dim(V ) ≥ 4n, and dim([h, V ]) ≤ 2n for h ∈ G of order 2.

Case 1C: Now assume L ∼= PSU3(q) for q = 2n with n ≥ 2. Then |S| = q3 = 23n

and Z(S) ∼= Cn
2 . Also, L contains a cyclic subgroup of order m = (q2 − q + 1) or

m = (q2 − q + 1)/3, which comes from regarding Fq6 as a 3-dimensional Fq2-vector

space with hermitian product (x, y) = xyq
3
.
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Using Zsigmondy’s theorem, choose a prime p such that 2 has order 6n modulo p
(recall n ≥ 2). Then p|m since q6 − 1 = (q3 − 1)(q + 1)(q2 − q + 1). So by the same
arguments as used in Case 1A, dim(V ) ≥ 6n.

Let D ≤ L be the dihedral subgroup of order 2(q+1) generated by diagonal matrices

diag(u, u−1, 1) for u ∈ Fq2 with uq+1 = 1, and by the permutation matrix
(

0 1 0
−1 0 0
0 0 1

)
.

Since 2 has order 2n modulo q + 1, dim([h, V ]) ≥ n by the arguments used earlier.

Case 2: Now assume S is cyclic or quaternion of order 2k with k ≥ 2, and set
H = O2′(G). Let s ∈ S be the (unique) involution. Since sH ∈ Z(G/H) by the Brauer-
Suzuki theorem [BS, Theorem 2], [s,H] 6= 1. For each prime p

∣∣|H|, the number of Sylow
p-subgroups of H is odd, and hence there is at least one subgroup Hp ∈ Sylp(H) which
is normalized by S. Since H is generated by these Hp, at least one of them is not
centralized by s. So upon replacing H by some appropriate Sylow subgroup Hp and G
by HpS, we can assume G = HS where H is a normal p-subgroup.

By a theorem of Thompson [G, Theorem 5.3.13], there is a characteristic subgroup
Q ≤ H such that S still acts faithfully on Q, Fr(Q) = [Q,Q] ≤ Z(Q) is elementary
abelian, and Q has exponent p. Set Q0 = [s,Q] 6= 1. Then Q0 is S-invariant since s ∈
Z(S), and is generated by elements [s, g] (g ∈ Q) which are inverted under conjugation
by s. Upon replacing H by Q0 and G by Q0S, we are reduced to the case where H has
exponent p, Z(H) ≥ Fr(H), and s acts on H/Fr(H) via −Id.

Fix an irreducible F2[H]-moduleW ⊆ V with nontrivialH-action. LetK C H be the
kernel of the action; thus H/K acts faithfully and irreducibly on W . Then Z(H/K) is
cyclic, since otherwise any faithful representation would split, and hence |Z(H/K)| = p
since H has exponent p. Set S0 = NS(K), and set W ∗ = 〈u(W ) |u ∈ S0〉 ⊆ V . For
each u ∈ S, u(W ∗) is a sum of faithful irreducible H/uKu−1-modules. Hence the |S/S0|
distinct submodules u(W ∗) are linearly independent, and so rk(V ) ≥ |S/S0|· rk(W ∗).
Also, either S0 = 1 and rk([s, V ]) ≥ 1

2
|S|, or s ∈ S0 and rk([s, V ]) ≥ |S/S0|· rk([s,W ∗]).

So we are done if S0 = 1. Otherwise, upon replacing V by W ∗ and G by HS0/K,
we are reduced to the case where Z(H) ∼= Cp and V is a sum of faithful, irreducible
F2[H]-modules.

If H is abelian, then H ∼= Cp, sgs
−1 = g−1 for g ∈ H, and thus S permutes freely

the nontrivial irreducible F2[H]-representations. So rk(V ) = dimF2
(F2 ⊗F2 V ) ≥ |S| in

this case, and rk([s, V ]) ≥ 1
2
|S|.

If H is nonabelian, then since Fr(H) ≤ Z(H) ∼= Cp, H must be extraspecial of order
p1+2r for some r ≥ 1. All faithful irreducible F2[H]-modules have the same rank epr

for some e ≥ 2 depending on p. By construction, s acts via −Id on H/Z(H). Hence
S acts freely on (H/Fr(H))r1, so |S| = 2k

∣∣(p2r − 1), and 2k−1 must divide one of the

factors pr ± 1. So rk(V ) ≥ 2pr ≥ 2(2k−1 − 1) ≥ 2k − 2k−2 = 3·2k−2 when k ≥ 3. When
k ≤ 3, rk(V ) ≥ 2p ≥ 6 ≥ 3·2k−2, and thus this lower bound on rk(V ) holds for all k.

Fix any g ∈ HrZ(H) such that sgs−1 = g−1. The eigenvalues (in F2) of the action
of g on V include all p-th roots of unity with equal multiplicity, and the action of s
sends the eigenspace of ζ to that of ζ−1. Thus rk([s, V ]) = p−1

2p
· rk(V ) ≥ 1

3
rk(V ). �

1.3 General results on groups

The following result is useful when listing subgroups of Out(P ), for a p-group P ,
which have a given Sylow p-subgroup. The most important case is that where Q C G
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and H0 ≤ H ≤ G are such that Q = Op(G), G = QH, and H0 ∈ Sylp(H). But we also
have applications which require the more general setting.

Proposition 1.8. Fix a prime p, a finite group G, and a normal abelian p-subgroup
Q C G. Let H ≤ G be such that Q ∩H = 1, and let H0 ≤ H be of index prime to p.
Consider the set

H =
{
H ′ ≤ G

∣∣H ′ ∩Q = 1, QH ′ = QH, H0 ≤ H ′}.
Then for each H ′ ∈ H, there is g ∈ CQ(H0) such that H ′ = gHg−1.

Proof. Fix H ′ ∈ H, and define χ : H → Q by setting χ(h) = h′h−1, where h′ is the
unique element inH ′∩hQ. By straightforward calculation, χ(h1h2) = χ(h1)·h1χ(h2)h

−1
1

for all h1, h2 ∈ H, and thus χ ∈ Z1(H;Q) is a 1-cocycle. Also, χ|H0 = 1. Since
H1(H;Q) injects into H1(H0;Q) (Q is abelian and [H : H0] is prime to p), this means
that χ is a coboundary; i.e., χ(h) = ghg−1h−1 for some g ∈ Q. Thus H ′ = gHg−1.
Also, [g,H0] = 1, since ghg−1h−1 = χ(h) = 1 for each h ∈ H0. �

As an example of why Q must be assumed abelian in the above proposition, consider
the group G = GL2(3) (and p = 2). Set

Q = O2(G) =
〈
( 0 1
−1 0 ) , ( 1 1

1 −1 )
〉 ∼= Q8.

Consider the subgroups

H =
〈
( 1 1

0 1 ) , ( 1 0
0 −1 )

〉 ∼= Σ3, H ′ =
〈
( 1 0
−1 1 ) , ( 1 0

0 −1 )
〉
, and H0 =

〈
( 1 0

0 −1 )
〉
.

Then H and H ′ are both splittings of the surjection G→ G/Q ∼= Σ3 which contain H0

as Sylow 2-subgroup, but they are not conjugate in G. Instead, H ′ is G-conjugate to the
subgroup H ′′ =

〈
( 1 1

0 1 ) , ( −1 0
0 1 )

〉
. The 1-cocycle H → Q which sends the subgroup of

order three to I and its complement to −I is nontrivial in H1(H;Q8), but its restriction
is trivial in H1(H0;Q8).

The following very elementary lemma will be used later to list subgroups of a given
2-group which are not normal, and have index two in their normalizers.

Lemma 1.9. Assume S is a 2-group with a normal subgroup S0 C S, such that S0

and S/S0 are both elementary abelian and |S/S0| ≤ 4. Assume P ≤ S is such that P
is not normal and |NS(P )/P | = 2. Set P0 = P ∩ S0. Let m be the number of cosets
xS0 ∈ S/S0 such that xS0 6= S0 and [x, S0] ≤ P0. Then one of the six cases listed in
Table 1.1 holds.

rk(S0/P0) |P/P0| |S/S0| m other properties

(a) 1 1 2, 4 0

(b) 1 2 4 1 P0 6C S; [x, S0] ≤ P0 ⇔ x ∈ PS0

(c) 1 2 4 3 P0 C S, [S, S0] � [S, S] � P0

(d) 2 2 2, 4 0 PS0/P0
∼= D8

(e) 2 4 4 1

(f) 3, 4 4 4 0 rk(CS0/P0(P/P0)) = 1

Table 1.1



10 BOB OLIVER AND JOANA VENTURA

Proof. Since S0 is abelian, [x, S0] depends only on the class of x in S/S0. So m is well
defined, independently of the choice of coset representatives.

By assumption, P is not normal in S. Since S/S0 is abelian, this implies P0 � S0.
For g ∈ S0, g ∈ NS(P ) if and only if [g, P ] ≤ P0, or equivalently, gP0 ∈ CS0/P0(P/P0).
Hence since |NS(P )/P | = 2 and CS0/P0(P/P0) 6= 1,∣∣CS0/P0(P/P0)

∣∣ = 2 and NS(P ) ≤ PS0. (6)

We next claim that if we regard S0/P0 as an F2[P/P0]-module via the conjugation
action, then

S0/P0 is isomorphic to a submodule of F2[P/P0] and rk(S0/P0) ≤ |P/P0|. (7)

Since F2[P/P0] is injective as a module over itself (since its dual is projective), the
(unique) monomorphism from CS0/P0(P/P0) ∼= F2 into the fixed subspace of F2[P/P0]
extends to an F2[P/P0]-linear homomorphism ϕ from S0/P0 to F2[P/P0]. Also, ϕ
must be injective, since otherwise its kernel would have to contain the fixed subgroup
CS0/P0(P/P0), and this proves (7).

We are now ready to consider the individual cases. Assume first rk(S0/P0) = 1. If
|P/P0| = 1, then P ≤ S0, and [x, S0] ≤ P0 = P only for x ∈ NS(P ) = S0. Thus m = 0,
and we are in the situation of (a). If |P/P0| > 1, then |P/P0| < |S/S0| (since otherwise
[S : P ] = 2 and P is normal), and thus |P/P0| = 2 and |S/S0| = 4. Also, NS(P ) = PS0

by (6). If P0 C S, then S0/P0
∼= C2 is central in S/P0, so [S, S0] ≤ P0, and m = 3.

Also, [S, S] � P0 in this case (otherwise P would be normal in S), so [S, S0] � [S, S],
and we are in case (c). If P0 6C S, then PS0 = NS(P0), S0/P0 is central in PS0/P0, so
[x, S0] ≤ P0 exactly when x ∈ PS0. Thus m = 1, and we are in case (b).

If rk(S0/P0) = 2 and |P/P0| = 2, then S0/P0 is free as an F2[P/P0]-module by (7),
so PS0/P0 is nonabelian of order 8 containing C2

2 and hence isomorphic to D8. Every
automorphism of D8 which leaves invariant a subgroup isomorphic to C2

2 is inner: this
follows as a special case of Lemma 1.2, but also from the well known description of
Out(D8) ∼= C2. So for each y ∈ NS(P0), there is g ∈ PS0 such that the conjugation
action of yg on PS0/P0

∼= D8 is the identity. In other words, cyg|PS0 ≡ Id (mod P0),
and in particular, yg ∈ NS(P ) ≤ PS0 by (6). This proves that NS(P0) = PS0, and
thus [x, P0] � P0 for x ∈ SrPS0. Also, since S0/P0 is not fixed by the action of P/P0,
[x, S0] � P0 for x ∈ PS0rS0. Thus m = 0, and we are in the situation of (d).

By (7), it remains only to consider the cases where |P/P0| = |S/S0| = 4 and 2 ≤
rk(S0/P0) ≤ 4. If rk(S0/P0) = 2, then since P/P0 acts on it nontrivially by (6), it
must be a free F2[P/P1] module for some P1 ≤ P of index two containing P0. Hence
[x, S0] ≤ P0 for x ∈ P1 (x centralizes S0/P0), [x, S0] � P0 for x ∈ SrP1, so m = 1, and
we are in case (e). If rk(S0/P0) = 3, 4, then S0/P0 is isomorphic to a submodule of
index one or two in F2[P/O0] by (7), hence each x ∈ SrS0 acts nontrivially on S0/P0,
and so m = 0. Together with (6), this proves we are in case (f). �

2. Fusion systems

We first recall the definition of an (abstract) saturated fusion system. For any group
G and any x ∈ G, cx denotes conjugation by x (cx(g) = xgx−1). For H,K ≤ G, we
write

HomG(H,K) =
{
ϕ ∈ Hom(H,K)

∣∣ϕ = cx some x ∈ G
}
.

We also set AutG(H) = HomG(H,H) ∼= NG(H)/CG(H).
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Definition 2.1 ([Pg], [BLO2, Definition 1.1]). A fusion system over a finite p-group S
is a category F , with Ob(F) the set of all subgroups of S, which satisfies the following
two properties for all P,Q ≤ S:

• HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q); and

• each ϕ ∈ HomF(P,Q) is the composite of an isomorphism in F followed by an
inclusion.

When F is a fusion system over S, two subgroups P,Q ≤ S are said to be F-conjugate
if they are isomorphic as objects of the category F . A subgroup P ≤ S is called fully
centralized in F (fully normalized in F) if |CS(P )| ≥ |CS(P ′)| (|NS(P )| ≥ |NS(P

′)|)
for all P ′ ≤ S which is F -conjugate to P .

Definition 2.2 ([Pg], [BLO2, Definition 1.2]). A fusion system F over a finite p-group
S is saturated if the following two conditions hold:

(I) (Sylow axiom) For all P ≤ S which is fully normalized in F , P is fully centralized
in F and AutS(P ) ∈ Sylp(AutF(P )).

(II) (Extension axiom) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕ(P ) is fully
centralized, and if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ−1 ∈ AutS(ϕ(P ))},
then there is ϕ ∈ HomF(Nϕ, S) such that ϕ|P = ϕ.

For any finite group G and any Sylow subgroup S ∈ Sylp(G), the fusion system
of G (at p) is the category FS(G), whose objects are the subgroups of S, and with
morphism sets MorFS(G)(P,Q) = HomG(P,Q). This is easily shown to be saturated
using the Sylow theorems (cf. [BLO2, Proposition 1.3]). A saturated fusion system is
exotic if it is not the fusion system of any finite group.

The following definitions play a central role in this paper. In general, when F
is a fusion system over S and P ≤ S, we write OutF(P ) = AutF(P )/Inn(P ) and
OutS(P ) = AutS(P )/Inn(P ).

Definition 2.3. Fix a prime p, a p-group S, and a saturated fusion system F over S.
Let P ≤ S be any subgroup.

• P is F -centric if CS(P
′) = Z(P ′) for all P ′ which is F-conjugate to P .

• P is F -radical if Op(OutF(P )) = 1; i.e., if OutF(P ) contains no nontrivial normal
p-subgroup.

• P is F -essential if P is F-centric and fully normalized in F , and OutF(P ) contains
a strongly embedded subgroup at p.

• P is central in F if every morphism ϕ ∈ HomF(Q,R) in F extends to a morphism
ϕ ∈ HomF(PQ,PR) such that ϕ|P = IdP .

• P is normal in F if P C S, and every morphism ϕ ∈ HomF(Q,R) in F extends to
a morphism ϕ ∈ HomF(PQ,PR) such that ϕ(P ) = P .

• The fusion system F is nonconstrained if there is no subgroup P ≤ S which is
F-centric and normal in F .

• For any ϕ ∈ Aut(S), ϕFϕ−1 denotes the fusion system over S defined by

HomϕFϕ−1(P,Q) = ϕ·HomF(ϕ−1(P ), ϕ−1(Q))·ϕ−1
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for all P,Q ≤ S.

When F = FS(G) for a finite group G with S ∈ Sylp(G), then P ≤ S is F -centric
if and only if it is p-centric in G: that is, Z(P ) ∈ Sylp(CG(P )), or equivalently,
CG(P ) = Z(P )× C ′

G(P ) for some (unique) subgroup C ′
G(P ) of order prime to p. The

subgroup P is F -essential if and only if it is p-centric in G, NS(P ) ∈ Sylp(NG(P )), and
NG(P )/(P ·CG(P )) has a strongly embedded subgroup at p.

We say that a fusion system is “centerfree” if it contains no nontrivial central sub-
group. Our main goal in this paper is to develop techniques for listing, for a given
2-group S, all centerfree nonconstrained saturated fusion systems over S (up to iso-
morphism). This restriction is motivated in part by the two results stated in the
following theorem: they imply that any minimal exotic fusion system is centerfree and
nonconstrained.

Theorem 2.4. Let F be a saturated fusion system over a finite p-group S.

(a) If F is constrained, then there is up to isomorphism a unique p′-reduced p-con-
strained finite group G (i.e., Op′(G) = 1 and CG(Op(G)) ≤ Op(G)) such that
F ∼= FS(G).

(b) If A C S is central in F , then F is exotic if and only if F/A is exotic. Here,
F/A is the fusion system over S/A such that for all P,Q ≤ S containing A,
HomF/A(P/A,Q/A) is the image of HomF(P,Q) under projection.

Proof. See [BCGLO1, Proposition C] and [BCGLO2, Corollary 6.14]. In both cases,
much more precise results are shown. In (a), one can choose G with normal p-
subgroup Q such that Q ∼= Op(F) (the maximal normal p-subgroup of F) and G/Q ∼=
AutF(Op(F)). Under the hypotheses of (b), if F/A is the fusion system of a finite
group G, then F is the fusion system of a central extension of G by A. �

One of the key problems when constructing fusion systems over a p-group S is to
determine which subgroups of S can contribute automorphisms; i.e., for which P ≤ S
the group AutF(P ) need not be generated by restrictions of automorphisms of larger
subgroups. This is what motivates the definition of F -essential subgroups. The follow-
ing proposition and corollary are due to Puig [Pg, Theorem 5.8], and were originally
pointed out to us by Grodal.

Proposition 2.5. Let F be a saturated fusion system over a p-group S, and let P � S
be an F-centric subgroup which is fully normalized in F . Then P is F-essential if and
only if AutF(P ) is not generated by restrictions of morphisms between strictly larger
subgroups of S.

Proof. Since P is fully normalized, AutS(P ) ∈ Sylp(AutF(P )). Since P � S, we have
NS(P ) 	 P , and so AutS(P ) 	 Inn(P ) since P is F -centric.

Let G0 ≤ AutF(P ) be the subgroup generated by those ϕ ∈ AutF(P ) which extend
to morphisms between strictly larger subgroups of S. We first claim that

G0 =
〈
ϕ ∈ AutF(P )

∣∣ϕ−1AutS(P )ϕ ∩ AutS(P ) 	 Inn(P )
〉
. (1)

To see this, fix ϕ ∈ AutF(P ) such that ϕ−1AutS(P )ϕ∩AutS(P ) 	 Inn(P ), and consider
the group

Nϕ
def
= {g ∈ NS(P ) |ϕcgϕ−1 ∈ AutS(P )}.

Then AutNϕ(P ) = ϕ−1AutS(P )ϕ ∩ AutS(P ) 	 Inn(P ), so Nϕ 	 P . By the exten-
sion axiom, ϕ extends to a morphism in HomF(Nϕ, S), and this proves that ϕ ∈ G0.
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Conversely, if ϕ ∈ AutF(P ) extends to ϕ ∈ HomF(Q,S) for some Q 	 P , then
ϕAutQ(P )ϕ−1 ≤ AutS(P ), and

ϕ−1AutS(P )ϕ ∩ AutS(P ) ≥ AutQ(P ) 	 Inn(P ).

This proves (1). For all α ∈ AutF(P )rG0 and all β ∈ G0,

α−1β−1AutS(P )(βα) ∩ AutS(P ) = Inn(P )

by (1), and thus the intersection of each Sylow subgroup of α−1G0α with AutS(P )
is Inn(P ). In other words, Inn(P ) ∈ Sylp(αG0α

−1 ∩ G0) for all α ∈ AutF(P )rG0,
which implies that G0/Inn(P ) is strongly embedded in OutF(P ) = AutF(P )/Inn(P ).
Conversely, if OutF(P ) contains any strongly embedded subgroup at p, then there
is a strongly embedded subgroup H which contains the Sylow p-subgroup OutS(P ),
and G0/Inn(P ) ≤ H � OutF(P ) by (1) and the definition of a strongly embedded
subgroup. �

As a corollary, we get Alperin’s fusion theorem stated for restriction to essential
subgroups. Roughly, it says that every saturated fusion system is generated by auto-
morphisms of S and of essential subgroups, and their restrictions.

Corollary 2.6. Fix a saturated fusion system F over a p-group S. Then for each
P, P ′ ≤ S and each ϕ ∈ IsoF(P, P ′), there are subgroups P = P0, P1, . . . , Pk = P ′,
subgroups Qi ≥ 〈Pi−1, Pi〉 (i = 1, . . . , k) which are F-essential or equal to S, and
automorphisms ϕi ∈ AutF(Qi), such that ϕi(Pi−1) = Pi for all i and ϕ = (ϕk|Pk−1

) ◦
· · · ◦ (ϕ1|P0).

Proof. By Alperin’s fusion theorem in the form shown in [BLO2, Theorem A.10], this
holds if we allow the Qi to be any F -centric F -radical subgroups of S which are
fully normalized in F . So the corollary follows immediately from that together with
Proposition 2.5. �

3. Semicritical and critical subgroups

The following definition gives necessary conditions for subgroups of a p-group to
possibly be F -radical or F -essential in some fusion system.

Definition 3.1. Let S be a finite p-group. A subgroup P � S will be called semicritical
if the following two conditions hold:

(a) P is (p-)centric in S; and

(b) OutS(P ) ∩Op(Out(P )) = 1.

A subgroup P ≤ S will be called critical if it is semicritical, and if

(c) there are subgroups

OutS(P ) ≤ G0 � G ≤ Out(P )

such that G0 is strongly embedded in G at p and OutS(P ) ∈ Sylp(G).

The importance of (semi)critical subgroups lies in the following proposition.

Proposition 3.2. Fix a p-group S, a saturated fusion system F over S, and a subgroup
P � S. If P is F-centric and F-radical, then it is a semicritical subgroup of S. If P
is F-essential, then P is a critical subgroup of S.
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Proof. Set G = OutF(P ). If P is F -centric and F -radical, then

OutS(P ) ∩Op(Out(P )) ≤ G ∩Op(Out(P )) ≤ Op(G) = 1,

and so P is a semicritical subgroup of S.

If P is F -essential, then by definition, P is F -centric (hence centric in S), fully

normalized in F , and G
def
= OutF(P ) contains a strongly embedded subgroup G0 � G

at p. Since any strongly embedded subgroup at p contains a Sylow p-subgroup, we can
assume (after replacing G0 by a conjugate subgroup if necessary) that G0 ≥ OutS(P ) ∈
Sylp(G). Since Op(G) ≤ gG0g

−1 ∩G0 for all g ∈ G, this shows that Op(G) = 1, hence
that P is F -radical, and thus a semicritical subgroup of S. This proves that P is
critical in S. �

For the above definition to be useful, simple criteria are needed which allow us to
eliminate most subgroups as not being critical. This works best when p = 2. The
following proposition gives some criteria for doing this; criteria which are useful mostly
when P has index ≥ 4 in its normalizer. For example, point (a) implies that P is not
critical in S if OutS(P ) contains a subgroup isomorphic to D8 — since D8 contains
noncentral involutions.

Recall that when V is a vector space and α is a linear automorphism of V , we write

[α, V ] = Im[V
α−Id−−−−→ V ].

Proposition 3.3. Fix a critical subgroup P of a 2-group S, and set S0 = NS(P )/P ∼=
OutS(P ). Then the following hold.

(a) Either S0 is cyclic, or Z(S0) = {g ∈ S0 | g2 = 1}. If rk(Z(S0)) > 1, then |S0| =
|Z(S0)|m for m = 1, 2, or 3.

(b) All involutions in S0 are conjugate in Out(P ), and hence in Aut(P/Fr(P )). In
fact, there is a subgroup R ≤ Out(P ) (or R ≤ Aut(P/Fr(P ))) of odd order, which
normalizes S0 and permutes its involutions transitively.

(c) Set |S0| = 2k. Then rk(P/Fr(P )) ≥ 2k. If k ≥ 2, then rk([s, P/Fr(P )]) ≥ 2 for
all 1 6= s ∈ S0.

(d) Assume Z(S0) ∼= Cn
2 with n ≥ 2, and fix 1 6= s ∈ Z(S0). Then rk([s, P/Fr(P )]) ≥

n.

Proof. Fix subgroups

OutS(P ) ≤ G0 � G ≤ Out(P )

such that G0 is strongly embedded in G and OutS(P ) ∈ Syl2(G). In particular,
O2(G) = 1. Since the kernel of the natural map from Out(P ) to Out(P/Fr(P )) is
a 2-group by Lemma 1.1, the induced action of G on P/Fr(P ) is still faithful.

By Bender’s theorem ([Bd] or Theorem 1.6), either S0
∼= OutS(P ) is cyclic or quater-

nion, or O2′(G/O2′(G)) is isomorphic to one of the simple groups PSL2(2
n), PSU3(2

n),
or Sz(2n) (where n ≥ 2, and n is odd in the last case).

(a) This is clear if S0 is cyclic or quaternion. If not, let L be the simple group
L = O2′(G/O2′(G)). If L ∼= PSL2(2

n), then S0
∼= Cn

2 . If L ∼= Sz(q), where q = 2n for
odd n ≥ 3, then by Suzuki’s description of the Sylow 2-subgroups [Sz, §4, Lemma 1]
(see also [Sz, §9]), |S0| = q2, Z(S0) ∼= Cn

2 , and all involutions in S0 are in Z(S0). So
(a) holds in both of these cases.
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If L ∼= PSU3(q), where q = 2n for odd n ≥ 3, then we can identify

S0 = {V (r, s) | r, s ∈ Fq2 | r + r̄ = ss̄} where r̄ = rq and V (r, s) =
(

1 s r
0 1 s̄
0 0 1

)
.

Also, V (r, s)·V (u, v) = V (r + u + sv̄, s + v). Thus |S0| = 23n, Z(S0) = {V (r, 0) | r ∈
Fq} ∼= Cn

2 , and V (r, s)2 = V (ss̄, 0) = 1 only if s = 0. So (a) holds in this case, also.

(b) By [Sz2, Lemma 6.4.4], all involutions in G0 are conjugate to each other. Since
the involutions in S0 are all in Z(S0), they must be conjugate to each other by elements
in NG0(S0); and we can write NG0(S0) = S0oR where |R| is odd.

(c,d) These follow immediately from Lemma 1.7, applied with V = P/Fr(P ). �

Proposition 3.3 will be our main tool when identifying those critical subgroups which
have index ≥ 4 in their normalizer. The following lemma is an easy consequence of
Lemma 1.1, and will be useful in many situations in the index two case. It will often
be applied with Θ = 1, or with Θ = Z2(P ) (the subgroup such that Z2(P )/Z(P ) =
Z(P/Z(P ))).

Lemma 3.4. Fix a prime p, a p-group S, a subgroup P ≤ S, and a subgroup Θ ≤ P
characteristic in P . Assume there is g ∈ NS(P )rP such that

(a) [g, P ] ≤ Θ·Fr(P ), and

(b) [g,Θ] ≤ Fr(P ).

Then cg ∈ Op(Aut(P )), and hence P is not semicritical in S.

Proof. Point (a) implies that cg is the identity on P/Θ·Fr(P ), and (b) implies it is the
identity on Θ·Fr(P )/Fr(P ). Hence cg ∈ Op(Aut(P )) by Lemma 1.1, and so P is not
semicritical in S. �

Lemma 3.4 will be our main tool when looking for critical subgroups of index two in
their normalizer. But there are two more, closely related, lemmas which will also be
useful in certain cases. The following one can be thought of as a refinement of Lemma
3.4, at least when p = 2.

Lemma 3.5. Fix a 2-group S, a semicritical subgroup P ≤ S, and g ∈ NS(P )rP
such that cg has order two in OutS(P ). Then there is α ∈ Aut(P ) of odd order, and
x ∈ [g, P ], such that x /∈ Fr(P ) and [g, α(x)] /∈ Fr(P ).

Proof. Since P is semicritical, cg /∈ O2(Out(P )). Hence by the Baer-Suzuki theorem
(cf. [A1, Theorem 39.6]), there is β ∈ Out(P ) such that ∆ = 〈cg, βcgβ−1〉 ≤ Out(P )
is not a 2-group. Thus ∆ contains a dihedral group of order 2m for m odd, and we
can assume that β is chosen so that |∆| = 2m. Let γ̂ ∈ ∆ ≤ Out(P ) be an element of
order m inverted by cg, and let γ ∈ Aut(P ) be an automorphism of odd order whose
class in Out(P ) is γ̂.

Set V = P/Fr(P ), regarded as an F2[∆]-module. Since γ̂ has odd order, V splits as
a product V = CV (γ̂)× V ′, where γ̂ acts on V ′ = [γ̂, V ] without fixed component. Let
V0 ⊆ V ′ be an irreducible F2[∆]-submodule. Since γ̂ acts nontrivially on V0 (and the
subgroup of elements of ∆ which act trivially is normal), cg acts nontrivially on V0,
and hence [g, V0] 6= 1.

Fix 1 6= x̂ ∈ [g, V0] ≤ CV0(g). The γ̂-orbit of x̂ is ∆-invariant (since cg(x̂) = x̂ and
∆ = 〈γ̂, cg〉), and hence it generates V0 since V0 is irreducible. Thus there is i such that
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γ̂i(x̂) /∈ CV0(g). Now choose x ∈ [g, P ] such that xFr(P ) = x̂; then [g, γi(x)] /∈ Fr(P ).
Set α = γi; then α and x satisfy the conclusion of the lemma. �

In the special case of Lemma 3.5 where [g, S] has order two, one can take this much
farther. Recall Z2(S) C S is the subgroup such that Z2(S)/Z(S) = Z(S/Z(S)).

Lemma 3.6. Let S be a 2-group, and fix elements z ∈ Z(S) and g ∈ Z2(S) such that
z2 = 1 and [g, S] ≤ 〈z〉. Assume P is a critical subgroup of S such that g /∈ P . Then
the following hold.

(a) |NS(P )/P | = 2, z /∈ Fr(P ), and P = CS(h) for some h ∈ S such that h2 = 1 and
[g, h] = z.

(b) If y ∈ Sr〈g, z〉 is such that [y, S] ≤ 〈z〉, then either y ∈ Z(P ) and h is not
S-conjugate to yh, or gy ∈ Z(P ) and h is not S-conjugate to gyh.

Proof. (a) By assumption (and since P is centric), [g, P ] ≤ [g, S] = 〈z〉 ≤ Z(S) ≤ P .
In particular, g ∈ NS(P ). By Lemma 3.4 (applied with Θ = 1), [g, P ] � Fr(P ), and
thus [g, P ] = 〈z〉 and z /∈ Fr(P ). Since rk([g, P/Fr(P )]) = 1, |NS(P )/P | = 2 by
Proposition 3.3(c).

Set Θ = Ω1(Z(P )): the 2-torsion subgroup of Z(P ). Then [g, P ] ≤ 〈z〉 ≤ Θ,
so [g,Θ] � Fr(P ) by Lemma 3.4 again, and thus z ∈ [g,Θ]. Fix h ∈ Θ such that
[g, h] = z. In particular, h2 = 1 and P ≤ CS(h).

Now |NS(P )/P | = 2, g ∈ NS(P ), and g /∈ CS(h) imply that NCS(h)(P ) = P . Hence
P = CS(h) since otherwise its normalizer in CS(h) would be strictly larger.

(b) Since [y, P ] ≤ [y, S] ≤ 〈z〉, y ∈ NS(P ). If neither y nor gy is in P , then yP and gP
are distinct nonidentity elements of N(P )/P , which is impossible since |N(P )/P | = 2.
Thus one of them is in P ; say y ∈ P . If y /∈ Z(P ), then z ∈ [y, P ] ≤ Fr(P ), which
again contradicts (a). Thus y ∈ Z(P ).

It remains to show h is not S-conjugate to yh. Assume otherwise: let a be such
that aha−1 = yh. Then aPa−1 = CS(aha

−1) = CS(yh) ≥ P , so a ∈ NS(P ). Thus
h, zh, yh ∈ Z(P ) are all NS(P )-conjugate to h, so |NS(P )/P | > 2, which again contra-
dicts (a). �

We can now outline the general procedure which will be used to determine all of
the critical subgroups of a given 2-group S. We first try to find a normal subgroup
S0 C S, as large as possible, which we can show is contained in all critical subgroups.
For example, in many cases, we do this for S0 = Z2(S), using Lemmas 3.5 and 3.6. We
then search for critical subgroups P ≤ S such that |NS(P )/P | = 2, by first applying
Lemma 1.9 (when possible) to list all subgroups of index 2 in their normalizer, and then
applying Lemma 3.4 to eliminate most of them. Afterwards, we search for subgroups
P ≤ S such that |NS(P )/P | = 2k ≥ 4, rk(P/Fr(P )) ≥ 2k, and rk([s, P/Fr(P )]) ≥ 2 for
all s ∈ NS(P )rP , and check (using Proposition 3.3) which of them could be critical.
In practice, this seems to work surprisingly well on groups of order ≤ 210, at least on
those where we have tested it.

4. Fusion systems over the Sylow 2-subgroup of J2 and J3

We are now ready to begin working with some concrete examples. In the next four
sections, we list all nonconstrained centerfree saturated fusion systems over each of four
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different 2-groups S. In each case, this procedure can be broken up into three steps:
first determine the critical subgroups of S (or a list of subgroups which includes all
critical subgroups), then determine the automorphism group of each critical subgroup,
and finally work out all possible combinations of which critical subgroups can be F -
essential for any given F and what their F -automorphism groups can be. The last
step is carried out only up to isomorphism, in the sense that we make a list of fusion
systems over S and show that for each F , there is some ϕ ∈ Aut(S) such that ϕFϕ−1

is in the list (see Definition 2.3). If we did find a candidate for a new exotic fusion
system, then there would be the additional step of proving that it is saturated; but
otherwise this is done by identifying it (by elimination) with the fusion system of some
finite group.

In this section and the next, S0 = UT3(4) denotes the group of 3×3 upper triangular
matrices over F4 with 1’s in all diagonal entries. Let eaij ∈ S0 (for i < j) be the
elementary matrix with entry a ∈ F4 in the (i, j) position, and set Eij = {eaij | a ∈ F4}.
Thus, for example,

Z(S0) = [S0, S0] = E13 = {ea13 | a ∈ F4}.
We note here for reference throughout this section the relations

(ea12e
b
23)

2 = [ea12, e
b
23] = eab13 for all a, b ∈ F4 (1)

We also let caij denote conjugation by eaij, as an automorphism of S0 and also as a
homomorphism between subgroups of S0 or groups containing S0, and write 〈c∗ij〉 =
{caij | a ∈ F4}.

Let a 7→ a = a2 denote the field automorphism on F4, and let M 7→ M denote the
induced field automorphism on S0. Let τ ∈ Aut(S0) be the automorphism “transpose
inverse” which sends eaij to ea4−j,4−i. Consider the semidirect product

Sφθ = UT3(4) o 〈φ, θ〉,

where for M ∈ S0 = UT3(4), φMφ−1 = M and θMθ−1 = τ(M) (and φ2 = θ2 = [φ, θ] =
1). Thus

τ
((

1 a b
0 1 c
0 0 1

))
=

(
1 c b
0 1 a
0 0 1

)−1

=
(

1 c b+ac
0 1 a
0 0 1

)
and cθ

((
1 a b
0 1 c
0 0 1

))
=

(
1 c̄ b+ac
0 1 ā
0 0 1

)
; (2)

and Sφθ is a Sylow 2-subgroup of the full automorphism group Aut(PSL3(4)) =
PGL3(4) o 〈φ, θ〉. In this section, we determine the nonconstrained saturated fusion
systems over the group

Sθ
def
= UT3(4) o 〈θ〉,

while in the next section we work with the group Sφ
def
= UT3(4) o 〈φ〉.

The following subgroups will play an important role throughout this section:

A1 = 〈E12, E13〉 =
{(

1 a b
0 1 0
0 0 1

) ∣∣∣ a, b ∈ F4

}
Q0 =

{(
1 a b
0 1 ā
0 0 1

) ∣∣∣ a, b ∈ F4

}
A2 = 〈E13, E23〉 =

{(
1 0 a
0 1 b
0 0 1

) ∣∣∣ a, b ∈ F4

}
Q = 〈Q0, θ〉 .

Thus A1 and A2 are the “rectangular subgroups”, both isomorphic to C4
2 ; while Q0

∼=
C2 ×Q8 and Q ∼= Q8 ×C2 D8. Also,

Q0/E13 = [θ, S0/E13] = CS0/E13(θ) , Q0 = [Sθ, Sθ] C Sθ , and Q C Sθ . (3)

We start with some elementary facts about Sθ and its subgroups. Throughout this
section and the next, ω denotes an element in F4rF2, so that F4 = {0, 1, ω, ω̄}.
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Lemma 4.1. (a) All involutions in SθrS0 are S0-conjugate to θ. For each involution
g ∈ SθrS0, CS0(g)

∼= Q8, CS0(g) ≤ Q0, and e113 ∈ Fr(CS0(g)).

(b) All involutions in S0 are in A1 or in A2, and all involutions in SθrS0 are in Q.

(c) A1 and A2 are the only subgroups of Sθ isomorphic to C4
2 .

(d) The subgroups S0 and Q are both characteristic in Sθ.

Proof. (a) Conjugation by θ acts on E13 with fixed subgroup 〈e113〉, and on S0/E13

by exchanging the complementary subgroups A1/E13 and A2/E13. The hypotheses of
Lemma 1.4 thus hold, and all involutions in the coset θS0 are S0-conjugate to θ.

By (2), CS0(θ) is generated by e113, together with matrices
(

1 a ω
0 1 ā
0 0 1

)
for 0 6= a ∈ F4.

Thus CS0(θ) ≤ Q0 (this also follows from (3)), has order 8, and is isomorphic to Q8

since it is not cyclic and its only involution is e113 (by (1)). Since each involution
g ∈ SθrS0 is conjugate to θ, and since Q0 C Sθ, the same holds for CS0(g).

(b) The first statement holds by (1). Since all involutions in SθrS0 are S0-conjugate
to θ, and since θ ∈ Q and Q C Sθ, all such involutions are in Q.

(c) Assume A ≤ Sθ and A ∼= C4
2 . If A ≤ S0, then A ⊆ (A1 ∪ A2) by (b), and A = A1

or A2 since no element of A1rE13 commutes with any element of A2rE13. If A � S0

and g ∈ ArS0, then A∩S0
∼= C3

2 , A∩S0 ≤ CS0(g)
∼= Q8 by (a), and this is impossible.

(d) The subgroup S0 = 〈A1, A2〉 is characteristic by (c). By (b), Q is generated by
the centralizers of all involutions in SθrS0, and so it is also characteristic. �

4.1 Candidates for critical subgroups

The following proposition is the main result of this subsection.

Proposition 4.2. If P is a critical subgroup of Sθ, then P is one of the subgroups Q,
S0 = UT3(4), A1, or A2.

Proposition 4.2 follows immediately from Lemmas 4.3 and 4.4. We first deal with
the normal critical subgroups.

Lemma 4.3. If P C Sθ is a normal critical subgroup of Sθ, then P = Q or P = S0 =
UT3(4).

Proof. By Proposition 3.3(c), rk(P/Fr(P )) ≥ 2k if |Sθ/P | = 2k. Thus 27 ≥ |Sθ| ≥
2k·22k = 23k, so k ≤ 2 and |Sθ/P | ≤ 4. In particular, Sθ/P is abelian, and so P ≥
[Sθ, Sθ] = Q0 by (3).

Assume first that |Sθ/P | = 4. Then |P | = 25 and rk(P/Fr(P )) ≥ 4, so |Fr(P )| ≤ 2.
It follows that Fr(P ) = Fr(Q0) = 〈e113〉.

If P ≤ S0, then P = 〈Q0, e
a
12〉 for some a 6= 0, and hence Fr(P ) ≥ E13, which we

saw is impossible. Thus P = 〈Q0, hθ〉 for some h ∈ S0; and since S0 = Q0E12, we can
assume h = ea12 for some a ∈ F4. Also, (hθ)2 = [ea12, θ] ∈ Fr(P ) = 〈e113〉, and this is
possible only if a = 0. Thus P = 〈Q0, θ〉 = Q in this case.

Now assume |Sθ/P | = 2, and fix g ∈ SθrP . Since Sθ/Fr(Sθ) ∼= C3
2 , there are seven

subgroups of index 2 in Sθ. Assume P 6= S0. Then P = 〈Q0, e
a
12, e

b
12θ〉 for some a, b ∈ F4

where a 6= 0. Also, [Q0, e
a
12] = E13. If b /∈ {0, a}, then

Fr(P ) = 〈E13, [e
a
12, θ], [e

b
12, θ]〉 = Q0 = Fr(Sθ),
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so [g, P ] ≤ Fr(P ) for g ∈ SθrP , and P is not critical by Lemma 3.4 (applied with
Θ = 1).

We are left with the case b ∈ {0, a}, and thus P = 〈Q0, e
a
12, θ〉. Then Fr(P ) =

〈E13, [e
a
12, θ]〉 ∼= C2 × C4, and so E13 is characteristic in P since it is the 2-torsion

subgroup of Fr(P ). Thus CP (E13) = P0
def
= P ∩S0 is characteristic in P . For g ∈ S0rP ,

[g, P ] ≤ P0 and [g, P0] ≤ E13 ≤ Fr(P ); and thus P is not critical by Lemma 3.4 applied
with Θ = P0. �

It now remains to show:

Lemma 4.4. If P ≤ Sθ is a critical subgroup and not normal, then P = A1 or P = A2.

Proof. Fix such a P . Assume first that |N(P )/P | ≥ 4. Since Sθ has order 27, |N(P )| ≤
26, and so |P | ≤ 24. Since P is critical, we must have rk(P/Fr(P )) ≥ 4 by Proposition
3.3(c). This can only happen if P ∼= C4

2 , and by Lemma 4.1(c), P = A1 or P = A2.

Now assume |N(P )/P | = 2. Then Q0 = Fr(Sθ) � P because P not normal in Sθ.
Also, e113 ∈ Z(Sθ) ≤ P since P is centric. If eω13 /∈ P , then by Lemma 3.6, there is
some h ∈ SθrS0 (S0 = CSθ

(eω13)) such that h2 = 1, P = CSθ
(h), and e113 /∈ Fr(P ).

But this contradicts Lemma 4.1(a), and thus E13 ≤ P . Also, Q0 ≤ N(P ) since
[Q0, Sθ] = E13 ≤ P .

Thus [Q0 : P ∩ Q0] = 2. Since |Q0| = 24, E13 � P ∩ Q0 � Q0, and there is a
unique a ∈ F4r0 such that ea12e

ā
23 ∈ P . Hence (ea12e

ā
23)

2 = e113 ∈ Fr(P ) by (1). Fix

b ∈ F4r{a, 0} and set g = eb12e
b̄
23 ∈ N(P )rP . By (3), [g, P ] ≤ [Q0, Sθ] = E13.

By Lemma 3.5, there is some α ∈ Aut(P ), and elements x ∈ [g, P ] ≤ E13 and
y = α(x), such that x /∈ Fr(P ) and [g, y] /∈ Fr(P ). Since e113 ∈ Fr(P ), this means
x = ec13 for some c ∈ {ω, ω̄}. Also, y2 = α(x2) = 1.

If y /∈ S0, then by Lemma 4.1(a), y = hθh−1 for some h ∈ S0, and so

[g, y] = [g, hθh−1] = h[h−1gh, θ]h−1 ∈ h[Q0, θ]h
−1 = 〈e113〉 ≤ Fr(P )

(recall Q0 C Sθ by (3)). But [g, y] /∈ Fr(P ) by assumption, so we conclude y ∈ S0.

Since y2 = 1, y ∈ A1 or A2 by Lemma 4.1(b). Also, y /∈ E13 since [g, y] ∈ [S0, y] 6= 1.
We can assume (upon replacing P by θPθ−1 if necessary) that y ∈ A1rE13. Fix
d ∈ F4r0 such that y ∈ ed12E13. By (1),

[y, ea12e
ā
23] = [ed12, e

a
12e

ā
23] = edā13 ∈ [y, P ] ∩ E13 ≤ Fr(P ). (4)

Now, [y, P ] = α([x, P ]) ≤ α(〈e113〉) has order at most two, while [y, P ] ∩ E13 6= 1
by (4). Since e113 ∈ Fr(P ) but x = ec13 /∈ Fr(P ) (and [y, P ] ≤ Fr(P )), this implies
[y, P ] = 〈e13〉. It also implies [x, P ] = [ec13, P ] 6= 1, and hence P � S0. Fix r ∈ S0 such
that rθ ∈ P ; then (rθ)y(rθ)−1 ∈ A2rE13, so [y, rθ] /∈ E13, which is impossible since
[y, P ] = 〈e113〉. Thus there are no critical subgroups of this form. �

4.2 Automorphisms of critical subgroups

Before describing the automorphism group of S0, we need to give names to some
automorphisms. For each f ∈ HomF2(F4,F4), define ρf1 , ρ

f
2 ∈ Aut(S0) by setting ρi|Ai

=
Id, and

ρf1(e
x
23) = ex23e

f(x)
13 and ρf2(e

x
12) = ex12e

f(x)
13 .

Note that ρfi ◦ ρ
f ′

i = ρf+f ′

i , and hence Ri
def
= {ρfi | f ∈ HomF2(F4,F4)} is a subgroup of

Aut(S0) isomorphic to C4
2 . One easily sees that R1 and R2 commute in Aut(S0), and
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that they generate the group of all automorphisms of S0 which induce the identity on
E13 and on S0/E13. Thus R1 × R2 is a normal subgroup of Aut(S0), and is contained
in O2(Aut(S0)).

Next define γ0, γ1 ∈ Aut(S0) by letting γ0 be conjugation by diag(ω, 1, ω̄), and letting
γ1 be conjugation by diag(ω, 1, ω). Thus

γ0

((
1 a b
0 1 c
0 0 1

))
=

(
1 ωa ω̄b
0 1 ωc
0 0 1

)
and γ1

((
1 a b
0 1 c
0 0 1

))
=

(
1 ωa b
0 1 ω̄c
0 0 1

)
.

Also, γ0 and γ1 both have order 3,

Γ0
def
= 〈γ0, cθ〉 ∼= Σ3, Γ1

def
= 〈γ1, τ〉 ∼= Σ3,

and [Γ0,Γ1] = 1 in Aut(S0).

Lemma 4.5. (a) Aut(S0) = (R1 ×R2)·(Γ0 × Γ1) ∼= C8
2 o (Σ3 × Σ3), and hence

Out(S0) =
(
(R1/〈c∗12〉)× (R2/〈c∗23〉)

)
·(Γ0 × Γ1) ∼= C4

2 o (Σ3 × Σ3).

(b) Restriction induces an isomorphism

Out(Sθ)
Res−−−−−→∼=

COut(S0)(cθ)/〈cθ〉.

(c) Set H = 〈AutS0(A1), γ0|A1〉 ∼= A4. Then for any pair of subgroups U,U0 ≤
CAut(A1)(H) of order three, there is ψ ∈ Aut(Sθ) such that ψ|S0 commutes with
γ0 in Aut(S0), and such that (ψ|A1)U(ψ|A1)

−1 = U0.

Proof. (a) The elements we have defined clearly generate subgroups of Aut(S0) and
Out(S0) of the form described in (a). It remains to show that

Aut(S0) = 〈R1, R2,Γ0,Γ1〉. (5)

Let α ∈ Aut(S0) be arbitrary. By Lemma 4.1(c), α either sends each subgroup Ai to
itself or switches them. Hence there is α1 ∈ {α, τα} such that α1(Ai) = Ai for i = 1, 2.

Next, we can choose r, s ∈ {0, 1, 2} such that if we set α2 = γr1γ
s
2α1, then α2(e

1
12) ≡ e112

and α2(e
1
23) ≡ e123 (mod E13). Finally, there is α3 ∈ {cφα2, α2} such that α3(e

a
12) ≡ ea12

(mod E13) for all a ∈ F4. By (1) (and since E13 ≤ Z(S0)), for all a ∈ F4,

α3(e
a
13) = [α3(e

a
12), α3(e

1
23)] = [ea12, e

1
23] = ea13

and hence

[e112, e
a
23] = ea13 = [α3(e

1
12), α3(e

a
23)] = [e112, α3(e

a
23)].

Since α3(e
a
23) ∈ E13E23, this implies α3(e

a
23) ≡ ea23 (mod E13) for all a. Thus α3 induces

the identity on S0/E13 and on E13.

Let ϕ : S0/E13 −−−→ E13 be the function such that for all g ∈ S0, α3(g) = g·ϕ(gE13).
Since E13 = Z(S0) and α is a homomorphism, ϕ is also a homomorphism. So there

is a pair of functions f, f ′ ∈ HomF2(F4,F4) such that ϕ(ea12e
b
23E13) = e

f(a)+f ′(b)
13 , and

α3 = ρf2 ◦ ρ
f ′

1 ∈ R1 ×R2. Since α ∈ (Γ0 × Γ1) ◦ α3, this proves (5).

(b) By Lemma 4.1(d), S0 is characteristic in Sθ. Also, Z(S0) = E13 is free as an
F2[〈cθ〉]-module. So by Corollary 1.3, the map induced by restriction

Out(Sθ)
Res−−−−−→∼=

NOut(S0)(OutSθ
(S0))/OutSθ

(S0) = COut(S0)(〈cθ〉)/〈cθ〉

is an isomorphism.
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(c) For each α ∈ Aut(A1), let M(α) ∈ GL4(2) be the matrix of α with respect to
the ordered basis {e113, eω13, e

1
12, e

ω
12} for A1 as a vector space over F2. Thus M(H) is

generated by

M(c123) =

(
I I
0 I

)
M(cω23) =

(
I Z
0 I

)
and M(γ0|A1) =

(
Z−1 0
0 Z

)
,

where matrices are written in 2× 2 blocks and Z = ( 0 1
1 1 ). From this, it follows that

M
(
CAut(A1)(H)

)
=

{(
B C
0 B

) ∣∣∣∣B ∈ 〈Z〉, C ∈M2(F2), CZ = Z−1C

}
.

In particular, O2(CAut(A1)(H)) = CR∗
2
(H), where R∗

2 =
{
α|A1

∣∣α ∈ R2

}
; and also

CAut(A1)(H)/O2(CAut(A1)(H)) ∼= C3. So for any pair of subgroups U,U0 ≤ CAut(A1)(H)
of order three, there is η ∈ R2 such that η|A1 ∈ CR∗

2
(H) and (η|A1)U(η|A1)

−1 = U0.

Now, cθηc
−1
θ ∈ R1 commutes with η ∈ R2, so η ◦ (cθηc

−1
θ ) commutes with cθ in

Aut(S0). Hence this can be extended to ψ ∈ Aut(Sθ) by setting ψ(θ) = θ. Also,
ψ|A1 = η|A1 since elements of R1 are the identity on A1. Since γ0ηγ

−1
0 is equal to η

after restriction to A1 and both are the identity on A2, they are equal as elements of
R2 ≤ Aut(S0). So γ0 = cθγ

−1
0 cθ also commutes with cθηc

−1
θ ∈ R1, and thus commutes

with their composite ψ|S0 . �

Now set

Γ = 〈γ1, γ0, cθ〉 ≤ Aut(S0) so that Γ ∼= C3 × Σ3.

To simplify notation, we also write Γ0 ≤ Γ to denote their images in Out(S0). Finally,
define γ̇1 ∈ Aut(Sθ) by setting γ̇1|S0 = γ1 (conjugation by diag(ω, 1, ω)) and γ̇1(θ) = θ.

Lemma 4.6. Let F be any saturated fusion system over Sθ for which S0 is F-essential.
Then there is some ϕ ∈ Aut(Sθ) such that either

• OutϕFϕ−1(S0) = Γ0
∼= Σ3 and OutϕFϕ−1(Sθ) = 1; or

• OutϕFϕ−1(S0) = Γ ∼= C3 × Σ3 and OutϕFϕ−1(Sθ) = 〈[γ̇1]〉.

Proof. By Lemma 4.5(a,b),

Out(Sθ)/O2(Out(Sθ)) ∼= COut(S0)(〈cθ〉)/O2(COut(S0)(〈cθ〉)) ∼= Σ3

(represented by Γ1). Thus |OutF(Sθ)| = 1 or 3, since it contains OutSθ
(Sθ) = 1 as a

Sylow 2-subgroup.

Set Q = O2(Out(S0)) for short. Then OutF(S0) ∩Q = 1, and by Lemma 4.5(a),

Out(S0)/Q = 〈γ0, cθ〉 × 〈γ1, τ〉 ∼= Σ3 × Σ3.

Also, OutF(S0)·Q/Q contains 〈cθ〉 as a Sylow 2-subgroup not in the center (since
O2(OutF(S0)) = 1), and this is possible only if OutF(S0)·Q = Γ0·Q or Γ·Q. By
Lemma 1.8, there is some ϕ0 ∈ O2(Aut(S0)) such that [[ϕ0], cθ] = 1 in Out(S0) and
ϕ0OutF(S0)ϕ

−1
0 is equal to Γ0 or Γ. By Lemma 4.5(b), ϕ0 extends to some ϕ ∈ Aut(Sθ),

and thus OutϕFϕ−1(S0) = Γ0 or Γ.

If OutϕFϕ−1(S0) = Γ, then by the extension axiom, γ1 extends to an element of
AutϕFϕ−1(Sθ). Hence OutϕFϕ−1(Sθ) = 〈[γ̇1]〉 since this extension is unique (mod
Inn(Sθ)) by Lemma 4.5(b) again.

Conversely, if OutϕFϕ−1(Sθ) has order 3, then a generator of this group restricts to an
element of order three in AutF(S0) (since S0 is characteristic in Sθ). Since no element
of order three in Γ0 extends to Sθ, we conclude that OutϕFϕ−1(S0) = Γ. �
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We now check the possibilities for AutF(Ai) when the Ai are essential. Consider the
following subgroups of Aut(Ai):

Λi
def
= AutGL3(4)(Ai) ∼= GL2(4) and Λ0

i
def
= [Λi,Λi] ∼= SL2(4).

Thus Λi is the group of those automorphisms of Ai induced by conjugation by elements
of GL3(4) ≥ S0. Note that we can regard Ai as a vector space over F4, where scalar
multiplication is given by u·exij = euxij for u, x ∈ F4; and then Λi = AutF4(Ai) is the
group of F4-linear automorphisms. Since A1 and A2 are Sθ-conjugate, AutF(A1) = Λ1

if and only if AutF(A2) = Λ2, and similarly for the Λ0
i .

Lemma 4.7. Let F be any saturated fusion system over Sθ, and assume A1 and A2

are F-essential. Then S0 is also F-essential. There is an automorphism ϕ ∈ Aut(Sθ)
such that either

• AutϕFϕ−1(Ai) = Λ0
i , OutϕFϕ−1(S0) = Γ0

∼= Σ3, and OutϕFϕ−1(Sθ) = 1; or

• AutϕFϕ−1(Ai) = Λi, OutϕFϕ−1(S0) = Γ ∼= C3 × Σ3, and OutϕFϕ−1(Sθ) = 〈[γ̇1]〉.

Proof. Set ∆ = AutF(A1). Thus ∆ is a subgroup of Aut(A1) ∼= GL4(2) ∼= A8 which
has AutSθ

(A1) ∼= C2
2 as Sylow 2-subgroup, and which contains a strongly embed-

ded subgroup. By Bender’s theorem (Theorem 1.6), O2′(∆/O2′(∆)) is isomorphic to
SL2(4) ∼= A5. The only nontrivial odd order subgroup of GL4(2) which has A5 in its
normalizer is C3, with normalizer isomorphic to SL2(4) o 〈φ〉 ∼= (C3 × A5) o C2. If
H ≤ GL4(2) ∼= A8 and H ∼= A5, then since the only proper subgroups of A5 of index
≤ 8 have index 5 and 6, each orbit of H acting on {1, . . . , 8} has length 1, 5, or 6.
Thus H is in one of two conjugacy classes: either it acts as SL2(4) with respect to some
F4-vector space structure, or it acts via the permutation action on F5

2/diag. Since the
fixed set of AutSθ

(A1) = 〈c∗23〉 acting on A1 is 2-dimensional, this last action cannot
occur. We conclude that ∆ must be Aut(A1)-conjugate to Λ0

1 or Λ1.

Let ∆0 C ∆ be the subgroup isomorphic to Λ0
1
∼= SL2(4). Thus ∆0 has odd index

in ∆, and 〈c∗23〉 ∈ Syl2(∆
0) = Syl2(∆). Hence there is an element of order three in

N∆0(〈c∗23〉), which by the extension axiom extends to some ξ ∈ AutF(S0). Since ∆0

is Aut(A1)-conjugate to Λ0
1, ξ|A1 acts without fixed component, and in particular acts

nontrivially on E13. Hence [ξ] does not commute with cθ in OutF(S0), and so S0 is
also F -essential. By Lemma 4.6, we can assume (after replacing F by ψFψ−1 for
some appropriate ψ ∈ Aut(Sθ)) that AutF(S0) = Γ0 or AutF(S0) = Γ. In either case,
γ0|A1 ∈ AutF(A1).

Since ∆ is Aut(A1)-conjugate to Λ0
1 or Λ1, it is contained in the centralizer of some

subgroup U ≤ Aut(A1) of order three which acts on A1 without fixed component, thus
defining a F4-vector space structure. Similarly, the “standard” subgroups Λ0

1 ≤ Λ1 are
centralized by U0 = 〈γ0γ1|A1〉; i.e., by conjugation by diag(ω, 1, 1).

If OutF(S0) = Γ, then ∆ ≥ 〈AutS0(A1), γ0|A1 , γ1|A1〉, and so 〈γ0|A1 , γ1|A1〉 ∈ Syl3(∆).
Thus ∆ ∼= GL2(4), U = Z(∆) ≤ 〈γ0|A1 , γ1|A1〉, and hence

U ≤ C〈γ0|A1
,γ1|A1

〉(AutS0(A1)) = U0.

This proves that U = U0, and hence ∆ = Λ1 in this case.

Now assume AutF(S0) = Γ0. Set H = 〈AutS0(A1), γ0|A1〉 ∼= A4. Then H ≤ ∆, and
so U and U0 both centralize H. By Lemma 4.5(c), there is ϕ ∈ Aut(Sθ) such that
[ϕ|S0 , γ0] = 1 in Out(S0) and (ϕ|A1)U(ϕ|A1)

−1 = U0. Thus

(ϕ|A1)∆(ϕ|A1)
−1 ≤ CAut(A1)(U0) = Λ1,
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and so AutϕFϕ−1(A1) = ϕ∆ϕ−1 = Λ0
1 or Λ1. Also, since ϕ commutes with γ0, we still

have AutϕFϕ−1(S0) = Γ0. Since γ1|A1 is not the restriction of an element of Γ0, it
cannot be in AutϕFϕ−1(A1), and thus AutϕFϕ−1(A1) = Λ0

1.

In either case, AutϕFϕ−1(A2) = cθAutϕFϕ−1(A1)c
−1
θ is equal to Λ0

2 or Λ2. �

4.3 Fusion systems over Sθ

Theorem 4.8. Let F be any nonconstrained saturated fusion system over the group
Sθ = UT3(4) o 〈θ〉, where θ acts on UT3(4) ≤ PGL3(4) by sending a matrix M to

τ(M). Then F is isomorphic to the fusion system of one of the groups PSL3(4) o 〈θ〉,
PGL3(4) o 〈θ〉, J2, or J3.

Proof. By Proposition 4.2, the only possible F -essential subgroups are S0, Q, A1, and
A2. If S0 is not F -essential, then by Lemma 4.7, neither A1 nor A2 is F -essential.
Hence Q is the only F -essential subgroup, and F is generated by automorphisms of
Q and Sθ. Since Q is characteristic in Sθ (Lemma 4.1(d)), this implies Q C F , which
contradicts the assumption that F is nonconstrained. Thus S0 must be F -essential.

If S0 is the only F -essential subgroup, then since it is also characteristic in Sθ (Lemma
4.1(d) again), it would be normal in F , again contradicting the assumption that F is
nonconstrained. Thus either Q is F -essential, or A1 and A2 are F -essential, or all of
them are.

SinceQ ∼= D8×C2Q8, Inn(Q) is the group of automorphisms which induce the identity
on Q/Z(Q), and Out(Q) ∼= Σ5 is the group which permutes the five involutions in
Q/Z(Q) which lift to involutions in Q. Hence if Q is F -essential, then OutF(Q) = A5:
this is the only subgroup which contains OutSθ

(Q) as Sylow 2-subgroup and which has
a strongly embedded subgroup.

Case 1: Assume first that Q is not F -essential, and hence that S0 and the Ai are
F -essential. Let F1 and F2 be the fusion systems over Sθ generated by the following
automorphism groups and their restrictions:

OutF1(Sθ) = 1 OutF1(S0) = Γ0
∼= Σ3 AutF1(Ai) = Λ0

i

OutF2(Sθ) = 〈[γ̇1]〉 OutF2(S0) = Γ ∼= C3 × Σ3 AutF2(Ai) = Λi .

Here, the subgroups Λ0
i ≤ Λi ≤ Aut(Ai) are defined as before: Λi = AutGL3(4)(Ai) ∼=

GL2(4) and Λ0
i
∼= SL2(4) is its commutator subgroup.

By Lemma 4.7, we can assume (after replacing F by ϕFϕ−1 for appropriate ϕ)
that either AutF(Ai) = Λ0

i (for i = 1, 2) and OutF(S0) = Γ0, or AutF(Ai) = Λi and
OutF(S0) = Γ. Furthermore, by Lemma 4.6, OutF(Sθ) is determined (exactly) by
OutF(S0). Since F is generated by automorphisms of Sθ, S0, and the Ai and their
restrictions, this proves that F = F1 or F = F2. In other words, these are the
only possible isomorphism classes of saturated fusion systems over Sθ satisfying these
conditions.

If G is one of the groups PSL3(4)o〈θ〉 or PGL3(4)o〈θ〉, then any S ∈ Syl2(G) is
isomorphic to Sθ, and S0 is strongly closed in FS(G) under any identification S = Sθ.
Hence Q∩S0

∼= C2×Q8 is invariant under the action of AutG(Q), which is impossible
if OutF(Q) ∼= A5. Thus Q is not F -essential. Since FS(G) is nonconstrained and
centerfree, it must be isomorphic to F1 or F2; and by comparing automorphism groups
of the Ai, one sees that FSθ

(PSL3(4)o〈θ〉) ∼= F1 and FSθ
(PGL3(4)o〈θ〉) ∼= F2.
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Case 2: Now assume Q and S0 are both F -essential. Let F3 and F4 be the fusion
systems over Sθ generated by the following automorphism groups and their restrictions:

OutF3(Sθ) = 〈[γ̇1]〉 OutF3(S0) = Γ OutF3(Q) = A5

OutF4(Sθ) = 〈[γ̇1]〉 OutF4(S0) = Γ OutF4(Q) = A5 AutF4(Ai) = Λi .

For F = F3 or F4, all involutions in E13, and all involutions in S0rE13, are F -conjugate
via automorphisms of S0. Also, all noncentral involutions in Q are F -conjugate via
automorphisms of Q, and hence (by Lemma 4.1(a)) all involutions in SθrS0 are F -
conjugate to the involutions in E13. Thus there are exactly two F -conjugacy classes of
involutions when F = F3 (those in S0rE13 and the others); while these form a single
class if F = F4 (since the Ai are F -essential).

For arbitrary F of this type, OutF(Q) = A5 has index 2 in Out(Q), and so AutF(Q)
contains all automorphisms of Q of odd order. Since γ̇1|Q has order 3 in AutF(Q),
it must extend (by the extension axiom) to some automorphism in AutF(Sθ). Thus
OutF(Sθ) has order 3 by Lemma 4.6. By Lemmas 4.6 and 4.7, we can assume (after
replacing F by ϕFϕ−1 for appropriate ϕ) that OutF(S0) = Γ and OutF(Sθ) = 〈[γ̇1]〉,
and also that AutF(Ai) = Λi if the Ai are F -essential. Thus F = F3 or F = F4.

By Janko’s original characterization of the sporadic simple groups J2 and J3 [J], both
contain involution centralizers of odd index isomorphic to (D8×C2Q8)oA5, and J2 has
two conjugacy classes of involutions while J3 has only one class. Also, Sθ is isomorphic
to the Sylow 2-subgroups of these groups; this is shown explicitly in [GH, p.331], and
also follows since Sθ is a Sylow 2-subgroup of (D8 ×C2 Q8) o A5. Thus FSθ

(J2) ∼= F3

and FSθ
(J3) ∼= F4. �

In fact, the main result of [GH] is that if G is a finite group with Sylow 2-subgroup
isomorphic to Sθ, then either G/O2′(G) is isomorphic to one of the groups PSL3(4) o
〈θ〉, PGL3(4) o 〈θ〉, J2, or J3, or G/O2′(G) ∼= CG(x) for some involution x.

5. Fusion systems over the Sylow 2-subgroup of M22

Again in this section, S0 = UT3(4) denotes the group of 3×3 upper triangular matri-
ces over F4 with 1 in all diagonal entries, x 7→ x = x2 denotes the field automorphism

on F4, and M 7→M denotes the induced field automorphism on S0. Set Sφ = S0 o 〈φ〉,
where φMφ−1 = M for all M ∈ S0 and φ2 = 1. We want to list all nonconstrained
centerfree saturated fusion systems over Sφ, up to isomorphism.

As before, eaij ∈ S0 (for i < j) denotes the elementary matrix with entry a ∈ F4 in
the (i, j) position, satisfying the relations

(ea12e
b
23)

2 = [ea12, e
b
23] = eab13 for all a, b ∈ F4. (1)

Also, Eij = {eaij | a ∈ F4}, caij denotes conjugation by eaij, and ω denotes an element in
F4rF2. Thus F4 = {0, 1, ω, ω}. Finally,

Z(S0) = E13 = 〈e113, e
ω
13〉, Z(Sφ) = 〈e113〉, and [Sφ, Sφ] = 〈E13, e

1
12, e

1
23〉.

The following subgroups will play an important role in this section:

A1 = 〈E12, E13〉 ∼= C4
2 H1 = 〈A1, φ〉 N1 = 〈A1, e

1
23, φ〉

A2 = 〈E13, E23〉 ∼= C4
2 H2 = 〈A2, φ〉 N2 = 〈A2, e

1
12, φ〉 .

Note that Ni = NSφ
(Hi).
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Lemma 5.1. (a) For any involution g ∈ SφrS0, g is S0-conjugate to φ, CS0(g) ≤
〈E13, e

1
12, e

1
23〉, CS0(g) ∩ E13 = 〈e113〉, and e113 ∈ Fr(CS0(g)).

(b) A1 and A2 are the only subgroups of Sφ isomorphic to C4
2 .

Proof. (a) Since CE13(φ) = [φ,E13] and CS0/E13(φ) = [φ, S0/E13], the hypotheses of
Lemma 1.4 apply to the pair S0 C Sφ. Hence each involution g ∈ SφrS0 is conjugate
to φ, and CS0(g) is S0-conjugate to CS0(φ) = 〈e113, e112, e

1
23〉 ∼= D8 for such g. Since the

subgroups 〈E13, e
1
12, e

1
23〉, E13, and 〈e113〉 are all normal in Sφ, and since CS0(φ) satisfies

all of the above conditions, so does CS0(g).

(b) By Lemma 4.1, A1 and A2 are the only subgroups of S0 isomorphic to C4
2 . So

assume P � S0 and P ∼= C4
2 . Set P0 = P ∩ S0, and fix g ∈ PrP0. Then C3

2
∼= P0 ≤

CS0(g), and we just showed in the proof of (a) that CS0(g)
∼= D8. So this situation is

impossible. �

5.1 Candidates for critical subgroups

Our main result here is the following:

Proposition 5.2. If P is a critical subgroup of Sφ then P is equal to one of the
subgroups S0 = UT3(4), N1, or N2; or is conjugate to H1 or H2.

Proof. In Lemma 5.3, we show that if P is normal, then P is one of the subgroups
S0, N1, or N2. In Lemma 5.4, we show that if P is not normal and has index 2 in its
normalizer, then P is conjugate to H1 or H2.

Now assume P is not normal and |N(P )/P | ≥ 4. Since Sφ has order 27, |N(P )| ≤
26, and so |P | ≤ 24. Since P is critical, rk(P/Fr(P )) ≥ 4 by Proposition 3.3(c).
This implies P ∼= C4

2 , so P = A1 or A2 by Lemma 5.1(b), and these subgroups are
normal. �

For use in the proofs of Lemmas 5.3 and 5.4, we define the subgroup

Q0 = 〈E13, e
1
12, e

1
23〉 ∼= C2 ×D8.

Then

Q0/E13 = [φ, S0/E13] = CS0/E13(φ) and Q0 = [Sφ, Sφ] C Sφ . (2)

Lemma 5.3. If P C Sφ is a normal critical subgroup of Sφ, then P is one of the three
subgroups S0, N1, or N2.

Proof. By Proposition 3.3(c), rk(P/Fr(P )) ≥ 2k if |Sφ/P | = 2k. Thus |Sφ| ≥ 23k, so
k ≤ 2, and |Sφ/P | ≤ 4. Hence Sφ/P is abelian, so P ≥ Q0 = [Sφ, Sφ] by (2), and
Fr(P ) ≥ Fr(Q0) = 〈e113〉.

Case 1 : If |Sφ/P | = 4, then |P | = 25 and |P/Q0| = 2. Since rk(P/Fr(P )) ≥ 4 and
Fr(P ) 6= 1, we have Fr(P ) = Fr(Q0) = 〈e113〉.

Set X = {eω12, e
ω
23, e

ω
12e

ω
23} (as a set of elements of S0). If P = 〈Q0, x〉 for some x ∈ X,

then [x,Q0] � 〈e113〉 by the relations in (1), so Fr(P ) � 〈e113〉. If P = 〈Q0, xφ〉 for some
x ∈ X, then (xφ)2 = [x, φ] /∈ 〈e113〉, and again Fr(P ) � 〈e113〉. So these cases cannot
occur.

This leaves only the possibility

P = 〈Q0, φ〉 = 〈eω13, φ〉 ×〈e113〉 〈e
1
12, e

1
23〉 ∼= D8 ×C2 D8

∼= Q8 ×C2 Q8.
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Then Out(P ) ∼= Σ3 oC2. If P were critical, then by Proposition 3.3(b), there would be
an odd order subgroup of Out(P ) which normalizes OutSφ

(P ) = 〈eω12, eω23〉 ∼= C2
2 and

permutes its involutions transitively, and this is not the case. Thus this group P is not
critical; and we conclude that Sφ contains no normal critical subgroups of index 4.

Case 2 : Assume |Sφ/P | = 2, and fix g ∈ SφrP . Since Sφ/Fr(Sφ) ∼= C3
2 , there are

seven subgroups of index 2 in Sφ. If Fr(P ) = Q0 = [Sφ, Sφ], then [g, P ] ≤ Fr(P ), and
so P is not critical by Lemma 3.4 (applied with Θ = 1). This is the case for three of
the seven subgroups

〈Q0, e
ω
12φ, e

ω
23〉, 〈Q0, e

ω
12, e

ω
23φ〉, and 〈Q0, e

ω
12φ, e

ω
23φ〉;

which leaves only S0, N1, N2, and N3 = 〈Q0, e
ω
12e

ω
23, φ〉 to consider. So it remains to

check that N3 is not critical.

Now, Fr(N3) = 〈E13, e
1
12e

1
23〉 ∼= C2 × C4, and hence its 2-torsion subgroup E13 is

characteristic in N3. Let Θ ≤ N3 be such that Θ/E13 = Z(N3/E13). Then Θ = [Sφ, Sφ]
is characteristic in N3, and for g ∈ SφrN3 [g,N3] ≤ Θ, and [g,Θ] ≤ E13 ≤ Fr(N3). So
also in this case, P is not critical by Lemma 3.4. �

It remains to handle the critical subgroups which are not normal.

Lemma 5.4. Let P ≤ Sφ be a critical subgroup with index 2 in NSφ
(P ) and not normal

in Sφ. Then P is Sφ-conjugate to H1 or H2.

Proof. We have e113 ∈ P since P is centric. If eω13 /∈ P , then by Lemma 3.6, there is
h ∈ SφrS0 (S0 = CSφ

(eω13)) such that h2 = 1, P = CSφ
(h), and e113 /∈ Fr(P ). This is

impossible by Lemma 5.1(a), and hence E13 ≤ P .

Now, Q0 = 〈E13, e
1
12, e

1
23〉 � P because P is not normal in Sφ (see (2)). Also,

[P,Q0] ≤ [Sφ, Q0] = E13 ≤ P , so NSφ
(P ) ≥ Q0. Thus [Q0 : P ∩Q0] = 2: it cannot be

larger because |NSφ
(P )/P | = 2. So exactly one of the matrices e112, e

1
23 or e112e

1
23 is in

P . By symmetry, we can assume that g
def
= e123 /∈ P (hence g generates N(P )/P ), and

that P contains e112 or e112e
1
23.

If P ≤ S0, then [P, S0] ≤ E13 ≤ P , and S0 ≤ N(P ). Thus N(P ) = S0 (since P is not
normal in Sφ), and [S0 : P ] = 2. It follows that P = 〈E13, e

1
12h1, e

ω
12h2, e

ω
23h3〉 for some

hi ∈ 〈g〉 = 〈e123〉. Then ea23 ∈ P for some a ∈ {ω, ω̄}, and Fr(P ) contains the elements

[e112h1, e
a
23] = ea13 and [eω12h2, e

a
23] = eaω13

(using (1) again). Thus Fr(P ) = E13 ≥ [g, P ], and so P is not critical by Lemma 3.4
applied with Θ = 1.

Now assume P � S0, and set P0 = P ∩ S0. Then |P0| ≤ 24, since |P | ≤ 1
4
|S| = 25.

If e112 ∈ P , then since [〈e123, e
ω
12〉, Sφ] ≤ 〈E13, e

1
12〉 ≤ P , 〈e123, eω12〉 ≤ N(P ), and so

eω12h ∈ P for some h ∈ 〈g〉. Thus P0 = 〈E13, e
1
12, e

ω
12h〉. Furthermore, Sφ/P0

∼= D8, and
D8 contains exactly two conjugacy classes of subgroups which are not normal. Since
P � S0, this proves that up to conjugacy, P = 〈E13, e

1
12, e

ω
12h, φ〉 for some h ∈ 〈g〉.

If h = 1, then P = H1. If h = g = e123, then (eω12e
1
23)

2 = eω13 ∈ Fr(P ) by (1), so
Fr(P ) ≥ E13 = [g, P ], and again P is not critical by Lemma 3.4.

By a similar argument, if e112e
1
23 ∈ P , then eω12e

ω
23h ∈ P for some h ∈ 〈g〉, and (again

up to conjugacy) P = 〈E13, e
1
12e

1
23, e

ω
12e

ω
23h, φ〉. If h = 1, then by (1),

Fr(P ) ≥
〈
(e112e

1
23)

2 = e113, (eω12e
ω
23)

2 = eω̄13

〉
= E13,
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so Fr(P ) = 〈E13, [φ, e
ω
12e

ω
23]〉 = 〈E13, e

1
12e

1
23〉. Thus [g, P ] ≤ Fr(P ) in this case, and P is

not critical by Lemma 3.4. If h = e123, then

P = 〈E13, e
1
12e

1
23, e

ω
12e

ω
23, φ〉, Z(P ) = 〈e113〉, Z2(P ) = 〈E13, e

1
12e

1
23〉;

so [g, P ] ≤ Z2(P ) and [g, Z2(P )] ≤ Fr(P ), and P is not critical by Lemma 3.4 applied
with Θ = Z2(P ). �

5.2 Automorphisms of critical subgroups

By Proposition 5.2, the only critical subgroups of Sφ, and hence the only essential
subgroups in a saturated fusion system over Sφ, are S0, N1, N2, and subgroups conju-
gate to H1 and H2. The automorphism group of S0 was computed in Lemma 4.5(a). In
this subsection, we first compute Out(H1) and Out(N1), and then determine all pos-
sibilities for OutF(S0), OutF(Hi), and OutF(Ni) when F is a saturated fusion system
over Sφ.

We first recall some of the notation used for automorphisms of S0. For each f ∈
HomF2(F4,F4), we defined ρf1 , ρ

f
2 ∈ Aut(S0) by setting

ρf1

((
1 a b
0 1 c
0 0 1

))
=

(
1 a b+f(a)
0 1 c
0 0 1

)
and ρf2

((
1 a b
0 1 c
0 0 1

))
=

(
1 a b+f(c)
0 1 c
0 0 1

)
;

and set Ri = {ρfi | f ∈ HomF2(F4,F4)} ∼= C4
2 . Also, we defined γ0, γ1, τ ∈ Aut(S0) by

setting

γ0

((
1 a b
0 1 c
0 0 1

))
=

(
1 ωa ω̄b
0 1 ωc
0 0 1

)
, γ1

((
1 a b
0 1 c
0 0 1

))
=

(
1 ωa b
0 1 ω̄c
0 0 1

)
, τ

((
1 a b
0 1 c
0 0 1

))
=

(
1 c b
0 1 a
0 0 1

)−1

;

and set Γ0 = 〈γ0, cφτ〉 and Γ1 = 〈γ1, τ〉. By Lemma 4.5(a),

Out(S0) =
(
(R1/〈c∗23〉)× (R2/〈c∗12〉)

)
·(Γ0 × Γ1) ∼= C4

2 o (Σ3 × Σ3).

Lemma 5.5. The group Out(Sφ) is a 2-group. If α ∈ Aut(S0) commutes with cφ as
elements of Out(S0), then α extends to an automorphism of Sφ.

Proof. Since cφ acts freely on the basis {eω13, e
ω̄
13} of Z(S0), and since S0 is a character-

istic subgroup of Sφ, the map induced by restriction

Out(Sφ)
∼=−−−−−−−→ NOut(S0)(〈cφ〉)/〈cφ〉 = COut(S0)(cφ)/〈cφ〉

is an isomorphism by Corollary 1.3. This proves the last statement. Since the central-
izer of cφ in

Out(S0)/O2(Out(S0)) ∼= Σ3 × Σ3

has order 4, COut(S0)(cφ) is a 2-group, and hence Out(Sφ) is a 2-group. �

We next check the possibilities for OutF(S0) when F is a saturated fusion system.

Lemma 5.6. If F is a saturated fusion system over Sφ, then there is an automorphism
ϕ ∈ Aut(Sφ) such that

AutϕFϕ−1(S0) ≤ 〈γ0, γ1,AutSφ
(S0)〉.

Proof. Set ∆ = OutF(S0) and Q = O2(Out(S0)) for short. Then ∆ ∩ Q = 1 since
OutSφ

(S0) = 〈cφ〉 ∈ Syl2(∆) (S0 is fully normalized since it is normal). So there is a
unique subgroup ∆′ ≤ 〈[γ0], [γ1], cφ〉 such that Q∆ = Q∆′ in Out(S0).

By Proposition 1.8, there is α ∈ Aut(Sφ) such that [α] ∈ CQ(cφ) and ∆′ = [α]∆[α]−1.
Then α extends to an automorphism ϕ ∈ Aut(Sφ) by Lemma 5.5, and

OutϕFϕ−1(S0) = [α]∆[α]−1 = ∆′ ≤ 〈[γ0], [γ1], cφ〉. �
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We next describe Out(P ) for P = Hi and Ni, and list the possibilities for OutF(P )
when F is a saturated fusion system over Sφ. When doing this, it will be helpful to
translate automorphisms of A1 to matrices.

Define ρ∗i ∈ Aut(S0) by setting

ρ∗1

((
1 a b
0 1 c
0 0 1

))
=

(
1 a b+ā
0 1 c
0 0 1

)
and ρ∗2

((
1 a b
0 1 c
0 0 1

))
=

(
1 a b+c̄
0 1 c
0 0 1

)
.

Thus ρ∗i ∈ Ri is the identity on A3−i, and ρ∗2 = τρ∗1τ
−1. The ρ∗i commute with cφ

in Aut(S0), and hence extend to automorphisms ρ̇∗i ∈ Aut(Sφ) by sending φ to itself.
Similarly, we let τ̇ ∈ Aut(Sφ) be the extension of τ which sends φ to itself.

Let η1 ∈ Aut(H1) be the automorphism such that

η1(φ) = φ, η1(e
a
13) = ea12, and η1(e

a
12) = ea12e

a
13 (for all a ∈ F4).

Define η′1 ∈ Aut(H1) by setting η′1 = ρ̇∗1η1ρ̇
∗
1
−1. Finally, let η2, η

′
2 ∈ Aut(H2) be the

automorphisms η2 = τ̇ η1τ̇
−1 and η′2 = τ̇ η′1τ̇

−1.

Lemma 5.7. The following hold for any saturated fusion system F over Sφ.

(a) If Hi is F-essential for i = 1 or 2, then

OutF(Hi) = 〈[ηi],OutNi
(Hi)〉 ∼= Σ3 or OutF(Hi) = 〈[η′i],OutNi

(Hi)〉 ∼= Σ3 .

(b) If OutF(S0) ≤ 〈[γ0], cφ〉 and H1 is F-essential, then there is ϕ ∈ Aut(Sφ) such that
OutϕFϕ−1(S0) = OutF(S0) and OutϕFϕ−1(H1) = 〈[η1], c

1
23〉. If in addition, H2 is F-

essential, then ϕ can be chosen such that we also have OutϕFϕ−1(H2) = 〈[η2], c
1
12〉.

Proof. Since cφ acts freely on the basis {eω13, eω̄13, e
ω
12, e

ω̄
12} of A1, and since A1 is a

characteristic subgroup of H1, the map induced by restriction

Out(H1)
ResA1−−−−−−−→∼=

NAut(A1)(〈cφ〉)/〈cφ〉 = CAut(A1)(cφ)/〈cφ〉

is an isomorphism by Corollary 1.3.

For each α ∈ Aut(A1), let M(α) denote the matrix for α with respect to the ordered
basis {e113, e

1
12, e

ω
13, e

ω
12}. Matrices will be written as 2× 2 blocks, where

I = ( 1 0
0 1 ) , J = ( 1 1

0 1 ) , Z = ( 0 1
1 1 ) , and Y = ( 0 1

0 0 ) .

For example, M(cφ) = ( I I0 I ) and M(c123) = ( J 0
0 J ). By direct computation,

CGL4(2)

(
( I I0 I )

)
=

{
( B C

0 B )
∣∣B ∈ GL2(2), C ∈M2(F2)

} ∼= C4
2 oGL2(2). (3)

Hence Out(H1) ∼= C3
2 o GL2(2) ∼= C3

2 o Σ3. Also, since M(η1|A1) = ( Z 0
0 Z ) and

M(c123|A1) = ( J 0
0 J ) (and 〈Z, J〉 = GL2(2)),

Out(H1) = O2(Out(H1))·〈[η1], c
1
23〉.

(a) We prove this for H1; the case H2 then follows by symmetry. Assume H1

is F -essential for some saturated fusion system F . Set ∆ = OutF(H1) and Q =
O2(Out(H1)) for short. Then ∆ ∩ Q = 1, Q∆ = Out(H1), and c123 ∈ ∆. By Propo-
sition 1.8, ∆ = 〈[αη1α

−1], c123〉 for some α ∈ O2(Aut(H1)) (thus [α] ∈ Q) which cen-
tralizes c123 in Out(H1). Translated to matrices, and since we are working modulo
〈M(cφ)〉 = 〈( I I0 I )〉, this means that M(α|A1) = ( I C0 I ) for some C ∈ M2(F2) (by (3)),
and that JCJ−1 = C or C + I. Since JZJ−1 = I + Z, we get

C ∈ 〈CM2(F2)(J), Z〉 = 〈I, Y, Z〉
(as an additive subgroup of M2(F2)). Also, since ( I Z0 I ) commutes with ( Z 0

0 Z ) (the
matrix of η1|A1), and since we are working modulo 〈M(cφ)〉 = 〈( I I0 I )〉, we can always
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choose C = 0 or C = Y . Since ( I Y0 I ) = ( J Y
0 J ) ( J 0

0 J ) where ( J Y
0 J ) = M(ρ∗1|A1), this

shows that we can take α = Id or α = (ρ̇∗1c
1
23)|H1 . Also,

(ρ̇∗1c
1
23)η1(ρ̇

∗
1c

1
23)

−1 = ρ̇∗1
(
c123η1c

1
23
−1

)
ρ̇∗1

−1 = ρ̇∗1η
−1
1 ρ̇∗1

−1 = η′1
−1,

and thus ∆ must be one of the two groups 〈[η1], c
1
23〉 or 〈[η′1], c123〉.

(b) Now assume OutF(S0) ≤ 〈γ0, cφ〉, and H1 is F -essential. Set ϕ = IdSφ
if

OutF(H1) = 〈[η1], c
1
23〉, and ϕ = ρ̇∗1 ∈ Aut(Sφ) if OutF(H1) = 〈[η′1], c123〉. In either

case, OutϕFϕ−1(H1) = 〈[η1], c
1
23〉. Also, ϕ|H2 = Id and ϕ|S0 commutes with γ0, and thus

OutϕFϕ−1(P ) = OutF(P ) for P = S0 and H2.

Similarly, if H2 is also F -essential, we can set ψ = IdSφ
if OutF(H2) = 〈[η2], c

1
12〉,

and ψ = ρ̇∗2 ∈ Aut(Sφ) if OutF(H2) = 〈[η′2], c123〉. Then OutψFψ−1(H2) = 〈[η2], c
1
12〉, and

OutψFψ−1(P ) = OutF(P ) for P = S0 and H1. �

We now turn our attention to N1 and N2. Consider the basis

b1 = {eω12, eω12e
ω
13, e

ω̄
12, e

ω̄
12e

ω̄
13}

of A1, which AutN1(A1) = 〈c123, cφ〉 permutes freely. Let ν1 ∈ Aut(N1) be the automor-
phism such that

ν1(e
ω
12) = eω12e

ω
13, ν1(e

ω
12e

ω
13) = eω̄12, ν1(e

ω̄
12) = eω12,

ν1(e
ω̄
12e

ω̄
13) = eω̄12e

ω̄
13, ν1(e

1
23) = e123φ , and ν1(φ) = e123 .

Thus ν1 permutes cyclically the first three elements in b1 and fixes the fourth, and from
this it is easily seen to be an automorphism of N1 = A1o〈e123, φ〉. Set ν2 = τ̇ ν1τ̇

−1.

Lemma 5.8. If F is a saturated fusion system over Sφ, and Ni is F-essential for
i = 1 or 2, then OutF(Ni) = 〈[νi],OutSφ

(Ni)〉 ∼= Σ3. If Ni is not F-essential, then
OutF(Ni) = OutSφ

(Ni).

Proof. We prove this for N1. Since N1/A1 acts freely on the basis b1, and since A1 is
characteristic in N1, the map induced by restriction

Out(N1)
∼=−−−−−−−→ NAut(A1)(〈cφ, c123〉)/〈cφ, c123〉

is an isomorphism by Corollary 1.3.

The action of 〈cφ, c123〉 ∼= C2
2 on A1 permutes the elements of 〈E13, e

1
12〉 in orbits of

order one or two, and permutes the remaining eight elements in two orbits of order
four:

b1 = {eω12, e
ω
12e

ω
13, e

ω̄
12, e

ω̄
12e

ω̄
13} and b2 = {eω12e

1
13, e

ω
12e

ω̄
13, e

ω̄
12e

1
13, e

ω̄
12e

ω
13} ,

each of which is a basis. Hence each element of the normalizer of 〈cφ, c123〉 either sends
each of these bases to itself or exchanges them. Clearly, each permutation of the basis
b1 defines an element of NAut(A1)(〈cφ, c123〉) (and determines a permutation of b2), and
so these define a subgroup isomorphic to Σ4 and of index at most two in this normalizer.
The automorphism which sends each element of b1 to the product of the other three
elements centralizes 〈cφ, c123〉 and exchanges the two bases.

This proves that NAut(A1)(〈cφ, c123〉) ∼= C2 × Σ4, and hence

Out(N1) ∼= NAut(A1)(〈cφ, c123〉)/〈cφ, c123〉 ∼= C2 × Σ3.

The class of ν1 in Out(N1) thus generates the unique subgroup of order three. So either
OutF(N1) = 〈[ν1],OutSφ

(N1)〉 ∼= Σ3, in which case N1 is F -essential, or OutF(N1) =
OutSφ

(N1) and N1 is not F -essential. �
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We now describe some restrictions on which combinations of subgroups can be es-
sential in a centerfree nonconstrained saturated fusion system.

Lemma 5.9. Let F be any centerfree nonconstrained saturated fusion system over Sφ.
Then for each of i = 1 and 2, either Hi or Ni is F-essential, but not both. If N1 and
N2 are both F-essential, then OutF(S0) � 〈γ1, cφ〉.

Proof. By Proposition 5.2 (and since Out(Sφ) is a 2-group), F is generated by auto-
morphisms in Inn(Sφ), AutF(S0), AutF(Hi), and AutF(Ni) (for i = 1, 2), and their
restrictions. Since 〈cφ〉 ∈ Syl2(OutF(S0)), each α ∈ AutF(S0) must send A1 and A2 to
themselves.

If neither H1 nor N1 is F -essential, then all morphisms in F are composites of
restrictions of automorphisms of Sφ, S0, H2, and N2, all of which send A2 to itself.
Hence A2 is normal in F , which contradicts the assumption that F is nonconstrained.
Similarly, if neither H2 nor N2 is F -essential, then A1 C F , which again contradicts
our assumption.

Thus at least one subgroup in each pair (H1, N1) and (H2, N2) must be F -essential.
If N1 is F -essential, then ν1 ∈ AutF(N1) by Lemma 5.8, and ν1(H1) = 〈A1, e

1
23〉. This

last subgroup is normal in Sφ, while N(H1) = N1. Hence H1 is not fully normalized in
F , and so cannot be F -essential. Similarly, if N2 is F -essential, then H2 is not.

It remains to prove the last statement. Assume otherwise: assume N1 and N2 are
F -essential, and OutF(S0) ≤ 〈γ1, cφ〉. Then neither H1 nor H2 is F -essential, so F is
generated by automorphisms of Sφ, N1, and N2; together with γ1, cφ ∈ Aut(S0). All of
these automorphisms fix e113 (since Sφ, N1, and N2 all have center e113). Thus e113 is in
the center of F , and this contradicts the assumption that F is centerfree. �

5.3 Fusion systems over Sφ

In order to better describe the subgroups generated by certain sets of elements of
the Aut(Ai), we define an explicit isomorphism from Aut(A1) to the alternating group
A8. We first describe this on an abstract 4-dimensional F2-vector space V with ordered
basis {v1, v2, v3, v4}.

Let Λ2(V ) = (V ⊗V )/〈v ⊗ v | v ∈ V 〉 be the second exterior power of V , let [v⊗w] ∈
Λ2(V ) be the class of v ⊗ w, and set vij = [vi ⊗ vj]. Thus {vij | i < j} is a basis
for Λ2(V ). Define q : Λ2(V ) −−−→ F2 by setting q(x) = 0 if x = [v ⊗ w] for some
v, w ∈ V , and q(x) = 1 otherwise. Let b : V × V −−−→ F2 be the associated form
b(x, y) = q(x + y) + q(x) + q(y). Thus q(vij) = 0 for all i, j, and b(vij, vkl) = 1
if i, j, k, l are distinct and is zero otherwise. One can show that b is bilinear and
hence q is quadratic by comparing them with the bilinear and quadratic forms which
take the same values on the vij. Hence this defines an explicit isomorphism from
Aut(V ) ∼= GL4(2) to Ω(Λ2(V ), q) ∼= Ω+

6 (2) (the commutator subgroup of the orthogonal
group O(Λ2(V ), q)), by sending α to Λ2(α).

We next construct an explicit isomorphism Ω(Λ2(V ), q) ∼= A8. Let Pe(8) be the
group of subsets of even order in 8 = {1, 2, . . . , 8}, regarded as an F2-vector space with
addition given by symmetric difference X + Y = ((XrY ) ∪ (YrX)). Let q be the
quadratic form on Pe(8)/〈8〉 defined by q(X) = 1

2
|X|, associated to the bilinear form

b(X, Y ) = |X∩Y |. The symmetric group Σ8 acts on Pe(8)/〈8〉 preserving the form, and

this defines isomorphisms Σ8

∼=−−−→ SO(Pe(8)/〈8〉, q) and A8

∼=−−−→ Ω(Pe(8)/〈8〉, q).
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Define κ : Λ2(V )
∼=−−−−→ Pe(8)/〈8〉 by setting

κ(v12) = {1234} κ(v13) = {1256} κ(v14) = {1357}
κ(v34) = {1238} κ(v24) = {2356} κ(v23) = {1367}

This clearly preserves the quadratic forms on the two spaces. Let

χV : Aut(V )
Λ2(−)−−−−−−→∼=

Ω(Λ2(V ), q)
κ∗−−−−−−→∼=

Ω(Pe(8)/〈8〉, q)
∼=←−−−− A8

denote the isomorphism induced by Λ2(−) and κ.

We apply this here with V = A1, and with the ordered basis {v1, v2, v3, v4} =
{e113, eω13, e112, eω12}. We first give an explicit example of how χA1(α) can be determined
in practice for α ∈ Aut(A1).

Consider the case α = c123. By (1), c123(e
a
13) = ea13 and c123(e

a
12) = ea12e

a
13, so that (upon

writing elements additively)

c123(v1) = v1, c123(v2) = v2, c123(v3) = v1 + v3, c123(v4) = v2 + v4.

Hence Λ2(cφ) and κ∗(Λ
2(cφ)) make the following assignments:

v12 7→ v12 v13 7→ v13 v14 7→ v12 + v14

{1234} 7→ {1234} {1256} 7→ {1256} {1357} 7→ {2457}

and

v12 + v34 7→ v14 + v23 + v34 v13 + v24 7→ v13 + v24 v14 + v23 7→ v14 + v23

{48} 7→ {47} {13} 7→ {13} {56} 7→ {56}.

Note that by taking sums of complementary pairs in the second row, we got information
on how κ∗(Λ

2(cφ)) acts on certain sets of order two. Recall that in the quotient group
Pe(8)/〈8〉, each subset of 8 is identified with its complement. So we also get that
{57} = {13} + {1357} is sent to {13} + {2457} = {68}. Since {56} is left invariant,
the permutation which induces κ∗(Λ

2(cφ)) must exchange 5 and 6 and send 7 to 8.
Upon continuing with arguments of this type, we eventually show that κ∗(Λ

2(cφ)) is
induced by the permutation (5 6)(7 8), and hence that χA1(c

1
23) = (5 6)(7 8). In fact,

if one just wants to check that (5 6)(7 8) is indeed the right answer, the procedure is
much simpler: it suffices to check that this permutation does indeed induce κ∗(Λ

2(cφ))
on the six basis elements as listed above.

We now list images under χA1 of several of the automorphisms we need to con-
sider. In each case, M(α) denotes the matrix of α with respect to the ordered basis
{e113, e

ω
13, e

1
12, e

ω
12}:

α = cφ c123 cω23 ρ∗1|A1

M(α) =

(
J 0
0 J

) (
I I
0 I

) (
I Z
0 I

) (
I J
0 I

)
χA1(α) = (1 2)(5 6) (5 6)(7 8) (5 8)(6 7) (1 2)(3 4) .

(4)
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Here, J = ( 1 1
0 1 ) and Z = ( 0 1

1 1 ). We also get the following values for χ(α|A1), for certain
automorphisms α ∈ Aut(P ) of order 3 which can occur in AutF(P ):

(α, P ) = (γ0, S0) (γ1, S0) (ν1, N1) (η1, H1) (η′1, H1)

M(α|A1) =

(
Z−1 0
0 Z

) (
I 0
0 Z

) (
1 0 0 0
0 1 1 1
0 1 0 0
0 0 0 1

) (
0 I
I I

) (
J J
I I+J

)
χA1(α|A1) = (5 6 7) (1 3 2)(5 7 6) (2 5 8)(1 6 7) (4 8 7) (3 8 7) .

(5)

This is now applied in the following lemma, which identifies certain groups of auto-
morphisms of A1.

Lemma 5.10. (a) 〈AutSφ
(A1), η1〉 ∼= 〈AutSφ

(A1), η
′
1〉 ∼= Σ5 and γ0|A1 belongs to both

of these groups of automorphisms;

(b) 〈AutSφ
(A1), η1, γ1〉 = 〈AutSφ

(A1), η1, γ0, γ1〉 ∼= (C3 × A5) o C2
∼= ΓL2(4);

(c) 〈AutSφ
(A1), η

′
1, γ1〉 = 〈AutSφ

(A1), ν1, η
′
1, γ0, γ1〉 ∼= A7;

(d) 〈AutSφ
(A1), ν1, γ0〉 ∼= A6;

(e) 〈AutSφ
(A1), ν1, γ0γ1〉 = 〈AutSφ

(A1), ν1, γ0, γ1〉 ∼= A7.

Here, we write ν1, η1, η
′
1, and γi, but mean their restrictions to A1.

Proof. The proof will be based on the isomorphism χ = χA1 : Aut(A1)
∼=−−−→ A8 con-

structed above. To simplify notation, we identify these two groups, and omit “χ(−)”
where it would be appropriate.

Whenever I and J are disjoint subsets of 8 = {1, . . . , 8} (m ≥ 1), we let AI,J ≤
A8 (AI ≤ A8) denote the subgroups of permutations which leave I and J invariant
(leave I invariant), and fix all other elements in 8. Elements of the subsets are listed
without brackets or commas. Thus, for example, A125678 (∼= A6) is the subgroup of
even permutations which fix 3 and 4, while A12;5678 contains those permutations which
fix 3 and 4 and leave the subset {1, 2} invariant.

We refer to (4) and (5) for the images in A8 of certain elements of Aut(A1).

(a) Consider first

Ha
def
= 〈AutSφ

(A1), η1〉 = 〈cω23, c
1
23, cφ, η1〉 = 〈(5 8)(6 7), (5 6)(7 8), (1 2)(5 6), (4 8 7)〉 .

Then Ha ≤ A12;45678. Also, the image of Ha under projection to Σ5 (permutations of
{4, 5, 6, 7, 8}) contains the 2-cycle (5 6) and the 5-cycle cω23η1 = (5 8 6 7 4) (where we
compose from right to left). Thus the projection is surjective, and this proves that

Ha = A12;45678
∼= Σ5. (6)

In particular, γ0 = (5 6 7) ∈ Ha.

Simiarly, if we set

H ′
a

def
= 〈AutSφ

(A1), η
′
1〉 = 〈cω23, c

1
23, cφ, η

′
1〉 = 〈(5 8)(6 7), (5 6)(7 8), (1 2)(5 6), (3 8 7)〉 ,

then

H ′
a = A12;35678

∼= Σ5 and hence γ0 = (5 6 7) ∈ H ′
a. (7)

(b) By (6),

Hb
def
= 〈AutSφ

(A1), η1, γ1〉 = 〈Ha, γ1〉 = 〈A12;45678, (1 3 2)(5 7 6)〉 = A123;45678.
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Thus Hb
∼= (C3 × A5) o C2

∼= ΓL2(4) and γ0 = (5 6 7) ∈ Hb.

(c) By (7),

Hc
def
= 〈AutSφ

(A1), η
′
1, γ1〉 = 〈A12;35678, (1 3 2)(5 7 6)〉 = A1235678

∼= A7.

In particular, ν1 = (2 5 8)(1 6 7) and γ0 = (5 6 7) are both in Hc.

(d) We have

Hd
def
= 〈AutSφ

(A1), γ0, ν1〉 = 〈(1 2)(5 6), (5 8)(6 7), (5 6)(7 8), (5 6 7), (2 5 8)(1 6 7)〉
= 〈A12;5678, (2 5 8)(1 6 7)〉 = A125678

∼= A6.

(e) Consider the subgroup

He
def
= 〈AutSφ

(A1), ν1, γ0γ1〉 = 〈AutSφ
(A1), (2 5 8)(1 6 7), (1 3 2)〉.

Then ν−1
1 (1 3 2)ν1 = (7 3 8) = η′1 ∈ He, and so

He = 〈H ′
a, (2 5 8)(1 6 7), (1 3 2)〉 = 〈A12;35678, (2 5 8)(1 6 7), (1 3 2)〉 = A1235678.

Thus He
∼= A7, and γ0, γ1 ∈ He. �

We are now ready to list fusion systems over Sφ. In the statement and the proof of the
following theorem, we follow the usual notation by writing PΓLn(q) = PGLn(q)o〈φ〉
and PΣLn(q) = PSLn(q)o〈φ〉, where φ is a generator of Aut(Fq) (extended to an
automorphism on matrix groups).

Theorem 5.11. If F is a nonconstrained centerfree saturated fusion system over Sφ,
then it is isomorphic to the fusion system of one of the following groups: M22, M23,
McL, PΣL3(4), PΓL3(4), or PSL4(5) ∼= PΩ+

6 (5).

Proof. Let F be a saturated fusion system over Sφ. Assume F is nonconstrained and
centerfree. By Lemma 5.6, upon replacing F by ϕFϕ−1 for some ϕ ∈ Aut(Sφ), we can
assume that

OutF(S0) ≤ 〈[γ0], [γ1], cφ〉. (8)

We first list the different choices for the set of F -essential subgroups, then we list
the different combinations for AutF(P ) (or OutF(P )) for each F -essential subgroup P .
Using that, we show that F is isomorphic to one of a list of six explicitly defined fusion
systems over Sφ, which we then compare with those in the statement of the theorem.

The following are some conditions which must hold for F :

(a) OutF(Sφ) = 1. This holds since Out(Sφ) is a 2-group (Lemma 5.5).

(b) The only possible F -essential subgroups are S0, N1, N2, H1, H2, and their conju-
gates (Proposition 5.2).

(c) Exactly one of the subgroups H1 or N1 is essential, and exactly one of the sub-
groups H2 or N2 is essential (Lemma 5.9).

(d) If Hi is F -essential (i = 1 or 2), then γ0 ∈ AutF(S0). If H1 is F -essential,
then by Lemma 5.7(a), η1 or η′1 is in AutF(H1), so γ0|A1 ∈ AutF(A1) by Lemma
5.10(a). This is the restriction of an automorphism in AutF(S0) by the extension
axiom, and thus γ0 ∈ AutF(S0) by (8). Similarly, if H2 is F -essential, then
τγ0τ

−1 = γ0 ∈ AutF(S0).
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(e) If γ0, γ1 ∈ AutF(S0), and Hi is essential for i = 1 or 2, then OutF(Hi) =
〈[ηi],OutSφ

(Hi)〉. To see this when i = 1, assume otherwise: thus η′1 ∈ AutF(H1)
by Lemma 5.7(a). Then ν1|A1 ∈ AutF(A1) by Lemma 5.10(c), which implies by
the extension axiom that ν1|A1 extends to an automorphism in AutF(N1). Thus
N1 is F -essential by Lemma 5.8, so H1 is not F -essential by Lemma 5.9, which is
a contradiction.

(f) If N1 and N2 are both F -essential, then at least one of the automorphisms γ0, γ0γ1,
or γ0γ

−1
1 must be in AutF(S0). To see this, note first that by (8), OutF(S0) =

〈∆, cφ〉 for some ∆ ≤ 〈[γ0], [γ1]〉 ∼= C2
3 . Also, by Lemma 5.9, ∆ � 〈[γ1]〉. Thus for

some i, [γ0γ
i
1] ∈ ∆ ≤ OutF(S0).

If H1 or H2 is F -essential, then by (d), γ0 ∈ AutF(S0). If neither of these groups
is F -essential, then N1 and N2 are both F -essential by (c), and so γ0γ

i
1 ∈ AutF(S0)

(some i = 0,±1) by (f). Since γ0, γ1 ∈ Aut(S0) are both inverted by cφ, OutF(S0)
contains a subgroup Σ3 in all cases, and hence S0 is F -essential for any F .

Together with points (b) and (c), this shows that the choices for the set of F -essential
subgroups (up to conjugacy) are among the following:

{H1, H2, S0} , {H1, N2, S0} , {N1, H2, S0} and {N1, N2, S0} . (9)

If N1 and H2 are F -essential, then H1 and N2 are essential in the fusion system τ̇F τ̇−1

which is isomorphic to F . We claim that upon combining (9) with the restrictions on
the automorphism groups OutF(−) imposed by points (a) and (d)–(f), we are reduced
to the following list of eleven candidates for fusion systems F , up to isomorphism:

{H1;H2;S0} : {η1; η2; γ0} , {η1; η2; γ0, γ1} , {η′1; η2; γ0} , {η′1; η′2; γ0} ;

{H1;N2;S0} : {η1; ν2; γ0} , {η1; ν2; γ0, γ1} , {η′1; ν2; γ0} ;

{N1;N2;S0} : {ν1; ν2; γ0} , {ν1; ν2; γ0, γ1} , {ν1; ν2; γ0γ1} , {ν1; ν2; γ0γ
−1
1 } .

(10)

The first entry in each row of (10) gives the F -essential subgroups. The later entries
list, for each F -essential subgroup P , generators of AutF(P ) in addition to AutSφ

(P ).
In each case, F is the fusion system generated by the given automorphism groups of
the given essential subgroups and Inn(Sφ); i.e., the fusion system generated by Inn(Sφ),
γk ∈ Aut(S0), ηi or η′i in Aut(Hi), and νj ∈ Aut(Nj), where k, i, and j are as listed.
Thus, for example, the last entry in the first row describes the fusion system generated
by Inn(Sφ), γ0 ∈ Aut(S0), η

′
1 ∈ Aut(H1), and η′2 ∈ Aut(H2).

We next justify the claim. When H1 or H2 is F -essential, then OutF(S0) = 〈[γ0], cφ〉
or 〈[γ0], [γ1], cφ〉 by (d). By (e), the second is possible only if ηi ∈ AutF(Hi) for all Hi

which are F -essential. Thus the seven fusion systems listed in the first two rows are
the only possible ones for which H1 or H2 is F -essential (up to replacing F by τ̇F τ̇−1).
If N1 and N2 are F -essential, then by (f), F must be one of the four fusion systems
listed in the third row of (10).

By Lemma 5.10(e), if N1 is F -essential (so ν1 ∈ AutF(N1) by Lemma 5.8) and
γ0γ1 ∈ AutF(S0), then γ0|A1 , γ1|A1 ∈ AutF(A1). So by the extension axiom (and (8)),
γ0, γ1 ∈ AutF(S0) in this case. Likewise, if γ0γ

−1
1 = τ(γ0γ1)τ

−1 ∈ AutF(S0) and
N2 is F -essential, then γ0, γ1 ∈ AutF(S0). In other words, F cannot have the form
corresponding to either of the last two entries in the last row of (10).

By Lemma 5.7(b), if OutF(S0) = 〈[γ0], cφ〉, H1 is F -essential, and OutF(H1) =
〈[η′1], c123〉, then there is an automorphism ϕ ∈ Aut(Sφ) such that OutϕFϕ−1(S0) =
OutF(S0) and OutϕFϕ−1(H1) = 〈[η1], c

1
23〉. If, furthermore, H2 is also F -essential,

then ϕ can be chosen such that OutϕFϕ−1(H2) = 〈[η2], c
1
12〉. In other words, we can
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eliminate all of the cases in the first two rows of (10) which involve η′1 or η′2, since the
corresponding fusion systems are isomorphic to others in the list.

OutF(S0) F -essential AutF(A1) AutF(A2) G

〈[γ0], cφ〉 H1, H2, S0 Σ5 Σ5 PΣL3(4)

〈[γ0], [γ1], cφ〉 H1, H2, S0 (C3 × A5) o C2 (C3 × A5) o C2 PΓL3(4)

〈[γ0], cφ〉 H1, N2, S0 Σ5 A6 M22

〈[γ0], [γ1], cφ〉 H1, N2, S0 (C3 × A5) o C2 A7 M23

〈[γ0], cφ〉 N1, N2, S0 A6 A6 PSL4(5) ∼= PΩ+
6 (5)

〈[γ0], [γ1], cφ〉 N1, N2, S0 A7 A7 McL

Table 5.2

We have now shown that F is isomorphic to one of six fusion systems: the first two in
each row of (10). These six are described in more detail in Table 5.2, where in all cases,
OutF(Hi) = 〈[ηi],OutSφ

(Hi)〉 if Hi is F -essential. If Hi is F -essential, then AutF(Ai) ∼=
Σ5 if OutF(S0) = 〈[γ0], cφ〉 by Lemma 5.10(a), while AutF(Ai) ∼= (C3 × A5) o C2 if
OutF(S0) = 〈[γ0], cφ〉 by Lemma 5.10(b). The descriptions of AutF(Ai) when Ni is
F -essential follow in a similar way from Lemma 5.10(d,e). By inspection, these six
fusion systems are distinguished by the groups AutF(A1) and AutF(A2) as described
in the table.

It remains to prove that the groups G listed in the table do realize these fusion sys-
tems: that they all have Sylow 2-subgroups isomorphic to Sφ, and have automorphism
groups AutG(Ai) as described. This is clear for the groups PΣL3(4) and PΓL3(4) using
the well-known isomorphisms ΣL2(4) ∼= Σ5 and ΓL2(4) ∼= (C3×A5)oC2 (or by directly
determining AutG(Hi) and AutG(S0)).

Since A6 has no subgroup of index 7 or 8, and A7 no subgroup of index 8, the group
GL4(2) ∼= A8 contains unique conjugacy classes of subgroups isomorphic to A6 and
A7. Since A6 and A7 are simple, this implies that up to isomorphism, there are unique
semidirect products C4

2 o A6 and C4
2 o A7 which are not direct products. By Lemma

5.10, AutSφ
(Ai) is contained in a subgroup isomorphic to A7, and hence Sφ is a Sylow

2-subgroup of the (of any) semidirect product C4
2oA6 or C4

2oA7 which is not a direct
product.

When q ≡ ±5 (mod 8), then PΩ±
6 (q) is the commutator subgroup of the projective

orthogonal group of a quadratic form on V = F6
q with orthonormal basis {v1, . . . , v6}.

This group contains two conjugacy classes of subgroups C4
2 oA6: the groups of automor-

phisms which preserve up to sign one of the two bases {vi} or {v1±v2, v3±v4, v5±v6}.
(These two orthogonal bases are inequivalent, since 2 is always a nonsquare for such
q.) Since these are subgroups of odd index, PΩ±

6 (q) has Sylow 2-subgroups isomor-
phic to Sφ, and its fusion system is the one with these automorphism groups (and is
independent of q).

As for the other groups, M22 contains subgroups C4
2 o Σ5 (the quintet subgroup)

and C4
2 o A6 (the hexad subgroup); while M23 contains (C4

2 o C3) o Σ5 (the quintet
subgroup) and C4

2 o A7 (the heptad subgroup). See [Co, Table 3] for more detail. By
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[Fi, Theorem 1], McLaughlin’s group McL contains two conjugacy classes of subgroups
C4

2 oA7. So all three of these groups have the fusion systems described in Table 5.2. �

Note also that McL contains M22, PΩ−
6 (3), and PΣL3(4) as subgroups of odd index,

while M23 contains M22 and PΣL3(4) as subgroups of odd index.

6. Fusion systems over UT5(2)

Throughout this section, T = UT5(2) denotes the group of 5 × 5 upper triangular
matrices over F2. We let eij ∈ T (for i < j) be the elementary matrix with nontrivial
entry in the (i, j) position. Also, cij denotes conjugation by eij, regarded as an auto-
morphism of T or as a homomorphism between subgroups of T . For later reference,
we note here the following relations among the eij:

(eijek`)
2 = [eij, ek`] =


ei` if j = k

ekj if i = `

1 if i 6= ` and j 6= k.

(1)

For any pair of sets of indices I, J ⊆ {1, 2, 3, 4, 5}, let EI;J ≤ T denote the subgroup
generated by all eij for i ∈ I and j ∈ J (and i < j). In particular, we focus attention on
the “rectangular” subgroups A1 = E12;345, A2 = E123;45, U1 = E1;2345, and U2 = E1234;5.
These can be described pictorally as follows:

A1 = A2 = U1 = U2 =

We also need to consider the following index two subgroups Qi:

Q1 =
=A1A2U2

Q2 =
=A2U1U2

Q3 =
=A1U1U2

Q4 =
=A1A2U1

.

We will show in Proposition 6.5 that the Qi are the only critical subgroups of T .

The following lemma is very elementary and well known; we include it here for the
sake of completeness.

Lemma 6.1. The only elementary abelian subgroups of rank 6 in T are A1 and A2.

Proof. Set R = E123;345 = A1A2 and R0 = Z(R) = E12;45 for short. By (1), all
involutions in R are in A1 ∪A2, and no element of A1rR0 commutes with any element
of A2rR0. Hence each elementary abelian subgroup of R is contained in A1 or in A2.

Assume A ≤ T is elementary abelian of rank six, and set B = A ∩ R. We just
saw that B is contained in A1 or A2; it suffices to handle the case B ≤ A1. Since
T/R ∼= C2

2 , rk(B) ≥ 4. If rk(B) = 4, then AR = T , so there are elements g, h ∈ A
such that g ∈ e12R and h ∈ e45R. Then

B ∩R0 ≤ CR0(〈g, h〉) = CR0(〈e12, e45〉) = 〈e15〉

(since R = CT (R0)), so rk(B) ≤ 1 + rk(A1/R0) = 3, a contradiction. Thus rk(B) = 5,
A = 〈B, g〉 for some g ∈ TrR, B ∩ R0 ≤ CR0(g) has rank at least three, and this is
impossible since rk(CR0(a)) = 2 for a = e12, e45, or e12e45. �
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6.1 Determining the critical subgroups

Throughout this subsection, we write

T ′ = [T, T ] = and Z2 = 〈e15, e14, e25〉 =

for short. These subgroups will appear repeatedly. Using (1), they are seen to be terms
in the upper and lower central series for T :

Z2 = [T, T ′] = Z2(T ) and T ′ = Z3(T ). (2)

Also, τ ∈ Aut(T ) is the automorphism τ(eij) = e6−j,6−i. We first show:

Lemma 6.2. All critical subgroups of T contain Z2.

Proof. Fix a critical subgroup P ≤ T , and assume first that e14 /∈ P . We apply Lemma
3.6 with z = e15, g = e14, and y = e25. By the proposition, P = CT (h) for some h
such that [e14, h] = e15. Also, either e25 ∈ Z(P ) and h is not T -conjugate to e25h, or
e14e25 ∈ Z(P ) and h is not T -conjugate to e14e25h.

If e25 ∈ Z(P ), then since [h, e14] = e15 6= 1,

h ∈ CT (e25) r CT (e14) = 〈e45, A1A2〉r 〈e12, A1A2〉 = e45·A1A2.

Since [A1A2, e24] = 1, [h, e24] = [e45, e24] = e25, contradicting the condition that h not
be T -conjugate to e25h. Similarly, if e14e25 ∈ Z(P ), then

h ∈ CT (e14e25) r CT (e14) = 〈e12e45, A1A2〉r 〈e12, A1A2〉 = e12e45·A1A2,

so [h, e24] = [e12e45, e24] = e14e25, contradicting the condition that h not be T -conjugate
to e14e25h.

This proves that e14 ∈ P , and a similar argument shows that e25 ∈ P . �

We next reduce to the case of subgroups having index 2 in their normalizers.

Lemma 6.3. If P is a critical subgroup of T , then |NT (P )/P | = 2.

Proof. Assume otherwise: let P be a critical subgroup of T with |N(P )/P | ≥ 4. By
Proposition 3.3(c),

rk([g, P/Fr(P )]) ≥ 2 for each g ∈ N(P )rP (3)

and

|N(P )/P | = 2k =⇒ rk(P/Fr(P )) ≥ 2k. (4)

By Lemma 6.2, P ≥ Z2. Hence [T ′, P ] ≤ [T ′, T ] = Z2 ≤ P by (2), so N(P ) ≥ T ′. We
now consider separately the cases where e15 ∈ Fr(P ) or e15 /∈ Fr(P ). We will frequently
be using (1) for commutator and squaring relations, without referring to it each time.

Case 1: Assume first that e15 ∈ Fr(P ). Since [e13, P ] ≤ [e13, T ] = 〈e14, e15〉, this
implies rk([e13, P/Fr(P )]) ≤ 1. Hence e13 ∈ P by (3), and e35 ∈ P by symmetry.

We claim that

(a) e14 /∈ Fr(P ) implies P ≤ 〈T ′, e12, e23, e45〉; and

(b) e25 /∈ Fr(P ) implies P ≤ 〈T ′, e12, e34, e45〉.
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If e14 /∈ Fr(P ), then since e13 ∈ P and e15 ∈ Fr(P ), this implies e14, e14e15 /∈ [e13, P ].
Also, [e13, T ] = 〈e14, e15〉, and hence

P ≤
{
g ∈ T

∣∣ [e13, g] ∈ 〈e15〉
}

= 〈e35, CT (e13)〉 = 〈T ′, e12, e23, e45〉.

Point (b) follows by symmetry with respect to τ ∈ Aut(T ).

Case 1a: Assume e24 /∈ P . Thus e24 ∈ NT (P )rP , and rk([e24, P/Fr(P )]) ≥ 2 by (3).
Since [e24, T ] = 〈e14, e25〉, this implies that

e14, e25 ∈ [e24, P ] and Fr(P ) ∩ Z2 = 〈e15〉. (5)

The second point, together with (a) and (b), implies P ≤ 〈T ′, e12, e45〉.
Set P0 = 〈Z2, e13, e15〉. We have now shown that P0 ≤ P ≤ 〈P0, e24, e12, e45〉, and

that e24 /∈ P . Also, since [e24, P0] = 1 and |[e24, P ]| ≥ 4 by (5), [P :P0] ≥ 4. We
conclude that P = 〈P0, e12x, e45y〉 for some x, y ∈ 〈e24〉.

By (5) again, (e12e24)
2 = e14 /∈ Fr(P ) and (e45e24)

2 = e25 /∈ Fr(P ). Hence x =
y = 1, and P = 〈Z2, e13, e35, e12, e45〉. But then OutT (P ) ∼= T/P ∼= D8 has noncentral
involutions, while by Proposition 3.3(a), this is impossible for a critical subgroup P ≤
T .

Case 1b: Now assume e24 ∈ P . Thus T ′ ≤ P , and so P is normal in T . Also,
[P :T ′] = 16

/
[T :P ] ≤ 4 since [T :P ] ≥ 4.

Assume first e12, e45 ∈ P . Then P = 〈T ′, e12, e45〉 (since it cannot be larger), and

Fr(P ) =
〈
Fr(T ′), [e12, T

′], [e45, T
′]
〉

=
〈
e15, [e12, e24], [e45, e24]

〉
= Z2.

So [e23, P/Fr(P )] = 〈e13〉 has rank one, which contradicts (3).

Thus either e12 /∈ P or e45 /∈ P . By symmetry (with respect to τ ∈ Aut(T )), we can
assume e12 /∈ P . Then rk([e12, P/Fr(P )]) ≥ 2 by (3). Since [e12, P ] ≤ [e12, T ] =
〈e13, e14, e15〉 and e15 ∈ Fr(P ), this implies e13, e14 /∈ Fr(P ). Hence by (a), P ≤
〈T ′, e12, e23, e45〉. If [P :T ′] ≤ 2, then T/P ∼= Ck

2 for k ≥ 3, hence rk([e12, P/Fr(P )]) ≥ 3
by Proposition 3.3(d), and we just saw this is impossible.

Thus [P :T ′] = 4, and e12 /∈ P ≤ 〈T ′, e12, e23, e45〉. It follows that P = 〈T ′, e23x, e45y〉
for some x, y ∈ 〈e12〉. If y 6= 1, then e45 ∈ NT (P )rP , rk([e45, P/Fr(P )]) ≥ 2, which is
impossible since [e45, P ] ≤ 〈e15, e25, e35〉 and e25 = [e23x, e35] ∈ Fr(P ). Thus y = 1. If
x 6= 1, then (e12e23)

2 = e13 ∈ Fr(P ), while we already showed that e13 /∈ Fr(P ).

We are thus left with the case P = 〈T ′, e23, e45〉. Then Fr(P ) = 〈e15, [e23, e35]〉 =
〈e15, e25〉. So

rk([e12, P/Fr(P )]) = rk(〈e13, e14, e15〉/〈e15〉) = 2

rk([e34, P/Fr(P )]) = rk(〈e14, e24, e35〉) = 3.

But this contradicts Proposition 3.3(b), which says that all involutions in OutT (P ) are
conjugate in Out(P ), and hence that [e12, P/Fr(P )] and [e34, P/Fr(P )] have the same
rank. So this subgroup is not critical.

Case 2: Now assume e15 /∈ Fr(P ). Since e14 ∈ P and [e14, T ] = 〈e15〉, this implies
e14 ∈ Z(P ), and similarly e25 ∈ Z(P ). So P ≤ CT (Z2) = A1A2. Since P is centric in
T , this also implies P ≥ Z(A1A2) = A1 ∩ A2 = 〈Z2, e24〉. Set R0 = 〈Z2, e24〉 for short.

If |P/R0| ≤ 2, then |P | ≤ 25, so rk(P/Fr(P )) ≤ 5 and |N(P )/P | ≥ |A1A2/P | ≥ 23.
This contradicts (4), and we conclude |P/R0| ≥ 4.
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Now, e13e35 /∈ P since (e13e35)
2 = e15 /∈ Fr(P ). Assume neither e13 nor e35 is in P .

Since |P/R0| ≥ 4, this implies P = 〈R0, e23x, e34y〉 for some x, y ∈ 〈e13, e35〉. Also,

e12Pe
−1
12 = 〈R0, e23e13x, e34y〉 and e45Pe

−1
45 = 〈R0, e23x, e34e35y〉,

so up to conjugacy, we can assume x ∈ 〈e35〉 and y ∈ 〈e13〉. Since rk([e13, P/Fr(P )]) ≥ 2
by (3), e14 = (e13e34)

2 /∈ Fr(P ), so y = 1. By a similar argument, x = 1, and thus
P = 〈R0, e23, e34〉. But then [e13, P ] = 〈e14〉, contradicting (3) again.

Thus either e13 ∈ P or e35 ∈ P , and they cannot both be in P since [e13, e35] = e15 /∈
Fr(P ). By symmetry (with respect to τ ∈ Aut(T )), it suffices to consider the case
e35 ∈ P and e13 /∈ P . Then e45 ∈ N(P ) since [e45, T ] ≤ P , and thusN(P ) ≥ 〈A1A2, e45〉
has order ≥ 29. If |P | ≤ 26, then |N(P )/P | ≥ 23, so rk(P/Fr(P )) ≥ 6 by (4), P is
elementary abelian of rank 6, and P = A2 by Lemma 6.1. But since N(A2)/A2 = T/A2

has order 16, A2 is not critical by (4).

Thus |P | = 27, P has index 2 in A1A2, and hence P = 〈R0, e23x, e34y, e35〉 for some
x, y ∈ 〈e13〉. Also, since rk([e13, P/Fr(P )]) ≥ 2 by (3) again, [e13, P ] = [e13, T ] =
〈e14, e15〉 and 〈e14, e15〉 ∩ Fr(P ) = 1. Thus (e13e34)

2 = e14 /∈ Fr(P ), implying y = 1.
Since e12Pe

−1
12 = 〈R0, e23e13x, e34, e35〉, we can now assume up to conjugacy that P =

〈R0, e23, e34, e35〉. In this case, Z(P ) = R0, [e13, P ] ≤ Z(P ) and [e13, Z(P )] = 1, and P
is not critical by Lemma 3.4 applied with Θ = Z(P ). �

The following lemma will be used when determining the normal critical subgroups of
index two in T . We formulate it here in a more general form, so it can also be applied
in the next section.

Lemma 6.4. Assume S = 〈g1, g2, g3, g4〉 is a group of order 27, with center Z
def
=

Z(S) = Fr(S) = 〈z1, z2, z3〉 ∼= C3
2 , satisfying the relations g2

i = 1 (i = 1, 2, 3, 4),
[gi, gi+1] = zi (i = 1, 2, 3), and [gi, gj] = 1 when |i− j| ≥ 2. Consider the subgroups

Ui = 〈Z, gj | j 6= i〉 (1 ≤ i ≤ 4), U13 = 〈Z, g1g3, g2, g4〉, U24 = 〈Z, g1, g3, g2g4〉.

Let P C S be a subgroup of index two, not equal to Ui for any i = 1, 2, 3, 4. Then
either Fr(P ) = Z; or P = U13 or U24, Fr(P ) = 〈z1x, z3y〉 for some x, y ∈ 〈z2〉, and
Z(P ) = Z.

Proof. If g1 ∈ P , then g2a ∈ P for some a ∈ 〈g3, g4〉 (since P 6= U2), and [g1, g2a] = z1 ∈
Fr(P ). If g2 ∈ P , then g1a ∈ P for some a ∈ 〈g3, g4〉 (P 6= U1), and [g2, g1a] ∈ {z1, z1z2}
is in Fr(P ). If g1g2 ∈ P , then (g1g2)

2 = z1 ∈ Fr(P ). Since [S:P ] = 2, one of the elements
g1, g2, g1g2 is in P , so in all cases, z1x ∈ Fr(P ) for some x ∈ 〈z2〉. By a similar argument,
z3y ∈ Fr(P ) for some y ∈ 〈z2〉.

Thus Fr(P ) = Z whenever z2 ∈ Fr(P ). If neither g2 nor g3 is in P , then g2g3 ∈ P , and
z2 = (g2g3)

2 ∈ Fr(P ). If g2 ∈ P and g3x ∈ P for x ∈ 〈g4〉, then z2 = [g2, g3x] ∈ Fr(P ). If
g2 ∈ P and neither g3 nor g3g4 is in P , then g4 ∈ P , and hence P = 〈Z, g2, g4, g1g3〉 =
U13 (since P 6= U3). By a similar argument, if g3 ∈ P , then either z2 ∈ Fr(P ) or
P = U24. Thus Fr(P ) = Z with these two exceptions.

If P = U13 = 〈Z, g2, g4, g1g3〉, then clearly Z(P ) ≥ Z. If g = gi1g
j
2g
k
3g

`
4x ∈ Z(P ),

where i, j, k, ` = 0, 1 and x ∈ Z, then i = k = 0 since [g, g2] = 1, and j = ` = 0 since
[g, g1g3] = 1. Thus g = x ∈ Z, and so Z(P ) = Z. The proof that Z(U24) = Z is
similar. �

We are now ready to handle the subgroups of T which contain Z2 and have index 2
in their normalizer. This requires some detailed case-by-case checks.
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Proposition 6.5. The only possible critical subgroups of T = UT5(2) are the subgroups
Qi (i = 1, 2, 3, 4) of index 2.

Proof. Let P be a critical subgroup of T . By Lemma 6.3, |N(P )/P | = 2. By Lemma
3.4,

g ∈ N(P )rP, Θ char P =⇒ [g, P ] � Θ·Fr(P ) or [g,Θ] � Fr(P ). (6)

Case 1: Assume P C T . Thus P has index 2 in T , and P ≥ [T, T ] = T ′. Also,
e15 = [e13, e35] ∈ Fr(P ),

e14 = [e34, e13] = [e12, e24] = [e12e34, e24] ∈ Fr(P )

since one of the elements e12, e34, or e12e34 is in P , and similarly e25 ∈ Fr(P ). Thus
Fr(P ) ≥ Z2. For any g ∈ TrP , [g, P ] ≤ T ′ and [g, T ′] ≤ [T, T ′] = Z2 ≤ Fr(P ) (2).
Hence by (6), T ′ is not characteristic in P .

We must show P = Qi for some i = 1, 2, 3, 4. Assume otherwise: assume P is not one
of the Qi. Consider the group S of Lemma 6.4. There is an epimorphism ϕ : T −−−→ S,
defined by ϕ(ei,i+1) = gi and ϕ(ei,i+2) = zi, with Ker(ϕ) = Z2. Since P 6= Qi for each
i, ϕ(P ) satisfies the hypotheses of the lemma. So either Fr(P ) = ϕ−1(Z(S)) = T ′ and
hence T ′ is characteristic in P ; or P = 〈e12, e34, e23e45〉 or 〈e12e34, e23, e45〉.

By Lemma 6.4 again, in both of these last two cases, Fr(P ) = 〈Z2, e13x, e35y〉 for
some x, y ∈ 〈e24〉, and Z(P/Z2) = ϕ−1(Z(S))/Z2 = T ′/Z2. Thus Z(Fr(P )) = Z2, and
hence Z2 and T ′ are both characteristic in P . But we have already seen that this
implies P cannot be critical.

Case 2: Now assume P 6C T . Thus P � T ′ = [T, T ], while P ≥ Z2 by Lemma 6.2.
Since [T, T ′] = Z2 ≤ P by (2), T ′ ≤ NT (P ). So we can always choose g ∈ NT ′(P )rP ,
in which case [g, P ] ≤ [T ′, T ] = Z2. By (6), applied with Θ = 1 or Θ = Z2(P ) ≥ Z2,

Fr(P ) � Z2, and [g, Z2(P )] � Fr(P ) for g ∈ NT ′(P )rP (7)

We next claim that

{e13, e35} ∩ P 6= ∅. (8)

Assume otherwise: assume e13, e35 /∈ P . Then both of these are in N(P ), and since
|N(P )/P | = 2, e13e35 ∈ P . By Lemma 3.5, there is α ∈ Aut(P ) of odd order, and
x ∈ [e13, P ], such that x /∈ Fr(P ) and [e13, α(x)] /∈ Fr(P ). Set y = α(x). Since
x ∈ {e14, e14e15} has order two, y2 = 1. Also, [e13, y] ∈ {e14, e14e15}, and [e13e35, y] /∈
{e14, e14e15} since e14 /∈ Fr(P ).

Set Q = U1U2 = 〈e12, e13, e14, e15, e25, e35, e45〉. By the commutator relations (1),
[e13, y] ∈ {e14, e14e15} implies y ≡ e34 (mod 〈Q, e23, e24〉). Combined with the condition
[e13e35, y] /∈ {e14, e14e15}, we have y ≡ e23e34 (mod 〈Q, e24〉. But then the class yQ has
order four in T/Q ∼= D8, which contradicts the assumption y2 = 1. This finishes the
proof of (8).

Set T0 = 〈T ′, e12, e45〉. We want to apply Lemma 1.9 to identify subgroups of S =
T/Z2 of index two in their normalizer. To do this, we regard T/Z2 as an extension

1 −−−→ T0/Z2
=〈e13,e24,e35,e12,e45〉

−−−−−→ T/Z2 −−−−−→ T/T0
=〈e23,e34〉

−−−→ 1,

where S0 = T0/Z2
∼= C5

2 and S/S0
∼= C2

2 . Using the notation of Lemma 1.9 (but with
P a subgroup of T and not of S = T/Z2), we set P0 = P ∩ T0.
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Recall, in the notation of Lemma 1.9, thatm is the number of classes xT0 ∈ T/T0 such
that xT0 6= T0 and [x, T0] ≤ P0. Since [e23, T0/Z2] = 〈e13Z2〉, [e34, T0/Z2] = 〈e35Z2〉,
and [e23e34, T0/Z2] = 〈e13Z2, e35Z2〉, we see that

m = 2k − 1 where k =
∣∣{e13, e35} ∩ P ∣∣. (9)

Thus (8) implies m ≥ 1.

By Lemma 1.9, we must consider the following cases, where we omit those where
m = 0. In all cases, since NT (P ) ≥ T ′ and P � T ′, [T ′:P ∩ T ′] = 2. Recall that we
always choose g ∈ NT ′(P )rP .

(b) rk(T0/P0) = 1, |P/P0| = 2, m = 1, and P0 6C S . Then {e13, e35} 6⊆ P
by (9), and we can choose g ∈ {e13, e35} in NT (P )rP . Since P0 has index two in T0

and does not contain g, there are elements x, y, z ∈ 〈g〉 such that e24x, e12y, e45z ∈ P .
Thus e14 = [e12y, e24x] and e25 = [e24x, e45z] are both in Fr(P ), so Z2 ≤ Fr(P ), which
contradicts (7).

(c) rk(T0/P0) = 1, |P/P0| = 2, m = 3, and P0 C S . Then P0 ≥ 〈Z2, e13, e35〉
by (9). Hence e24 /∈ P (P � T ′), and we take g = e24. For x ∈ T0, (e23e34x)

2 ≡
(e23e34)

2 = e24 (mod [T, T0] ≤ P0), so (e23e34x)
2 /∈ P0, and e23e34x /∈ P . So up to

symmetry, we can assume PT0 = 〈T0, e23〉. Thus P = 〈Z2, e13, e35, e12x, e45y, e23z〉 for
some x, y, z ∈ 〈g〉. In all cases, Z(P ) = 〈e15〉, Z2(P ) ≤ 〈T ′, e45〉, and [e24, Z2(P )] ≤
〈e15, e25〉 ≤ Fr(P ). So this case is impossible by (7).

(e) rk(T0/P0) = 2, |P/P0| = 4, and m = 1 . By (9), exactly one of the
elements e13 or e35 is in P0. Up to symmetry, we can assume e13 ∈ P0 while e35 /∈ P0.
Set g = e35. Since [e34, T0/Z2] = 〈e35Z2〉 is not in P/Z2, and since P0/Z2 is invariant
under the conjugation action of e34 on T0/Z2 (since |P/P0| = 4), P0/Z2 ≤ CT0/Z2(e34) =
〈e12Z2, T

′/Z2〉. Also, |P0/Z2| = 8 since |T0/P0| = 4 and |T0/Z2| = 32, and so P0 =
〈Z2, e13, e24x, e12y〉 for some x, y ∈ 〈g〉.

Now, e15 = [e12y, e25] ∈ Fr(P ). By Lemma 3.5, there is α ∈ Aut(P ) and r ∈ [e35, P ]
such that r /∈ Fr(P ) and [e35, α(r)] /∈ Fr(P ). Set s = α(r). Since [e35, T ] = 〈e25, e15〉,
these conditions imply r, [e35, s] ∈ {e25, e25e15}. Also, s2 = 1 since r2 = 1.

Set H = E1234;45 = 〈A2, e45〉 ≤ CT (e35). The condition on [e35, s] (together with (1))
implies s = e23v for v ∈ 〈H, e12, e13〉; and v ∈ 〈H, e13〉 since s2 = 1.

Set K = 〈Z2, e35〉. Since |P/P0| = 4, and since 〈P0, e35, e45〉 = T0, there is w ∈
〈e35, e45〉 such that e34w ∈ P . Then [s, P ] contains the elements

[s, e12y] ∈ [e23·〈e13, H〉, e12H] ∈ e13H and [s, e34w] = [e23v, e34w] ∈ e24K,
where the last inclusion holds since [v, e34w] ∈ [〈e13, H〉, H] ≤ K and [T,w] ≤ K. Thus
|[s, P ]| ≥ 4, which is impossible since [s, P ] = α([r, P ]) = 〈α(e15)〉.

This finishes the proof that P is not critical when it is not normal. �

6.2 Automorphisms of critical subgroups

Recall that τ ∈ Aut(T ) denotes the transpose along the “back” diagonal composed
with A 7→ A−1; i.e., the automorphism τ(eij) = e6−j,6−i. We claim there are also
automorphisms θ1, ψ1 ∈ Aut(T ) such that

θ1(e23) = e23e15 , ψ1(e12) = e12e35 , ψ1(e13) = e13e15e25 ;

and which send all other generators eij to themselves. This is clear for θ1, since it has
the form θ1(g) = g·ϕ(g) for some ϕ ∈ Hom(T, Z(T )). By a similar argument, ψ1|Q1
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is an automorphism of Q1, and it extends to an automorphism of T if ψ1([e12, g]) =
[e12e35, ψ1(g)] for all g ∈ Q1. This is clear when g = eij for j ≥ 4 (g = ψ1(g) commutes
with e12 and e35), and holds for the other two generators by direct calculation:

ψ1([e12, e13]) = 1 = [e12e35, e13e15e25] and ψ1([e12, e23]) = e13e15e25 = [e12e35, e23].

We also define θ2, ψ2 ∈ Aut(T ) by setting θ2 = τθ1τ
−1 and ψ2 = τψ1τ

−1. It is helpful
to visualize these automorphisms pictorially as follows:

θ1 =
�

��*

, ψ1 =
Q

Q
QQs

-H
HHj

, θ2 = �
���
, ψ2 =

J
J

JJ]

A
AAK 6

.

For each ϕ ∈ {θi, ψi} and each i < j, the arrows in the diagram for ϕ starting in
position (i, j) point to the positions of the basis elements which occur in e−1

ij ϕ(eij).

Let Aut0(T ) ≤ Aut(T ) be the subgroup of automorphisms which send A1 to itself,
and set Out0(T ) = Aut0(T )/Inn(T ). By Lemma 6.1, each automorphism of T either
sends the Ai to themselves or exchanges them, so Aut(T ) = Aut0(T ) o 〈τ〉.

For each i = 1, 2, 3, 4, NGL5(2)(Qi) is the group of all A = (ajk) ∈ GL5(2) such that
ajk = 0 for all j > k such that (j, k) 6= (i+ 1, i). Thus NGL5(2)(Qi)/Qi

∼= GL2(2) ∼= Σ3,
and is generated by the classes (mod Qi) of ei,i+1 and the permutation matrix for the
transposition (i i+1). We now define

∆i = OutGL5(2)(Qi) = 〈ci,i+1, [σi,i+1]〉 ∼= Σ3 , (10)

where σi,i+1 ∈ Aut(Qi) is conjugation by that permutation matrix; i.e., the automor-
phism which exchanges the i-th and (i+1)-st rows and columns.

Proposition 6.6. (a) Out0(T ) = 〈[θ1], [θ2], [ψ1], [ψ2]〉 ∼= C4
2 . Hence |Out(T )| = 25.

(b) For each i = 1, 2, 3, 4, Out(Qi) = O2(Out(Qi))·∆i, and O2(Out(Qi)) is elemen-
tary abelian. If F is a saturated fusion system over T and Qi is F-essential, then
OutF(Qi) = [ϕ]∆i[ϕ]−1 for some ϕ ∈ O2(Aut(Qi)) which extends to an automor-
phism of T .

Proof. Set

R = E123;345 = A1A2 and R0 = E12;45 = A1 ∩ A2 = Z(R) = Fr(R).

Let Out0(R) ≤ Out(R) be the subgroup of classes of automorphisms which send A1 to
itself. In Steps 1 and 2, we describe Out0(T ), Out(Q1), and Out(Q4) by comparison
with Out0(R). Then in Step 3, we prove (b) for Q2 and Q3.

In Steps 2 and 3, it will be helpful to represent automorphisms of A1 by matrices.
So for each α ∈ A1, M(α) will denote the matrix for α|A1 with respect to the ordered
basis

b = {e15, e25, e14, e24, e13, e23}.

Step 1: Let κ̃ be the homomorphism from Aut0(R) to Aut(R/A1) × Aut(R/A2)
induced by the projections of R onto R/A2 and R/A1. Then Inn(R) ≤ Ker(κ̃), so κ̃
induces a homomorphism κ on Out0(R). We claim the sequence

1 −−−→ O2(Out(R))
incl−−−→ Out0(R)

κ−−−→ Aut(R/A1)× Aut(R/A2) −−−→ 1 (11)

is exact. Here, Aut(R/Ai) ∼= Σ3 since R/Ai ∼= C2
2 , and κ is onto since its restriction to

the subgroup OutGL5(2)(R) ∼= Σ3×Σ3 is onto. SoO2(Out(R)) ≤ Ker(κ). Conversely, for
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each α ∈ Aut(R) such that [α] ∈ Ker(κ), α induces the identity on R/(A1∩A2) = R/R0

where R0 = Fr(R), and hence α ∈ O2(Aut(R)) by Lemma 1.1. Thus (11) is exact.

If α ∈ Aut(R) induces the identity on R/R0, then it also restricts to the identity on
R0 — since [ei3, e3j] = eij for i = 1, 2 and j = 4, 5 by (1). Hence each such α has the
form α(g) = g·α̂(gR0) for some map α̂ from R/R0 to R0, and α̂ is a homomorphism
since R0 = Z(R). Thus O2(Aut(R)) ∼= Hom(R/R0, R0) ∼= C16

2 . Since Inn(R) ∼= R/R0

has rank 4, O2(Out(R)) ∼= C12
2 .

Now, R0 = Z(R) is free as a module over F2[T/R] = F2[〈c12, c45〉]. Also, R is
generated by the only subgroups of T isomorphic to C6

2 (Lemma 6.1), and hence is
characteristic in any subgroup of T which contains it. So if P is any of the groups T ,
Q1, or Q4, then restriction to R induces an isomorphism

Out(P )
ResR−−−−−→∼=

NOut(R)(OutP (R))/OutP (R). (12)

by Corollary 1.3. When P = Qi for i = 1 or 4, then κ sends OutP (R) ∼= C2 nontrivially
to one of the factors Aut(R/A1) or Aut(R/A2) in the extension (11), and sends ∆i

isomorphically to the other factor. Thus

κ
(
NOut(R)(OutP (R))

)
= κ(OutP (R)·∆i) ∼= C2 × Σ3,

and hence

Out(Qi) = O2(Out(Qi))·∆i where O2(Out(Qi)) ∼= CO2(Out(R))(OutP (R)).

In particular, O2(Out(Qi)) is elementary abelian.

Assume Qi is F -essential, and set ∆′
i = OutF(Qi). Then ∆′

i ∩ O2(Out(Qi)) = 1
since O2(∆

′
i) = 1, and O2(Out(Qi))·∆′

i = Out(Qi) since otherwise ∆′
i would have order

two. Hence by Proposition 1.8, ∆′
i = ϕ∆iϕ

−1 for some ϕ ∈ Out(Qi) which centralizes
OutT (Qi). Since Z(Qi) ∼= C2

2 is a free F2[T/Qi]-module, H2(T/Qi;Z(Qi)) = 0, and
Lemma 1.2 implies that ϕ extends to an automorphism of T .

Step 2: When P = T , (12) restricts to an isomorphism

Out0(T )
ResR−−−−−→∼=

NOut0(R)(〈c12, c45〉)/〈c12, c45〉 ∼= CO2(Out(R))(〈c12, c45〉),

where the last isomorphism follows using (11). We now prove point (a) by describing
this centralizer explicitly. Write O2(Aut(R)) = A1 ×A2, where A1

∼= Hom(R/A2, R0)
is the subgroup of automorphisms which are the identity on A2 and on R/A2, and
A2
∼= Hom(R/A1, R0) is the subgroup of automorphisms which are the identity on A1

and on R/A1. Set

Â1 = A1/〈c34, c35〉 and Â2 = A2/〈c13, c23〉;

thus O2(Out(R)) = Â1 × Â2. The actions of c12 and c45 clearly preserve this decom-
position, and hence ResR induces an isomorphism

Out0(T ) ∼= CO2(Out(R))(〈c12, c45〉) = CÂ1
(〈c12, c45〉)× CÂ2

(〈c12, c45〉). (13)

Recall that M(−) is the matrix for an automorphism of A1 with respect to the basis
b defined above. Thus{

M(α|A1)
∣∣α ∈ A1

}
=

{(
I 0 B
0 I C
0 0 I

) ∣∣∣B,C ∈M2(F2)
}
.

Write λ(B,C) =
(
I 0 B
0 I C
0 0 I

)
for short; then M(c34) = λ(0, I) and M(c35) = λ(I, 0).



44 BOB OLIVER AND JOANA VENTURA

Now, c45 and c12 act on these matrices via conjugation by
(
I I 0
0 I 0
0 0 I

)
and by

(
J 0 0
0 J 0
0 0 J

)
,

respectively, where J = ( 1 1
0 1 ). Hence

[c45, λ(B,C)] = λ(C, 0) and [c12, λ(B,C)] = λ(JBJ−1+B, JCJ−1+C).

From this it follows that M induces an isomorphism

CÂ1
(〈c12, c45〉)

∼=−−−−→
{
λ(B, 0)

∣∣ JBJ−1+B ∈ {0, I}
}/〈

λ(I, 0)
〉
.

Also, J ( a bc d ) J−1+ ( a bc d ) = ( c a+c+d0 c ) ∈ {0, I} if and only if a + c + d = 0. Since
M(θ1|R) = λ(( 0 1

0 0 ) , 0) and M(ψ1|R) = λ(( 1 0
1 0 ) , 0), this proves that

CÂ1
(〈c12, c45〉) = 〈θ1|R, ψ1|R〉 ∼= C2

2 .

After combining this with the corresponding argument for Â2, and with (13), we
have now proven that Out0(T ) ∼= C4

2 with basis {[θ1], [ψ1], [θ2], [ψ2]}.

Step 3: It remains to prove (b) for Q2 and Q3. We do this for Q3, and the result for
Q2 then follows via conjugation by τ . Recall that σ34 ∈ Aut(Q3) is the automorphism
which switches the third and fourth rows and columns. We define automorphisms
β1, . . . , β5 ∈ Aut(Q3) as follows:

β1 = θ1|Q3 , β2 = σ34β1σ34, β3 = ψ1|Q3 , β4 = σ34β3σ34, and β5 = ψ2|Q3 .

These can be described pictorially as follows:

β1 =
���*

β2 =
���

β3 =
Q

Q
QQs

-H
HHj

β4 =
@

@
@@R

@@R
-

β5 = A
AAK

J
J

JJ] 6
.

Thus, for example, β4(e12) = e12e45, β4(e14) = e14e15e25, and β4 sends all of the other
generators eij to themselves. We will show that O2(Out(Q3)) ∼= C5

2 with the classes of
these elements as basis.

By Lemma 1.2, there is a short exact sequence

1→ H1(Q3/A1;A1) −−−→ Out(Q3)
ResA1−−−−→ NAut(A1)(AutQ3(A1))/AutQ3(A1)→ 1.

(14)
In terms of matrices, we are looking for the centralizer in GL6(2) of

M(c12) =
(
J 0 0
0 J 0
0 0 J

)
, M(c35) =

(
I 0 I
0 I 0
0 0 I

)
, and M(c45) =

(
I I 0
0 I 0
0 0 I

)
,

where J = ( 1 1
0 1 ) as before. The centralizer in Aut(A1) of 〈c35, c45〉 is the group of those

α such that M(α) =
(
A B C
0 A 0
0 0 A

)
for some A,B,C ∈ M2(F2) with A invertible; and such

a matrix commutes with M(c12) exactly when A, B, and C all commute with J . Since
a matrix in M2(F2) commutes with J if and only if it has the form ( a b0 a ) for some
a, b ∈ F2, this proves that

M
(
CAut(A1)(AutQ3(A1))

)
=

〈
M(c12),M(c35),M(c45),

(
I Y 0
0 I 0
0 0 I

)
,
(
I 0 Y
0 I 0
0 0 I

)〉
where Y = ( 0 1

0 0 ). Hence

CAut(A1)(AutQ3(A1)) = 〈c12, c35, c45, β1|A1 , β2|A1〉 ∼= C5
2 . (15)

So CAut(A1)(AutQ3(A1))/AutQ3(A1) is a group of order 4 generated by the classes of
β1|A1 and β2|A1 .

By (1), for g ∈ Q3rA1, [g, A1] = 〈e15, e25〉 ∼= C2
2 if g ∈ 〈A1, e35, e45〉, while [g, A1] ∼=

C3
2 otherwise. Hence each β ∈ Aut(Q3) leaves the subgroup 〈A1, e35, e45〉 invariant.
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The group of automorphisms of Q3/A1
∼= C3

2 which leave 〈e35A1, e45A1〉 invariant is
isomorphic to Σ4, and is generated by the actions of β4, β3, and ∆3 on Q3/A1. This,
together with (15) shows that

NAut(A1)(AutQ3(A1))/AutQ3(A1) = ResA1

(
〈[β1], [β2], [β3], [β4],∆3〉

) ∼= C4
2oΣ3, (16)

where the βi|A1 generate an elementary abelian subgroup since their matrices all have

the form
(
I B C
0 I 0
0 0 I

)
for some B,C ∈M2(F2).

We next claim that H1(Q3/A1;A1) ∼= C2. To see this, set V = A1 × 〈ê1, ê2〉 ∼= C8
2 ,

regarded as an F2[Q3/A1]-module (with A1 as submodule) by setting e35(êi) = êi·ei4,
e45(êi) = êi·ei3, e12(ê1) = ê1, and e12(ê2) = ê1ê2. This module is free (the Q3/A1-
orbit of ê2 is a basis), and hence is cohomologically trivial. So the exact sequence in
cohomology for the extension 1→ A1 → V → V/A1 → 1 takes the form

H0(Q3/A1;V )
=〈e15〉∼=C2

−−−→ H0(Q3/A1;V/A1)
=〈ê1A1〉∼=C2

δ−−−→ H1(Q3/A1;A1) −−−→ H1(Q3/A1;V )
=0

.

Thus H1(Q3/A1;A1) ∼= C2 is generated by δ(ê1A1), which is represented by the cocycle
which sends g ∈ Q3/A1 to g(ê1)ê

−1
1 . This induces an automorphism β ∈ Aut(Q3) such

that β|〈A1,e12〉 = Id, β(e35) = e35e14, and β(e45) = e45e13. By inspection, β = β5c13, and
this finishes the proof that Ker(ResA1) = 〈[β5]〉.

Upon combining this with (14) and (16), we have now shown that Out(Q3) is gen-
erated by the [βi] and ∆3. Also, 〈[β5]〉 = Ker(ResA1) is normal in Out(Q3), and hence
central. The subgroup of elements in Out(Q3) which leave invariant the subgroup U2

contains [β1], [β2], [β4], [β3], and ∆3, but not [β5]. Thus 〈[β5]〉 splits off as a direct
factor in Out(Q3). So by (16), O2(Out(Q3)) ∼= C5

2 with the [βi] as basis.

Assume Q3 is F -essential, and set ∆′
3 = OutF(Q3). Then |∆′

3| = 2n for some
odd n > 1 by the Sylow axiom, and n = 3 since it divides |Out(Q3)|. Also, ∆′

3 ∩
O2(Out(Q3)) = 1, and hence O2(Out(Q3))·∆′

3 = Out(Q3) = O2(Out(Q3))·∆3. By
Proposition 1.8, ∆′

3 = [β]∆3[β]−1 for some β ∈ AutF(Q3) which commutes with c34 in
OutF(Q3). Since c34β2c

−1
34 ≡ β1β2 and c34β4c

−1
34 ≡ β4β3 (mod Inn(Q3)), we have

[β] ∈ COut(Q3)(〈c34〉) = 〈[β1], [β3], [β5], c34〉.

All of these extend to automorphisms of T by the definitions at the beginning of Step
3, and this finishes the proof of (b) for Q3. �

The following computations will also be needed later.

Lemma 6.7. The following commutativity relations hold:

[ψ1|Q2 ,∆2] = 1 in Out(Q2) [(θ1ψ1)|Q1 ,∆1] = 1 in Out(Q1)

[ψ2|Q3 ,∆3] = 1 in Out(Q3) [(θ2ψ2)|Q4 ,∆4] = 1 in Out(Q4) .

Proof. When ϕ ∈ {θ1, θ2, ψ1, ψ2}, ϕcgϕ−1 = cϕ(g) and ϕ(g)g−1 ∈ Qi for each g ∈ T and
each i = 1, 2, 3, 4, and thus [ϕ|Qi

, ci,i+1] = 1 in Out(Qi). So we need only check the
commutators with σi,i+1 (see (10)). This can be done by direct computation, but can
also be seen using the pictorial description of these automorphisms. For example,

ψ1|Q2 =
Q

Q
QQs

-H
HHj

=
Q

Q
QQs

H
HHj
◦ c35 , σ23(ψ1|Q2)σ

−1
23 =

Q
Q

QQs

H
HHj
◦ c25 ,
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and so [ψ1, σ23] = c35c25 ∈ Inn(Q2). Similarly, in Aut(Q1),

θ1ψ1|Q1 =
���*

-HHHj
, σ12(θ1ψ1|Q1)σ

−1
12 =

�
��*
-

H
HHj

, c35 =
-
-

,

and so [θ1ψ1|Q1 , σ12] = c35. The remaining cases follow via conjugation with the auto-
morphism τ . �

6.3 Fusion systems over T = UT5(2)

We are now ready to describe the nonconstrained saturated fusion systems over T .
We begin by looking at automorphisms of Q2 and Q3 in such a fusion system.

Proposition 6.8. Let F be a nonconstrained saturated fusion system over T . Then
Q2 and Q3 are both F-essential. Also, F is isomorphic to a fusion system F∗ over T
such that OutF∗(Q2) = ∆2 and OutF∗(Q3) = ∆3.

Proof. By Proposition 6.6(a), Out(T ) is a 2-group, and hence OutF(T ) = 1. So if Q3

is not F -essential, then by Proposition 6.5, F is generated by restrictions of automor-
phisms of Q1, Q2, Q4, all of which send A2 to itself. Hence each morphism in F extends
to a morphism between subgroups containing A2 which sends A2 to itself, and so A2

is normal in F . But A2 is centric in T , and so this contradicts the assumption that
F is nonconstrained. Thus Q3 is F -essential; and by a similar argument, Q2 is also
F -essential.

By Proposition 6.6(b), OutF(Q3) = (ϕ|Q3)∆3(ϕ|Q3)
−1 for some ϕ ∈ Aut(T ), and ϕ ∈

Aut0(T ) since it leaves Q3 invariant. So upon replacing F by ϕ−1Fϕ, we can assume
OutF(Q3) = ∆3. Then, by Proposition 6.6(b) again, OutF(Q2) = (ψ|Q2)∆2(ψ|Q2)

−1

for some ψ ∈ Aut0(T ). Since θ1|Q2 = Id and ψ1|Q2 centralizes ∆2 (Lemma 6.7),
we can assume ψ ∈ 〈θ2, ψ2〉. In particular, (ψ|Q3)∆3(ψ|Q3)

−1 = ∆3 by Lemma 6.7
again (and since θ2|Q3 = Id). So if we set F∗ = ψ−1Fψ, then OutF∗(Q2) = ∆2 and
OutF∗(Q3) = ∆3. �

We now study how the automorphisms of Q1 and Q4 fit with those of Q2 and Q3. In
the following proposition, 3Σ6 denotes a nonsplit extension with kernel of order 3 and
quotient group Σ6.

Proposition 6.9. Fix a nonconstrained saturated fusion system F over T , and assume
OutF(Q2) = ∆2 and OutF(Q3) = ∆3. Then Q1 and Q4 are both F-essential. Also, for
each pair (i, j) = (1, 2) or (4, 1), either

• OutF(Qi) = ∆i and AutF(Aj) ∼= Σ3 ×GL3(2); or

• OutF(Qi) = (θjψj)∆i(θjψj)
−1 and AutF(Aj) ∼= 3Σ6.

Proof. By Proposition 6.6(a), Out(T ) is a 2-group, and hence OutF(T ) = 1. So by
Proposition 6.5, F is generated by Inn(T ) together with AutF(Qi) for i = 1, 2, 3, 4.

If neither Q1 nor Q4 is F -essential, then F is generated by Inn(T ) together with
∆2, and ∆3, all of which leave U1 and U2 invariant. Thus U1 and U2 would both be
normal in F , which contradicts our assumption that F is nonconstrained. So Q1 or Q4

is F -essential.
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For each i = 1, 4, if Qi is F -essential, then by Proposition 6.6(b), AutF(Qi) =
ϕi∆iϕ

−1
i for some ϕi ∈ Aut0(T ). (We drop “restricted to Qi” to simplify the no-

tation.) Since θ1ψ1 commutes with ∆1 in Out(Q1) by Lemma 6.7, we can assume
ϕ1 ∈ 〈θ1, θ2, ψ2〉. Similarly, we can assume ϕ4 ∈ 〈θ1, θ2, ψ1〉. Set

σ∗12 = ϕ1σ12ϕ
−1
1 and σ∗45 = ϕ4σ45ϕ

−1
4 ,

so that OutF(Q1) = 〈c12, σ
∗
12〉 and OutF(Q4) = 〈c45, σ

∗
45〉.

In Steps 1 and 2, when α ∈ Aut(A1), we again let M(α) ∈ GL6(2) be its matrix
with respect to the ordered basis {e15, e25, e14, e24, e13, e23}.

Step 1 We first prove that if Q1 is F -essential, then ϕ1 ∈ 〈θ2, ψ2〉; while if Q4 is
F -essential, then ϕ4 ∈ 〈θ1, ψ1〉.

Assume Q1 is F -essential. Fix X ∈ M2(F2) such that M(ϕ1|A1) =
(
I 0 X
0 I 0
0 0 I

)
. Thus

X = 0 if ϕ1 ∈ 〈θ2, ψ2〉, and X = ( 0 1
0 0 ) otherwise. Set W = ( 0 1

1 0 ). Then

M(σ34|A1) =
(
I 0 0
0 0 I
0 I 0

)
and M(σ∗12|A1) =

(
I 0 X
0 I 0
0 0 I

) (
W 0 0
0 W 0
0 0 W

) (
I 0 X
0 I 0
0 0 I

)
=

(
W 0 Y
0 W 0
0 0 W

)
,

where σ34 ∈ AutF(Q3) and σ∗12 ∈ AutF(Q1), and Y = XW +WX = 0 or I. So if we
set Q13 = Q1 ∩Q3 and α = [σ∗12|Q13 , σ34|Q13 ] ∈ AutF(Q13), then

M(α|A1) =
[(

W 0 Y
0 W 0
0 0 W

)
,
(
I 0 0
0 0 I
0 I 0

)]
=

(
I Y W YW
0 I 0
0 0 I

)
.

Thus α induces the identity on Fr(Q13) = 〈e15, e25〉 and on A1/Fr(Q13), and induces
the identity on Q13/A1 since ϕ1 (and hence σ∗12) does. Since these are characteristic
subgroups of Q13, α ∈ O2(AutF(Q13)) ≤ OutT (Q13) by Lemma 1.1. Hence YW = 0 or
YW = I. Since Y ∈ {0, I} and W = ( 0 1

1 0 ), we conclude that Y = 0, and thus X = 0.
This proves that ϕ1 ∈ 〈θ2, ψ2〉 if Q1 is F -essential; and also (via conjugation by τ) that
ϕ4 ∈ 〈θ1, ψ1〉 if Q4 is F -essential.

Step 2 We now strengthen the conclusion of Step 1, by proving that Q1 F -essential
implies ϕ1 ∈ 〈θ2ψ2〉, and Q4 F -essential implies ϕ4 ∈ 〈θ1ψ1〉.

Assume first Q1 and Q4 are both F -essential; we show ϕ4 ∈ 〈θ1ψ1〉. Set Q14 =

Q1∩Q4 = A1A2. Let X ∈M2(F2) be such that M(ϕ4|A1) =
(
I 0 X
0 I 0
0 0 I

)
. Thus X = ( 0 0

0 0 ),

( 0 1
0 0 ), ( 1 0

1 0 ), or ( 1 1
1 0 ), depending on whether ϕ4 = Id, θ1, ψ1, or θ1ψ1. Set W = ( 0 1

1 0 )
as before. Since ϕ1 ∈ 〈θ2, ψ2〉 and θ2|A1 = ψ2|A1 = Id, σ∗12|A1 = σ12|A1 . Hence

M(σ∗12|A1) =
(
W 0 0
0 W 0
0 0 W

)
and M(σ∗45|A1) =

(
I 0 X
0 I 0
0 0 I

) (
0 I 0
I 0 0
0 0 I

) (
I 0 X
0 I 0
0 0 I

)
=

(
0 I X
I 0 X
0 0 I

)
,

where σ∗12 ∈ AutF(Q1) and σ∗45 ∈ AutF(Q4). Set β = [σ∗12, σ
∗
45] ∈ AutF(Q14). Then

M(β|A1) =
[(

W 0 0
0 W 0
0 0 W

)
,
(

0 I X
I 0 X
0 0 I

)]
=

(
I 0 X+WXW−1

0 I X+WXW−1

0 0 I

)
.

Set R0 = A1 ∩ A2. Thus β induces the identity on A1/R0, and also on A2/R0

since ϕ1 (and hence σ∗12) induces the identity on A2/R0. Since R0 = Fr(Q14), β ∈
O2(AutF(Q14)) by Lemma 1.1, so β ∈ AutT (Q14) by the Sylow axiom, and thus
X + WXW−1 ∈ {I, 0}. If X = ( 0 1

0 0 ) or ( 1 0
1 0 ), then X + WXW−1 = ( 0 1

1 0 ) or ( 1 1
1 1 ),

which is impossible. It follows that ϕ4 ∈ 〈θ1ψ1〉 in this situation.

Now assume Q4 is F -essential and Q1 is not. If ϕ4 = θ1, then F is generated by
Inn(T ) and AutF(Qi) for i = 2, 3, 4, and all of these automorphism groups leave U1

invariant. Thus U1 is normal in F in this case, which contradicts the assumption that
F is nonconstrained.
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Assume ϕ4 = ψ1. Set V = 〈e23, e24, e25〉 ≤ A1, and let A ≤ AutF(A1) be the
subgroup of those elements which leave V invariant. Consider the homomorphism

Ψ: A (res,proj)−−−−−−−−→ Aut(V )× Aut(A1/V )
M̂−−−−→ GL3(2)×GL3(2)

where M̂ sends a pair of automorphisms to their matrices with respect to the bases
{ei5, ei4, ei3} for i = 2 or 1, respectively. Then Ψ(AutQ1(A1)) = {(X,X)} for X ∈
GL3(2) upper triangular, while Ψ(σ34|A1) =

((
1 0 0
0 0 1
0 1 0

)
,
(

1 0 0
0 0 1
0 1 0

))
. Thus Im(Ψ) contains

all matrices (M,M) for M ∈ H, where H ≤ GL3(2) is the subgroup of matrices

with first column
(

1
0
0

)
. The above computation of M(σ∗45|A1) when ϕ4 = ψ1 (hence

X = ( 1 0
1 0 )) shows that Ψ(σ∗45) =

((
0 1 0
1 0 0
0 0 1

)
,
(

0 1 1
1 0 1
0 0 1

))
.

Now, Ψ is not onto, since otherwise 26
∣∣|AutF(A1)|, contradicting the Sylow axiom.

Since H is a maximal subgroup in GL3(2) (it has prime index), the above computations
show that Im(Ψ) surjects onto each factor GL3(2). Hence the subgroup K of all
g ∈ GL3(2) such that (1, g) ∈ Im(Ψ) is normal, and K 6= GL3(2) since Ψ is not onto.
Thus K = 1 since GL3(2) is simple, and Im(Ψ) has the form {(g, α(g))} for some
α ∈ Aut(GL3(2)). By the above computations, α|H = Id, and

α
((

0 1 0
1 0 0
0 0 1

))
=

(
0 1 1
1 0 1
0 0 1

)
implies α

((
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

))
=

(
0 1 1
1 0 1
0 0 1

) (
1 0 0
0 0 1
0 1 0

)
=

(
0 1 1
1 1 0
0 1 0

)
.

Thus α sends an element of order three to one of order four, which is impossible.

This finishes the proof that ϕ4 ∈ 〈θ1ψ1〉 in both cases (Q1 F -essential or not). As
usual, it then follows by symmetry that ϕ1 ∈ 〈θ2ψ2〉 if Q1 is F -essential.

Step 3 Assume Q4 is F -essential, and AutF(Q4) = ∆4. If Q1 is not F -essential, then
F is generated by automorphisms of Q2, Q3, and Q4, all of which leave U1 invariant.
Hence U1 is normal in F , which contradicts the assumption that F is nonconstrained.

Thus Q1 is F -essential. Since ϕ1|A1 = Id, the restriction to A1 of AutF(Q1) is equal
to that of ∆1. So AutF(A1) is generated by restrictions of automorphisms of ∆i for
i = 1, 3, 4. This is the product of the actions of ∆1 on each of the three columns
〈e1i, e2i〉 in A1 (i = 3, 4, 5) with the actions of 〈∆3,∆4〉 on each of the two rows. The
actions of ∆3 and ∆4 generate the full GL3(2)-action on each row (any 3 × 3 matrix
can be diagonalized by row and column operations on its first two and last two rows
and columns), and thus AutF(A1) ∼= Σ3 ×GL3(2).

Similarly, if Q1 is F -essential and AutF(Q1) = ∆1, then Q4 is also F -essential and
AutF(A2) ∼= Σ3 ×GL3(2).

Step 4 Now assume Q4 is F -essential and AutF(Q4) = (θ1ψ1)∆4(θ1ψ1)
−1. We will

show that AutF(A1) ∼= 3Σ6, and that Q1 is also F -essential. The corresponding result
when AutF(Q1) = (θ2ψ2)∆1(θ2ψ2)

−1 then follows by symmetry.

Consider the subgroup

Aut0
F(A1)

def
=

〈
AutT (A1), σ34|A1 , σ

∗
45|A1

〉
≤ AutF(A1) :

the subgroup generated by restrictions of elements in AutF(Qi) for i = 2, 3, 4. This
time, we identify A1 with F3

4. Fix ω ∈ F4rF2, and give A1 the structure of a F4-vector
space by setting ωe1j = e2j and ωe2j = e1je2j. For α ∈ AutF4(A1), let M∗(α) ∈ GL3(4)
be the matrix for α with respect to the F4-basis {e15, e14, e13}.
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Write ω = ω2 = ω + 1 ∈ F4. Then

M∗(c34) =
(

1 0 0
0 1 1
0 0 1

)
, M∗(σ34) =

(
1 0 0
0 0 1
0 1 0

)
, M∗(c45) =

(
1 1 0
0 1 0
0 0 1

)
;

and

M∗(σ∗45) = M∗((θ1ψ1)σ45(θ1ψ1)
−1

)
=

(
1 0 ω
0 1 0
0 0 1

) (
0 1 0
1 0 0
0 0 1

) (
1 0 ω
0 1 0
0 0 1

)
=

(
0 1 ω
1 0 ω
0 0 1

)
.

Also, c12 acts on A1 as the field automorphism φ2 : (a, b, c) 7→ (ā, b̄, c̄), with respect to
the given basis.

Consider the following six points in the projective plane P (F3
4): λ1 = 〈(1, ω, 0)〉,

λ2 = 〈(1, ω, 0)〉, λ3 = 〈(ω, 0, 1)〉, λ4 = 〈(ω, 1, 1)〉, λ5 = 〈(ω, 0, 1)〉, λ6 = 〈(ω, 1, 1)〉.
These form an “oval”, in the sense that no three of them lie in a projective line. By a
direct check, the above generators permute these points in the following way:

φ2

(
1 0 0
0 1 1
0 0 1

) (
1 0 0
0 0 1
0 1 0

) (
1 1 0
0 1 0
0 0 1

) (
0 1 ω
1 0 ω
0 0 1

)
(1 2)(3 5)(4 6) (3 4)(5 6) (1 5)(2 3) (1 2)(4 6) (1 2)(3 6)

.

The first two and last two of these permutations generate the subgroup of elements of
Σ6 which leave {1, 2} invariant, and hence this set of five permutations generates Σ6.
Since this extension of C3 by Σ6 is not split, this proves that Aut0

F(A1) ∼= 3Σ6.

Let ζ ∈ Aut(A1) be such that M∗(ζ) = ω·I = diag(ω, ω, ω). Then ζ ∈ Aut0
F(A1) by

the above computation. Also, ζ commutes with all elements of AutQ1(A1), so it extends
to an element ζ̄ ∈ AutF(Q1) by the extension axiom. Thus Q1 is F -essential since
AutF(Q1) is not a 2-group. Also, the restriction to A1 of each element of AutF(Q1) =
〈AutT (Q1), ζ̄〉 lies in Aut0

F(A1), and hence AutF(A1) = Aut0
F(A1) ∼= 3Σ6. �

We can now summarize these results in the following theorem. The much more
difficult classification of simple groups with Sylow 2-subgroup UT5(2) is due to Held
[He], and is also shown in [A2, Chapter 14].

Theorem 6.10. Every nonconstrained saturated fusion system over T = UT5(2) is
isomorphic to the fusion system of one of the simple groups GL5(2), M24, or He.

Proof. By Proposition 6.5, F is generated by AutF(T ) and the AutF(Qi) for i =
1, 2, 3, 4. Also, AutF(T ) = Inn(T ) since Aut(T ) is a 2-group (Proposition 6.6(a)). By
Proposition 6.8, we can assume OutF(Qi) = ∆i for i = 2, 3. Then by Proposition 6.9,
there are at most four possibilities for F , of which two are isomorphic via τ .

We refer to [He], and to [A2, §40], for a description of the groups AutG(Ai) when
G = GL5(2), M24, or Held’s group. Each of these groups contains Sylow 2-subgroups
S ∼= UT5(2). Also, FS(G) is nonconstrained and centerfree in each case, and hence
must be isomorphic to one of the three distinct fusion systems which we found. Thus F
is isomorphic to the fusion system of GL5(2) if AutF(A1) ∼= AutF(A2) ∼= Σ3 ×GL3(2)
(if AutF(Qi) = ∆i for i = 1, 4); F is isomorphic to the fusion system of M24 if
AutF(A1) ∼= Σ3 × GL3(2) and AutF(A2) ∼= 3Σ6 or vice versa (if AutF(Qi) = ∆i for
i = 1 or i = 4 but not both); and F is isomorphic to the fusion system of Held’s group
if AutF(A1) ∼= AutF(A2) ∼= 3Σ6 (if AutF(Qi) = (θjψj)∆i(θjψj)

−1 for (i, j) = (1, 2) and
(4, 1)). �
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7. Fusion systems over the Sylow subgroup of Co3

Our notation here for elements in a Sylow 2-subgroup of Spin7(3) is based on that
used in [LO]. Fix Y,B ∈ SL2(9) such that Y has order 8 and 〈Y,B〉 ∼= Q16, and set
A = Y 2. In particular, Y 4 = B2 = −I, and 〈A,B〉 ∼= Q8. Consider the groups

S0
def
= 〈Y,B〉3/〈(−I,−I,−I)〉 and S def

= S0

(1 2)

o C2
τ
,

and let [[X1, X2, X3]] denote the class of (X1, X2, X3) in S0. Thus

τ 2 = 1 and τ [[X1, X2, X3]]τ
−1 = [[X2, X1, X3]].

Write a1 = [[A, I, I]], a2 = [[I, A, I]], a3 = [[I, I, A]], b1 = [[B, I, I]], b2 = [[I, B, I]],
b3 = [[I, I, B]], c = [[Y, Y, Y ]], and zi = a2

i . Finally, set

T ∗ = 〈a1, a2, a3, c,b1,b2,b3, τ 〉 ≤ S :

a group of order 210. For later reference, we list the following relations in T ∗ (for all
i 6= j), which in fact form a complete presentation for this group:

a2
i = b2

i = [ai,bi] = zi, z2
i = 1 = z1z2z3, [ai,bj] = 1 = [ai, aj] = [bi,bj];

c2 = a1a2a3, [c, ai] = 1, cbic
−1 = aibi, bicb

−1
i = a−1

i c; (1)

τ 2 = 1, τcτ−1 = c, τaiτ
−1 = aσ(i), τbiτ

−1 = bσ(i) (where σ = (1 2) ∈ Σ3).

The embedding of T ∗ as a Sylow 2-subgroup of Spin7(3) is described in detail in
[LO, § 2]. For example, the subgroup 〈a1,b1, a2,b2, a3,b3〉 is a Sylow subgroup of
Spin3(3)×C2Spin+

4 (3) ≤ Spin7(3), via the identifications Spin3(3) ∼= SL2(3), Spin+
4 (3) ∼=

SL2(3) × SL2(3), and Q8 ∈ Syl2(SL2(3)). Instead of repeating that argument here,
we give an explicit homomorphism ρ : T ∗ −−−→ Ω7(3) to help motivate some of our
constructions. Let δi be the diagonal matrix with entry −1 in i-th position and 1
elsewhere, and set δij = δiδj, etc. Let πσ be the permutation matrix for σ ∈ Σ7. Thus
πσδiπ

−1
σ = δσ(i). Define ρ by setting

ρ(a1) = δ14π(12)(34) ρ(a2) = δ24π(12)(34) ρ(a3) = δ56

ρ(b1) = δ12π(13)(24) ρ(b2) = δ23π(13)(24) ρ(b3) = δ57

ρ(c) = δ46π(34)(56) ρ(τ ) = δ1567.

It is straightforward to check that the relations in T ∗ listed above all hold, and hence
that this defines a homomorphism with kernel 〈z3〉.

Two families of subgroups of T ∗ will play an important role in what follows. First
define

R0 = 〈a1, a2, a3,b1,b2,b3〉 R1 = 〈R0, c〉 R2 = 〈R0, τ 〉 R3 = 〈R0, cτ 〉 .
Thus T ∗/R0

∼= C2
2 , and R1, R2, and R3 are the three subgroups of index two in T ∗

which contain R0. Also, Z(R0) = Z(R1) = 〈z1, z2〉, while Z(Ri) = 〈z3〉 = Z(T ∗) for
i = 2, 3.

Next consider the following subgroups:

Q = 〈z1, a1a2, a3,b1b2,b3, τ 〉 = 〈a1a2,b1b2〉 ×C2 〈a3,b3〉 ×C2 〈z1, τ 〉
R4 = 〈Q, a1, c〉 ; H1 = 〈Q, c〉 H2 = 〈Q, a1c〉 H3 = 〈Q, a1〉 .

Thus Q is extraspecial of order 27 (a central product of three D8’s), R4/Q ∼= C2
2 , and

H1, H2, and H3 are the three subgroups of index two in R4 which contain Q. Also,
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H3 C T ∗, while H2 = b1H1b
−1
1 and NT ∗(H1) = NT ∗(H2) = R4. These three subgroups

will be seen to be permuted transitively by Out(R4).

Consider again the homomorphism ρ : T ∗ −−−→ Ω7(3) defined above, and also the
induced action of T ∗ on V ∼= F7

2 with canonical (orthonormal) basis {e1, . . . , e7}. By
inspection, R1 is the subgroup of those elements which act on each of the factors
〈e1, e2, e3, e4〉 and 〈e5, e6, e7〉 with determinant one, and R0 is the subgroup of elements
whose action on each factor lies in the spinor group. Also, R4 is the subgroup of
elements which leave invariant each of the summands 〈e1, e2〉, 〈e3, e4〉, and 〈e5, e6〉,
while Q is the group of elements which sends each of the 〈ei〉 to itself.

Before we begin looking at the critical subgroups of T ∗, we prove the following lemma
about Q, and about another subgroup A ∼= C3

4 which we will need to work with.

Lemma 7.1. (a) Set A = 〈a1, a2, a3, c〉. Then A ∼= C3
4 , A C T ∗, and T ∗/A ∼=

C2 ×D8.

(b) If P ≤ T ∗ is such that |P | = 27 and |Fr(P )| = 2, then P = Q.

Proof. (a) Since c2 = a1a2a3 and (a1a2a3)
2 = 1, A = 〈a1〉 × 〈a2〉 × 〈c〉 ∼= C3

4 . By the
relations (1), A is normal in T ∗, and T ∗/A = 〈b1A,b2A,b3A, τA〉 ∼= D8 × C2.

(b) Let A0 = 〈z1, z2, a1a2a3〉 be the 2-torsion subgroup of A. Since |T ∗/A| = 24,
P ∩A is a normal subgroup of P of order at least 23. If |P ∩A| = 23, then P/(P ∩A) ∼=
T ∗/A ∼= C2 ×D8, so Fr(P ) ∩A = 1, and P ∩A = A0 since it cannot have 4-torsion.
Since Fr(T ∗/A) = 〈b1b2A〉, Fr(P ) = 〈b1b2g〉 for some g ∈ A, which is impossible
since [b1b2g, a1a2a3] = z3 6= 1.

It follows that |P ∩A| ≥ 24. In particular, Fr(P ) ≤ A since P ∩A is not elementary
abelian, and P ≥ A0 and |P ∩A| = 24 since P contains no subgroup C2

4 . So PA/A
is an elementary abelian subgroup of order 23 in T ∗/A ∼= D8 × C2. Hence either
PA/A = 〈b1,b2,b3〉 and thus PA = R1, or PA/A = 〈b1b2,b3, τ 〉 and PA = R4.
In either case, b3g ∈ P for some g ∈ A, and so [b3g, a1a2a3] = z3 ∈ Fr(P ). Thus
Fr(P ) = 〈z3〉.

If PA = R1, then b1g ∈ P for some g ∈ A, so [b1g, a1a2a3] = z1 ∈ Fr(P ), and we
just saw this is impossible. Hence PA = R4.

Consider the quotient group

R4/A0 = R4/〈z1, z2, a1a2a3〉 = 〈a1, a2, τ 〉 ×〈a3〉 〈c,b3〉 × 〈b1b2b3〉 ∼= D8 ×C2 D8 × C2.

Since Fr(P ) ≤ A0, P/A0
∼= C4

2 . Hence Z(R4/A0) ≤ P/A0, since every abelian
subgroup of rank four in R4/A0 contains the center. In particular, b1b2b3 ∈ P , so
P/〈z3〉 ≤ CR4/〈z3〉(b1b2b3) = Q/〈z3〉, and hence P = Q. �

In fact, A is the unique abelian subgroup of order 26 in T ∗, but we will not need to
use that.

7.1 Determining the critical subgroups

We start as usual by reducing to the case of subgroups of index 2 in their normalizers.

Lemma 7.2. If P is a critical subgroup of T ∗, then |NT ∗(P )/P | = 2.

Proof. Assume otherwise: let P be a critical subgroup of T ∗ with |NT ∗(P )/P | ≥ 4. By
Proposition 3.3(c),

g /∈ P, [g, P ] ≤ P =⇒ rk([g, P/Fr(P )]) ≥ 2. (2)
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Since P is centric in T ∗, Z(T ∗) = 〈z3〉 ≤ P . Since [x, P ] ≤ [x, T ∗] ≤ 〈z3〉 for
x ∈ 〈z1, a3〉, z1, a3 ∈ P by (2). In particular, z3 = a2

3 ∈ Fr(P ).

Since [a1a2, P ] ≤ [a1a2, T
∗] = 〈z1, z3〉, rk([a1a2, P/Fr(P )]) ≤ 1, and hence a1a2 ∈ P

by (2). Similarly, [b3, P ] ≤ [b3, T
∗] = 〈a3〉 implies b3 ∈ P . Set T0 = 〈z1, a1a2, a3,b3〉 ≤

P . Then |T0| = 25, T0 C T ∗, and

T ∗/T0 = R4/T0 o 〈b1〉 ∼= C4
2

〈a1,b1b2,c,τ 〉
o C2

b1

.

Now, [a1, T
∗] = 〈z1, z3, a1a2〉 = [b1b2, T

∗]. So by (2), either Fr(P )∩〈z1, a1a2〉 = 〈z3〉,
or a1,b1b2 ∈ P . If a1 ∈ P , then z1 = a2

1 ∈ Fr(P ), and so b1b2 ∈ P , Fr(T ∗) ≤ P , and
thus P C T ∗. Set T1 = 〈T0, a1,b1b2〉; thus |T1| = 27 and so [P :T1] ≤ 2. If b1 /∈ P , then
since [T1,b1] ≤ 〈z1, z3〉 ≤ Fr(P ) and |P/T1| ≤ 2, rk([b1, P/Fr(P )]) ≤ 1, contradicting
(2) again. Thus P = 〈T1,b1〉 = R0, Fr(P ) = 〈z1, z3〉, rk([τ , P/Fr(P )]) = 2, and
rk([c, P/Fr(P )]) = 3. This contradicts Proposition 3.3(b) (all involutions in OutT ∗(P )
are conjugate in Out(P )). We now conclude that

a1 /∈ P, and Fr(P ) ∩ 〈z1, a1a2〉 = 〈z3〉. (3)

Since [a1a2, R4] = 〈z3〉 ≤ Fr(P ) and [a1a2,b1] = z1, (3) implies P ≤ R4. Also,
P ≥ Fr(R4), and soNT ∗(P ) ≥ R4. By Proposition 3.3(a), all involutions in OutT ∗(P ) ∼=
NT ∗(P )/P are central. Hence if P C T ∗, then all elements of R4/P are central in T ∗/P ,
which is impossible since a1 /∈ P and [c,b1] = a1 (c /∈ P since P is normal, and hence
cP /∈ Z(T ∗/P )). Thus NT ∗(P ) = R4. Also, R4/P ∼= Ck

2 for k ≥ 2. If k ≥ 3, then
rk(P/Fr(P )) ≥ 6 by Proposition 3.3(c), so 27 ≤ |P | = 29−k, a contradiction. Thus

NT ∗(P ) = R4, [P : T0] = 4, and [R4 : P ] = 4. (4)

If xb1b2 ∈ P for some x ∈ 〈a1〉, then since [xb1b2, T
∗] ≤ 〈z1, a1a2〉 in both cases,

[xb1b2, P ] = 〈z3〉 by (3). Hence

P ≤
{
g ∈ R4

∣∣ [xb1b2, g] ∈ 〈z3〉
}

=

{
〈T0,b1b2, τ 〉 if x = 1

〈T0, a1b1b2, a2cτ 〉 if x = a1,

and P is equal to one of these groups (the inclusion is an equality) by (4). But both of
these groups are normal in T ∗ — note that b1(a2cτ )b−1

1 ≡ (a1b1b2)(a2cτ ) (mod T0)
— which contradicts (4). So this case is impossible.

Thus P ∩ 〈T0, a1,b1b2〉 = T0. Since [P : T0] = 4 by (4) again,

P = 〈T0, cx, τy〉 = 〈z1, a1a2, a3,b3, cx, τy〉

for some x, y ∈ 〈a1,b1b2〉. Since b1cb
−1
1 = a−1

1 c, it suffices to consider the case where
x ∈ 〈b1b2〉. Then one of the following happens:

• y ∈ 〈b1b2〉, [b1b2, P ] = 〈a1a2, z3〉, so rk([b1b2, P/Fr(P )]) ≤ 1 contradicting (2);

• y = a1, (τa1)
2 = a1a2 ∈ Fr(P ), contradicting (3); or

• y = a1b1b2, (τa1b1b2)
2 = a1a2z2 ∈ Fr(P ), contradicting (3).

This finishes the proof. �

It remains to handle the subgroups of T ∗ of index two in their normalizer.

Proposition 7.3. The only critical subgroups in T ∗ are R1, R2, R3, R4, H1, and H2.
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Proof. Fix a critical subgroup P ≤ T ∗ of index two in its normalizer. By Lemma 3.4,

g ∈ N(P )rP, Θ char P =⇒ [g, P ] � Θ·Fr(P ) or [g,Θ] � Fr(P ). (5)

In Step 1, we show that 〈z1, z3, a3〉 ≤ P , and that 〈a1, a2, a3〉 ≤ P if P ≤ R1. In Step
2, we show a1a2 ∈ P . We then handle the cases where P is not normal in T ∗ in Step
3, and those where P C T ∗ (hence [T ∗:P ] = 2) in Step 4.

Step 1: Since P is centric, z3 ∈ Z(T ∗) ≤ P . Since [z1, P ] ≤ [z1, T
∗] = 〈z3〉 ≤ P , and

similarly for a3, 〈z1, a3〉 ≤ N(P ). So if z1 /∈ P , then a3 or z1a3 must be in P , since
otherwise |N(P )/P | ≥ 4. Then z3 = a2

3 = (z1a3)
2 ∈ Fr(P ), so [z1, P ] ≤ Fr(P ), and

this contradicts (5). This proves that z1 ∈ P .

Now assume a3 /∈ P . By Lemma 3.6, applied with z = z3, g = a3, and y = z1,
there is h ∈ T ∗ such that [h, a3] = z3 /∈ Fr(P ), h2 = 1, and P = CT ∗(h). Also,
z1 ∈ Z(P ) (since z1a3 /∈ P ), and h is not T ∗-conjugate to z1h. Thus h ∈ P ≤ R1, since
z1 ∈ Z(P ). We return to the notation used at the beginning of the section, and write
h = [[X1, X2, X3]] for some Xi ∈ 〈Y,B〉 ∼= Q16. Recall A = Y 2 and 〈A,B〉 ∼= Q8.

The condition [h, a3] = z3 implies [X3, A] = −I, and hence X3 ∈ 〈Y 〉·B. Thus
X2

3 = −I, and hence X2
1 = X2

2 = −I since h2 = 1. Since h is not T ∗-conjugate to
z1h, [X1, A] 6= −I and [X1, B] 6= −I imply X1 = ±I, and thus X2

1 6= −I. Hence this
situation is impossible, and we conclude that a3 ∈ P .

Now assume P ≤ R1 = 〈ai,bi, c | i = 1, 2, 3〉; we claim that a1, a2 ∈ P . This is clear
if P = R1, so we assume P � R1. Then NR1(P )/P 6= 1, so N(P ) ≤ R1 since we are
assuming |N(P )/P | = 2. Thus P is also critical in R1. In this situation, the same
argument we just used to show a3 ∈ P also applies to prove that a1, a2 ∈ P .

Step 2: We next prove that a1a2 ∈ P . Assume otherwise; then a1a2 ∈ NT ∗(P )rP .
Since [a1a2, P ] ≤ [a1a2, T

∗] = 〈z1, z2〉, and z3 = a2
3 ∈ Fr(P ), z1 /∈ Fr(P ) by (5). By

Step 1, P � R1; let g ∈ R1 be such that gτ ∈ P .

By Lemma 3.5, there is α ∈ Aut(P ) of odd order, and x ∈ [a1a2, P ], such that
x /∈ Fr(P ) and [a1a2, α(x)] /∈ Fr(P ). Thus x ∈ {z1, z2}, and [a1a2, α(x)] ∈ {z1, z2}.
Set y = α(x) = [[X1, X2, X3]]τ

k, where Xi ∈ 〈Y,B〉 ∼= Q16 and k = 0, 1. Then
y2 = α(x2) = 1. The condition [a1a2, y] /∈ 〈z3〉 means that [A,X1] 6= [A,X2] (recall
a1a2 = [[A,A, I]] and A = Y 2), and thus X1 ∈ 〈Y 〉 or X2 ∈ 〈Y 〉 but not both. If k = 1,
then y2 = [[X1X2, X2X1, X

2
3 ]] = 1, which is impossible since X1X2 /∈ 〈Y 〉. Thus k = 0,

and y2 = [[X2
1 , X

2
2 , X

2
3 ]] = 1. Since X1 or X2 has order ≥ 4, this implies X2

i = −I for
each i = 1, 2, 3. Also, Xj ∈ 〈Y 〉 for j = 1 or 2, so Xj ∈ 〈A〉, and thus Xi ∈ 〈A,B〉 ∼= Q8

for each i = 1, 2, 3. We have now shown that y = y1y2y3, where yi ∈ 〈ai,bi〉r〈zi〉, and
where y1 ∈ 〈a1〉 or y2 ∈ 〈a2〉 but not both.

Thus [y, gτ ] ≡ [y, τ ] ≡ b1b2 (mod 〈a1, a2, a3〉). Since [y, P ] = α([x, P ]) = 〈α(z3)〉
has order 2 (recall x ∈ {z1, z2}), this implies z3 /∈ [y, P ], so [y, a3] = 1, and y3 ∈
〈a3〉. But then [y, gτ ] ≡ b1b2 (mod 〈a1, a2〉), hence it has order four, which again is
impossible since [y, P ] has order two. We conclude that a1a2 ∈ P .

Step 3: Assume P 6C T ∗. Set T1 = 〈z1, z3, a1a2, a3〉 ≤ P , and consider the extension

1 −−−→ R0/T1
=〈a1,b1,b2,b3〉∼=C4

2

−−−−−→ T ∗/T1 −−−−−→ T ∗/R0
=〈c,τ〉∼=C2

2

−−−→ 1.

We want to apply Lemma 1.9, with S = T ∗/T1 and S0 = R0/T1
∼= C4

2 , where we recall
R0 = 〈ai,bi | i = 1, 2, 3〉. Set P0 = P ∩R0. Since [〈a1,b1b2,b3〉, T ∗] ≤ T1 ≤ P ,

NT ∗(P ) ≥ T2
def
= 〈T1, a1,b1b2,b3〉 and hence [T2 : P ∩ T2] ≤ 2. (6)
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Recall, in the notation of Lemma 1.9, that m is the number of classes xR0 ∈ T ∗/R0

such that xR0 6= R0 and [x,R0] ≤ P0. Since [τ , R0/T1] = 〈b1b2T1〉, [c, R0/T1] = 〈a1T1〉,
and [cτ , R0/T1] = 〈a1b1b2T1〉,

m =
∣∣{a1,b1b2, a1b1b2} ∩ P

∣∣. (7)

At least one of the elements a1, b1b2, or a1b1b2 is in P0 by (6), so m ≥ 1.

By Lemma 1.9, we are left with the following cases, where g ∈ NR0(P )rP :

(b) rk(R0/P0) = 1, |P/P0| = 2, m = 1 , and P0 6C T ∗. By (7), P0 contains
exactly one of the elements a1, b1b2, or a1b1b2. Fix g ∈ {a1,b1b2} such that g /∈ P .
Let h ∈ {c, τ , cτ} be such that h ∈ PR0 (|PR0/R0| = |P/P0| = 2).

Since |R0/P0| = 2, at least one of the elements a1, b1, or a1b1 is in P0, and so
z1 = a2

1 = b2
1 = (a1b1)

2 ∈ Fr(P ). Since z3 = a2
3 ∈ Fr(P ), Fr(P ) ≥ 〈z1, z2〉.

By Lemma 3.5, there are elements r, s ∈ P such that s = α(r) for some α ∈ Aut(P ),
r ∈ [g, P ], r /∈ Fr(P ), and [g, s] /∈ Fr(P ). Since [g, P ] ≤ [g, T ∗] = 〈z1, a1a2〉 (recall g ∈
{a1,b1b2}), this means that r, [g, s] ∈ {ai1a

j
2 | i, j = ±1}. In particular, [r, P ] ≤ 〈z1, z2〉

has exponent two, so [s, P ] = α([r, P ]) also has exponent two.

Now, s ∈ PrR0 since [g,R0] ≤ [R0, R0] ≤ 〈z1, z2〉, and thus s = hs0 for some
s0 ∈ R0. Since |R0/P0| = 2 and g ∈ R0rP0, b1x ∈ P0 for some x ∈ 〈g〉. By the
previous paragraph, [hs0,b1x] ∈ [s, P ] has order at most 2. Set K = 〈z1, a1a2〉 C T ∗.
Then [s0,b1x] ∈ [R0, R0] ≤ K, [h, x] ∈ [T ∗, 〈a1,b1b2〉] ≤ K, and

[τ ,b1] = b2b
−1
1 , [c,b1] = (a1b1)b

−1
1 = a1, and [cτ ,b1] = (a2b2)b

−1
1 .

Thus [s,b1x] is in one of the cosets b1b2K, a1K, or b1a2b2K. All of the elements in
these cosets have order four, in contradiction with what was already shown. So this
case is impossible.

(c) rk(R0/P0) = 1, |P/P0| = 2, m = 3 , and P0 C T ∗. Since [c, τ ] = 1, this
would imply [T ∗, T ∗] = [R0, T

∗] ≤ P , and hence P C T ∗.

(e) rk(R0/P0) = 2, |P/P0| = 4, and m = 1 . By (6), [T2:P0 ∩ T2] ≤ 2, where
T2 = 〈T1, a1,b1b2,b3〉 has index two in R0. Since [R0:P0] = 4, this implies that P0 ≤ T2

with index two. Also, by (7), exactly one of the elements a1, b1b2, or a1b1b2 is in P0.
This leaves the following possibilities for P :

• (a1 ∈ P ) P = 〈T1, a1,b3x, cy, τz〉 for some x ∈ 〈b1b2〉 and y, z ∈ 〈b1,b2〉. We
take g = b1b2. In all of these cases, z1 = a2

1 and a1a2 ≡ [a1, τz] (mod 〈z1, z2〉)
are both in Fr(P ), and so [g, P ] ≤ 〈z1, a1a2〉 ≤ Fr(P ).

• (b1b2 ∈ P ) P = 〈T1,b1b2,b3x, cy, τz〉 for some x ∈ 〈a1〉 and y, z ∈ 〈a1,b1〉.
We take g = a1. Then (cy)2 ∈ P0 implies y ∈ 〈a1〉, and [cy, τz] ∈ P0 implies
z ∈ 〈a1〉. We can also arrange that y = 1 by replacing P by b1Pb−1

1 if nec-
essary. Then Fr(P ) always contains [c,b1b2] = a1a2. Since (b3a1)

2 = z2 and
[τa1,b1b2] = z2, [g, P ] ≤ 〈z1, a1a2〉 ≤ Fr(P ) if either x = a1 or z = a1. If
x = z = 1, then P = H1.

• (a1b1b2 ∈ P ) P = 〈T1, a1b1b2,b3x, cy, τz〉 for some x ∈ 〈a1〉 and y, z ∈ 〈a1,b1〉.
We take g = a1. Then (cy)2 ∈ P0 implies y ∈ 〈a1〉, and [cy, τz] ∈ P0 im-
plies z ∈ 〈a1〉. In all cases, Z(P/〈z1, z2〉) ≤ T1/〈z1, z2〉. Hence Z(P ) ≤
CT1(a1b1b2,b3x) = 〈z1, z2〉, and Z2(P ) ≤ T1. Thus [g, P ] ≤ 〈z1, a1a2〉 ≤
Z2(T

∗) ≤ Z2(P ) and [g, Z2(P )] = 1.

Thus in all cases except when P is conjugate to H1, P fails to be critical by (5).



SATURATED FUSION SYSTEMS OVER 2-GROUPS 55

This finishes Step 3: the only critical subgroups of T ∗ which are not normal are H1

and H2.

Step 4: It remains to handle the case where P C T ∗; i.e., where P has index 2 in
T ∗. Thus P contains

T ∗′ = [T ∗, T ∗] = 〈a1, a2, a3,b1b2〉
(recall [c,bi] = ai by (1)). Also, Fr(P ) ≥ L3(T

∗) = [[T ∗, T ∗], T ∗] = 〈z1, a1a2〉: z1 =
a2

1 ∈ Fr(P ), and a1a2 ≡ [a1, τ ] ≡ [a1, τc] ≡ [b1b2, c] (mod 〈z1, z3〉) (and one of
the elements c, τ , or τc must be in P ). For any g ∈ NT ∗(P )rP , [g, P ] ≤ T ∗′ and
[g, T ∗′] ≤ L3(T

∗) ≤ Fr(P ). Hence T ∗′ is not characteristic in P by (5).

Consider the group S of Lemma 6.4. Set x1 = b3, x2 = b3c, x3 = b1, and x4 = τ .
These have the property that x2

i ∈ L3(T
∗), the three commutators [xi, xi+1] form a basis

for T ∗′/L3(T
∗) ∼= C3

2 , and [xi, xj] = 1 when |i− j| ≥ 2. Hence there is an epimorphism
ϕ : T ∗ −−−→ S, defined by ϕ(xi) = gi, with Ker(ϕ) = L3(T

∗). By Lemma 6.4, either
Fr(P ) = T ∗′, in which case T ∗′ is characteristic and P is not critical; or P is one of the
groups

Ui = 〈T ∗′, xj | j 6= i〉 (1 ≤ i ≤ 4), U13 = 〈T ∗′, x1x3, x2, x4〉, U24 = 〈T ∗′, x1, x3, x2x4〉.

Of these six cases, U2 = R2, U3 = R4, U4 = R1, and U24 = R3. So it remains to show
that U1 and U13 are not critical.

If P = U13 = 〈a1, a2, a3,b1b2,b1b3,b3c, τ 〉, then Fr(P ) = 〈z1, a1a2, a1a3,b1b2〉.
Set H = 〈a1a2, a1a3〉 ∼= C2

4 . Thus is the unique abelian subgroup of index two in
Fr(P ), since any abelian subgroup not in H is contained in CFr(P )(g) = 〈z1, z2, g〉
for some g ∈ Fr(P )rH. Hence H is characteristic in P , and so is the subgroup
L3(T

∗) = 〈z1, a1a2〉, since it is the subgroup of elements in H which are inverted under
conjugation by b1b2. Also, Z(P/L3(T

∗)) = T ∗′/L3(T
∗) by Lemma 6.4 again, so T ∗′ is

also characteristic, and P is not critical.

If P = U1 = 〈a1, a2, a3,b1,b2,b3c, τ 〉, then Fr(P ) = 〈a1, a2,b1b2〉 again contains a
unique abelian subgroup H = 〈a1, a2〉 ∼= C2

4 of index two. So H and Ω1(H) = 〈z1, z2〉
are characteristic in P . Also, CP (H) = 〈a1, a2, a3,b3c〉 is characteristic, and since
(b3c)

2 = a1a2z3, 〈a1, a2, a3〉/〈z1, z2〉 is the 2-torsion subgroup of CP (H)/〈z1, z2〉. So
〈a1, a2, a3〉 is characteristic, T ∗′ = 〈Fr(P ), a1, a2, a3〉 is characteristic, and again P is
not critical. �

7.2 Automorphisms of critical subgroups

We first define automorphisms β∗1 , β
∗
2 , β

∗
3 , β

∗
4 ∈ Aut(T ∗) via the following table:

g a1 a2 a3 b1 b2 b3 c τ

β∗1(g) a1 a2 a3 b1 b2 b3 z3c τ

β∗2(g) a1 a2 a3 b1 b2 a3b3 c τ

β∗3(g) a1 a2 a3 z3b1 z3b2 b3 c τ

β∗4(g) a1 a2 a3 z3b1 z1b2 z2b3 c a1a2a3τ

Here, β∗1 and β∗3 are automorphisms since they have the form β∗i (g) = g·ϕi(g) for some
ϕi ∈ Hom(T ∗, Z(T ∗)); and β∗2 |R2 and β∗4 |R1 are automorphisms for similar reasons. One
easily checks that β∗2([c, g]) = [c, β∗2(g)] for all g ∈ R2, and hence that β∗2 ∈ Aut(T ∗). As
for β∗4 , since (a1a2a3τ )2 = τ 2 = 1, the only tricky point to check is that for i = 1, 2, 3
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(and taking indices modulo 3, so that τbiτ
−1 = b−i):

[a1a2a3τ , β
∗
4(bi)] = [a1a2a3τ , zi−1bi] = ca1a2a3(z−i+1b−i)·(zi−1bi)

−1

= (z−i+1z−ib−i)(zi−1bi)
−1 = z−i−1zi−1b−ib

−1
i = β∗4(b−ib

−1
i ) = β∗4([τ ,bi]).

We will show in Lemma 7.4 that Out(T ∗) ∼= C4
2 with the elements [β∗1 ], . . . , [β

∗
4 ] as

generators.

Next let γ ∈ Aut(R1) be the automorphism of order 3 where γ([[R,S, T ]]) = [[T,R, S]]
for R,S, T ∈ Q16. Thus γ(ai) = ai+1 and γ(bi) = bi+1, with indices taken modulo 3,
and γ(c) = c. For all i = 1, 2, 3, 4, set

βi = β∗i |R1 and β′i = γβiγ
−1.

Thus β′4 = β4. We will see in the next lemma that as subgroups of Out(R1), 〈[βi], [β′i]〉 ∼=
C2

2 for i = 1, 2, 3, 〈[β4]〉 = 〈[β′4]〉 ∼= C2, and each of these is normalized by γ.

For use in the following lemma, we define Qi = 〈ai,bi〉 ≤ T ∗ for i = 1, 2, 3. Thus
Q1
∼= Q2

∼= Q3
∼= Q8, R0 = Q1Q2Q3, the Qi commute pairwise with each other, and

the inclusions Qi ≤ R0 define an isomorphism R0
∼= (Q8)

3/C2. Also, we set

Aut0(R0) =
{
α ∈ Aut(R0)

∣∣α|Z(R0) = Id
}

and Out0(R0) = Aut0(R0)/Inn(R0).

Lemma 7.4. (a) If P ≤ T ∗ and P ∼= R0, then P = R0.

(b) Each α ∈ Aut0(R0) sends each of the subgroups QiZ(R0) (i = 1, 2, 3) to itself.

(c) Out0(R0) ∼= (Σ4)
3, and Out(R0) = Out0(R0) o 〈[γ], cτ 〉 ∼= Σ4 o Σ3. The identifica-

tion of Σ4 with the group of automorphisms of QiZ(R0) ∼= Q8 × C2 which are the
identity on its center is induced by the action of this automorphism group on the
set of the four subgroups of QiZ(R0) isomorphic to Q8.

(d) Out(R1) = 〈[β1], [β2], [β3], [β4], [β
′
1], [β

′
2], [β

′
3]〉o〈[γ], cτ 〉 ∼= C7

2oΣ3. The conjugation
action in Out(R1) of 〈[γ], cτ 〉 ∼= Σ3 on 〈[βi], [β′i]〉 ∼= C7

2 is the following: [cτ , [βi]] =
1 for all i; [[γ], [β4]] = 1; and for i = 1, 2, 3, γβiγ

−1 = β′i and γβ′iγ
−1 ≡ cτβ

′
ic
−1
τ ≡

βiβ
′
i (mod Inn(R1)).

(e) For k = 2, 3, restriction to R0 induces an isomorphism

Out(Rk)
∼=−−−−−−→ COut0(R0)(OutRk

(R0)) ∼=

{
Σ4 × Σ4 if k = 2

Σ4 × C2
2 if k = 3.

(f) Out(T ∗) = 〈[β∗1 ], [β∗2 ], [β∗3 ], [β∗4 ]〉 ∼= C4
2 . Every automorphism of R1 which commutes

with cτ in Out(R1) extends to an automorphism of T ∗, and every automorphism in
Aut0(R0) which commutes with cτ and cc in Out(R0) extends to an automorphism
of T ∗.

Proof. (a) Let P ≤ T ∗ be any subgroup isomorphic toR0. Set A = 〈a1, a2, a3, c〉 ∼= C3
4 .

For each H C R0, either 〈z1, z2〉 ≤ H and R0/H is elementary abelian; or zi /∈ H for
some i, Qi ∩H = 1, and so R0/H contains a subgroup ∼= Q8. Hence for each H C P ,
either H ≥ Z(P ) and P/H is elementary abelian, or P/H contains a subgroup ∼= Q8.
WhenH = P∩A, then P/H ∼= PA/A is contained in T ∗/A ∼= C2×D8 (Lemma 7.1(a)),
which contains no subgroup isomorphic to Q8. We conclude that Z(P ) ≤ H ≤ A, and
PA/A is elementary abelian. Also, P � A, since R0 contains no subgroup C3

4 . Thus
PA/A ∼= Ck

2 , k ≤ 3 since T ∗/A ∼= C2×D8, |P ∩A| = 28−k ≤ 25; and hence k = 3 and
P ∩A ∼= C2

4 × C2.
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Thus either PA/A = 〈b1,b2,b3〉 or PA/A = 〈b1b2,b3, τ 〉. In either case, b3g ∈ P
for some g ∈ A. Hence Z(P ) ≤ CA(b3g) = CA(b3) = 〈a1, a2〉, and so Z(P ) =
〈z1, z2〉 = Z(R0) since it is 2-torsion. Thus P ≤ CT ∗(〈z1, z2〉) = R1. Also,

R1/Z(R0) = 〈a1, a2, a3, c,b1,b2,b3〉/Z(R0) = (R0/Z(R0))·〈c〉 ∼= C6
2oC2,

and c acts on R0/Z(R0) centralizing only 〈a1, a2, a3〉. Hence R0/Z(R0) is the unique
elementary abelian subgroup of rank six in R1/Z(R0), so P = R0, and this proves (a).

(b) Fix α ∈ Aut0(R0). Since (α(a1))
2 = α(a2

1) = z1, either α(a1) ∈ Q1Z(R0), or
α(a1) = x2x3 for some xi ∈ Qi (i = 2, 3) of order 4. In this last case, [x2x3,Qi] =
[xi,Qi] = 〈zi〉 for i = 2, 3, so [α(a1), R0] = Z(R0). This is impossible, since [a1, R0] =
〈z1〉 has order two, and we conclude that α(a1) ∈ Q1Z(R0). Similar arguments show
that α(ai), α(bi) ∈ QiZ(R0) for each i = 1, 2, 3, and thus α(Qi) ≤ QiZ(R0).

(c) By (b), each α ∈ Aut0(R0) leaves invariant each of the subgroups QiZ(R0) for
i = 1, 2, 3. The image of Out0(R0) under the projection to Aut(R0/Z(R0)) is thus the
group of automorphisms of C2

2 ×C2
2 ×C2

2 which send each factor to itself, and hence is
isomorphic to (Σ3)

3. The group of automorphisms of R0 which induce the identity on
R0/Z(R0) (and hence also on Z(R0)) is isomorphic to Hom(R0/Z(R0), Z(R0)) ∼= C12

2 ,
and this group contains Inn(R0) ∼= R0/Z(R0) ∼= C6

2 . We thus have an extension

1 −−−→ C6
2 −−−−−→ Out0(R0) −−−−−→ Σ3 × Σ3 × Σ3 −−−→ 1.

In particular, |Out0(R0)| = 26·63 = 243.

We now make this more explicit. For each i = 1, 2, 3, define

Qi1 = Qi = 〈ai,bi〉, Qi2 = 〈aizj,bi〉, Qi3 = 〈ai,bizj〉, Qi4 = 〈aizj,bizj〉

for any j 6= i; these are the four subgroups of QiZ(R0) isomorphic to Q8. Let

ω : Out0(R0)
∼=−−−−−→ Σ4 × Σ4 × Σ4

be the isomorphism which sends [α], for α ∈ Aut0(R0), to the triple of permutations
of the Qik induced by α. Thus, for example,

ω(β2|R0) =
(
I, I, (2 4)

)
ω(β′2|R0) =

(
(2 4), I, I

)
ω(β3|R0) =

(
(1 3)(2 4), (1 3)(2 4), I

)
ω(β′3|R0) =

(
I, (1 3)(2 4), (1 3)(2 4)

)
ω(β4|R0) =

(
(1 3)(2 4), (1 3)(2 4), (1 3)(2 4)

)
ω(cc) =

(
(2 4), (2 4), (2 4)

)
.

If α is such that [α] ∈ Ker(ω), then α sends each Qi to itself via the identity modulo
Z(Qi) = 〈zi〉. Thus α|Qi

∈ Inn(Qi) for each i, and α ∈ Inn(R0). We conclude that ω is
injective, and hence an isomorphism since the source and target both have order 243.

Since 〈γ|Z(R0), cτ |Z(R0)〉 = Aut(Z(R0)), Aut(R0) = Aut0(R0) o 〈γ, cτ 〉, and similarly

for Out(R0). Hence ω extends to an isomorphism Out(R0)
∼=−−−→ Σ4 o Σ3; for example,

by regarding Σ4 o Σ3 as a group of permutations of the twelve subgroups Qik.

(d) By Lemma 1.2 (and by (a)), there is an exact sequence

1 −−−→ H1(R1/R0;Z(R0))
η−−−−−→ Out(R1)

ResR0−−−−−−−→ COut(R0)(〈cc〉)
/
〈cc〉. (8)

Since [c, Z(R0)] = 1, H1(R1/R0;Z(R0)) = Hom(〈c〉, Z(R0)) ∼= (Z/2)2. Hence Im(η) =
〈[β1], [β

′
1]〉: since [β1] = η(c 7→ z3) (recall β1(c) = z3c and β1|R0 = Id), and similarly
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[β′1] = η(c 7→ z1). From the above table of values of ω(−), we see that

COut0(R0)(cc) = ω−1
(
{(σ1, σ2, σ3) |σi ∈ 〈(1 3), (2 4)〉}

)
= 〈β2|R0 , β

′
2|R0 , β3|R0 , β

′
3|R0 , β4|R0 , cc〉 ∼= C6

2 .

Hence COut(R0)(cc)/〈cc〉 ∼= C5
2oΣ3 is generated by the classes of the restrictions of the

βi (i = 2, 3, 4), β′i (i = 2, 3), γ, and cτ (recall 〈γ, cτ 〉 ∼= Σ3). So by (8), Out(R1) is
generated by these elements together with [β1] and [β′1].

In particular, this shows that the subgroup A = 〈a1, a2, a3, c〉 is characteristic in R1

(in fact, it is the only subgroup of T ∗ isomorphic to C3
4). So by Lemma 1.2 again, there

is an exact sequence

1 −−−→ H1(R1/A;A) −−−−−→ Out(R1)
ResA−−−−−→ NAut(A)(AutR1(A))/AutR1(A) ,

where ResA is induced by restriction to A. Hence Ker(ResA) = 〈β2, β3, β4, β
′
2, β

′
3〉 is

abelian and normal in Out(R1). Since 〈β1, β
′
1〉 is also normal and abelian, this proves

that the subgroup of Out(R1) generated by all seven automorphisms βi and β′i is abelian
and normal. Also, this subgroup has exponent two: (β2)

2 = ca3 , (β′2)
2 = ca1 , and the

others have order 2 in Aut(R1).

Thus Out(R1) ∼= C7
2oΣ3. The description of the action of 〈γ, cτ 〉 ∼= Σ3 on the normal

subgroup 〈βi, β′i | 1 ≤ i ≤ 4〉 ∼= C7
2 follows from the splitting of this group as a product

of two normal subgroups, together with the fact that the factor 〈β2, β3, β4, β
′
2, β

′
3〉 is

sent injectively to (Σ4)
3 via ω.

(e) Fix k = 2, 3. Set x2 = τ and x3 = cτ , so Rk = 〈R0, xk〉. Then R0 is characteristic
in Rk by (a), and Z(R0) = 〈z1, z2〉 is free as an module over OutRk

(R0) = 〈cxk
〉. By

Corollary 1.3, restriction to R0 induces an isomorphism

Out(Rk)
ResR0−−−−−−−→∼=

COut(R0)(〈cxk
〉)

/
〈cxk
〉.

When k = 2 and xk = τ , then cτ ∈ Out(R0) is the element which exchanges two of
the factors Σ4. Hence

Out(R2) ∼= COut(R0)(cτ )/〈cτ 〉 ∼= COut0(R0)(cτ ) ∼=
{
(α, α, β)

∣∣α, β ∈ Σ4

} ∼= Σ4 × Σ4 .

When k = 3 and xk = cτ , then the image of ccτ ∈ Out(R0) in Σ4 oΣ3 is the product
of the triple ω(c) =

(
(2 4), (2 4), (2 4)

)
with the transposition of the first two factors

Σ4. Thus

Out(R3) ∼= COut(R0)(ccτ )/〈ccτ 〉 ∼= COut0(R0)(ccτ )

∼=
{
(α, (2 4)α(2 4), β)

∣∣α ∈ Σ4, β ∈ 〈(1 3), (2 4)〉
} ∼= Σ4 × C2

2 .

(f) Now, T ∗/R1 = 〈τ 〉 ∼= C2, and cτ acts on Z(R1) = 〈z1, z2〉 by exchanging z1 and
z2. So by Corollary 1.3, restriction to R1 induces an isomorphism

Out(T ∗) ∼= NOut(R1)(OutT ∗(R1))/OutT ∗(R1) = COut(R1)(cτ )/〈cτ 〉 .
By (d), this centralizer is generated by the βi and cτ , and so Out(T ∗) ∼= C4

2 is generated
by the β∗i . This also proves that every automorphism of R1 which commutes with cτ
in Out(R1) extends to T ∗.

Finally, if β ∈ Aut0(R0) is such that [β] commutes with cτ and cc, then by the
computations of ω(−) in the proof of (c), ω([β]) = (σ1, σ2, σ3) where σ1 = σ2 and
σi ∈ 〈(1 3), (2 4)〉. Hence [β] is in the subgroup generated by the classes of β2|R0 , β3|R3 ,
β4|R0 , and cc, and so β extends to an automorphism of T ∗. �
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For i = 1, 2, 3, let ηi ∈ Aut0(R0) denote the automorphism of order 3: ηi(ai) = bi,
ηi(bi) = aibi, and ηi fixes aj and bj for j 6= i. Also, set γ0 = γ|R0 : the automorphism
which permutes the subgroups 〈ai,bi〉 cyclically. Thus 〈[η1], [η2], [η3]〉 ∼= C3

3 is a Sylow
3-subgroup of Out0(R0), and 〈[η1], [η2], [η3], [γ0]〉 ∼= C3 o C3 is a Sylow 3-subgroup of
Out(R0).

Define η
(2)
12 , η

(2)
3 ∈ Aut(R2) by setting

η
(2)
12 |R0 = η1η2, η

(2)
3 |R0 = η3, and η

(2)
12 (τ ) = η

(2)
3 (τ ) = τ .

These are well defined automorphisms since η1η2 and η3 both commute with cτ in
Aut(R0).

Let η(3) ∈ Aut(R3) be any automorphism such that η(3)|R0 = η1η
−1
2 . The existence

of such an automorphism, and its uniqueness modulo Inn(R3), follows from Lemma
7.4(e) once we check that ccτ commutes with η1η

−1
2 in Out(R0). Since each of the

automorphisms η1η
−1
2 and ccτη1η

−1
2 c−1

cτ sends each subgroup Qi to itself, it suffices to
show that they induce the same maps on each group Qi/〈zi〉, and this is easily checked.

Alternatively, under the explicit isomorphism ω : Out0(R0)
∼=−−−→ (Σ4)

3 defined in the
proof of Lemma 7.4, they are both sent to

(
(4 3 2), (2 3 4), I

)
. In fact, by a direct (and

long) computation, one can show that η(3) can be chosen such that η(3)(cτ ) = ca−1
1 b2τ ,

but that will not be needed here.

Proposition 7.5. Let F be a saturated fusion system over T ∗ for which R1 is F-
essential. Then |OutF(R0)| = 4·3n for some 1 ≤ n ≤ 4, and we say F has “Type
n”. Also, F is isomorphic to a fusion system F ′ over T ∗ for which the automorphism
groups OutF ′(Ri) (i = 0, 1, 2, 3) are as described in the following table:

OutF ′(R0) OutF ′(R1) OutF ′(R2) OutF ′(R3)

Type 1 〈cc, [γ0], cτ 〉 〈[γ], cτ 〉 〈cc〉 〈cc〉
Type 2 〈[η1η2η3], cc, [γ0], cτ 〉 〈[γ], cτ 〉 〈[η(2)

12 η
(2)
3 ], cc〉 〈cc〉

Type 3 〈[η1η
−1
2 ], [η2η

−1
3 ], cc, [γ0], cτ 〉 〈[γ], cτ 〉 〈[η(2)

12 η
(2)
3 ], cc〉 〈[η(3)], cc〉

Type 4 〈[η1], [η2], [η3], cc, [γ0], cτ 〉 〈[γ], cτ 〉 〈[η(2)
12 ], [η

(2)
3 ], cc〉 〈[η(3)], cc〉

If F has type 1 or 2, then V
def
= 〈z1, z2, a1a2a3,b1b2b3〉 is OutF ′(R0)-invariant.

Proof. Since OutT ∗(R1) = 〈cτ 〉 ∈ Syl2(OutF(R1)) intersects trivially with O2(Out(R1))
by Lemma 7.4(d), OutF(R1) is sent injectively under projection to the quotient group
Out(R1)/O2(Out(R1)) ∼= Σ3; and since R1 is F -essential, it is sent isomorphically.
Thus

Out(R1) = O2(Out(R1))·OutF(R1) = O2(Out(R1))·〈[γ], cτ 〉.
So by Proposition 1.8, and since O2(Out(R1)) is abelian by Proposition 7.4(d), there
is β1 ∈ O2(Aut(R1)) which commutes in Out(R1) with cτ and such that OutF(R1) =
〈[β1γβ

−1
1 ], cτ 〉. Any such β1 extends to an automorphism β of T ∗ by Lemma 7.4(f).

So upon replacing F by β−1Fβ, we can assume OutF(R1) = 〈[γ], cτ 〉. In particular,
γ0 ∈ AutF(R0).

Consider the following subgroups of Out(R0):

Q = O2(Out(R0)), H0 = 〈cc, cτ , [γ0]〉, Ĥ = 〈[η1], [η2], [η3], H0〉;

H∗ = OutF(R0) ≥ H0, and H = H∗Q ∩ Ĥ.
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By Lemma 7.4(c), Out(R0)/Q ∼= Σ3 oΣ3, and hence 〈Q, [η1], [η2], [η3], [γ0]〉/Q is its only
Sylow 3-subgroup which contains the class of γ0. Since [γ0] ∈ OutF(R0) = H∗, H∗ is

generated by H0 together with its Sylow 3-subgroup, and hence is contained in ĤQ.

Thus H∗Q ≤ ĤQ, and so H∗Q = HQ. We are now in the situation of Proposition 1.8:
there is ϕ0 ∈ Aut(R0) such that [ϕ0] ∈ CQ(H0) and ϕ0H

∗ϕ−1
0 = H. By Lemma 7.4(f),

ϕ0 extends to some ϕ ∈ Aut(T ∗). So upon replacing F by ϕFϕ−1, we can arrange that

〈cc, cτ , [γ0]〉 ≤ OutF(R0) = H ≤ Ĥ = 〈cc, cτ , [η1], [η2], [η3], [γ0]〉.

The only proper γ0-invariant subgroups of 〈[η1], [η2], [η3]〉 ∼= C3
3 are 〈[η1η

−1
2 ], [η2η

−1
3 ]〉

and 〈[η1η2η3]〉. Hence OutF(R0) must now be one of the four groups listed in the
above table. Also, for i = 2, 3, OutF(Ri) is determined by OutF(R0) as described in
that table: for each β ∈ AutF(R0) such that [β] is OutRi

(R0)-invariant, β extends to
an element β∗ ∈ Aut(Ri) (unique modulo Inn(Ri)) by Proposition 7.4(e), and β∗ ∈
AutF(Ri) by the extension axiom. The last statement (about the subgroup V ) follows
since V is normal in T ∗, and is left invariant by γ0 and by η1η2η3. �

We next look at automorphisms of Q, and of the subgroups R4 and Hi which contain

Q. Set Q = Q/Z(Q) for short. Let q : Q −−−→ F2 be the quadratic form where for any

x̄ = xZ(Q) ∈ Q, q(x̄) = 0 if x2 = 1 and q(x̄) = 1 if x2 = z3. Since Inn(Q) is the group

of all automorphisms of Q which are the identity modulo Z(Q), Out(Q) ∼= GO(Q, q).

We want to choose an explicit isomorphism Out(Q) ∼= GO+
6 (2) ∼= Σ8. Let Pe(8) be

the group of subsets of even order in 8 = {1, 2, . . . , 8}, regarded as an F2-vector space
with addition given by symmetric difference X + Y = ((XrY ) ∪ (YrX)). Let q be
the quadratic form on Pe(8)/〈8〉 defined by q(X) = 1

2
|X|, associated to the bilinear

form b(X,Y ) = |X ∩ Y |. The induced action of Σ8 on Pe(8)/〈8〉 preserves the form,
and thus defines a homomorphism Σ8 −−−→ SO(Pe(8)/〈8〉, q) which is injective by the
simplicity of A8 and hence an isomorphism by counting.

Define κ : Q −−−→ Pe(8)/8 by setting

κ(a1a2) = {34}, κ(a3) = {56}, κ(z1) = {1234} = {5678},
κ(b1b2) = {24}, κ(b3) = {57} κ(τ ) = {1567} = {2348} .

This is motivated by the homomorphism ρ : T ∗ −−−→ Ω7(3) defined at the beginning
of the section: ρ(Q) is the group of diagonal matrices, and κ sends the class of g ∈ Q
to the set of positions where ρ(g) has (−1) on the diagonal. So assuming ρ lifts to a
homomorphism T ∗ −−−→ Spin7(3), κ preserves the quadratic forms by standard com-
mutator and squaring relations in the spinor groups (cf. [LO, Lemma A.4]). However,
it is much easier to check this directly, by comparing values of the quadratic forms and
associated bilinear forms on the basis used above to define κ.

Thus κ induces an isomorphism

χQ : Out(Q) ∼= GO(Q, q)
κ∗−−−−−−→∼=

GO(Pe(8)/8; q)
∼=←−−−−− Σ8.

To simplify notation, we also regard χQ as a homomorphism on Aut(Q).

The images under χQ of automorphisms in OutT ∗(Q), and also of the restrictions of

η
(2)
12 , η

(2)
3 ∈ Aut(R2), are given in the following table:

α ca1 cc cb1 η
(2)
12 |Q η

(2)
3 |Q

χQ(α) (1 2)(3 4) (3 4)(5 6) (1 3)(2 4) (2 3 4) (5 7 6)
(9)
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For example, ca1 sends b1b2 to z1b1b2, sends τ to a1a
−1
2 τ = a1a2z2τ , and sends all

of the other generators listed above to themselves. Hence χQ(ca1) ∈ Σ8 sends {24} to
{13}, sends {1567} to κ(z1a1a2τ ) = {2567} (note z2 ≡ z1 (mod Z(Q))), and sends
each of {34}, {56}, {57}, and {1234} to itself. So χQ(ca1) = (1 2)(3 4).

We now apply this to describe the automorphisms of R4. In order to “see” better
the symmetry of this subgroup, we give it the following, alternative description.

Define

S′ =
〈
z, r1, r2, r3, s1, s2, s3

∣∣ z2 = 1, r4
i = z, s2

i = z, siris
−1
i = r−1

i ;

[ri, rj] = 1, [si, rj] = 1, [si, sj] = z for all i 6= j
〉

Thus S′ is generated by the three subgroups 〈ri, si〉 ∼= Q16 (i = 1, 2, 3), which intersect
in Z(S′) = 〈z〉, and whose cyclic subgroups of order 8 commute with each other. This
“twisted” product corresponds to the lifting to Spin7(9) of three copies of GO−

2 (3) ∼= D8

in SO7(3) ≤ Ω7(9).

Define an embedding ψ : R4 −−−→ S′ by setting

ψ(a1) = r−1
1 r2 ψ(a2) = r1r2 ψ(a3) = r2

3 ψ(c) = r2r3

ψ(b1b2) = r2
1r

2
2s1s2 ψ(b3) = s3 ψ(τ ) = r2

3s1 .

Thus

ψ(R4) = 〈r2
1, r1r2, r1r3, s1, s2, s3〉 and ψ(Q) = 〈r2

1, r
2
2, r

2
3, s1, s2, s3〉.

Also, ψ([[Y i, Y j, Y k]]) = r
(j−i)/2
1 r

(j+i)/2
2 rk3 whenever i ≡ j ≡ k (mod 2); and

s1 = ψ(a−1
3 τ ), s2 = ψ(z1a3b1b2τ ) = ψ(b1(a

−1
3 τ )b−1

1 ), and s3 = ψ(b3).

To simplify notation, we identify elements of R4 with their images under ψ. Thus

κ(r2
1) = {12}, κ(r2

2) = {34}, κ(r2
3) = {56},

κ(s1) = {17}, κ(s2) = {37}, κ(s3) = {57}.

Define ε1, ε2, ε3, θ1, θ2, ξ ∈ Aut(R4) to be the restrictions of the automorphisms of S′
defined in the following table, where, σ, τ ∈ Σ3 are the permutations σ = (1 2 3) and
τ = (1 2); and δij = 1 if i = j and 0 if i 6= j:

α εj(j = 1, 2, 3) θ1 θ2 ξ cb1a1a2

α(ri) zδijri ri ri rσ(i) rτ(i)

α(si) si r2
i si r2

1r
2
2r

2
3si sσ(i) sτ(i)

χQ(α|Q) Id (1 2)(3 4)(5 6) (7 8) (1 3 5)(2 4 6) (1 3)(2 4)

(10)

Lemma 7.6. Out(R4) =
(
〈[ε1], [ε2]〉o〈[ξ], cb1〉

)
×〈[θ1], [θ2]〉 ∼= Σ4×C2

2 , where ε1ε2ε3 =
IdR4. If F is a saturated fusion system over T ∗ and R4 is F-essential, then OutF(R4)
is one of the groups 〈[ξ], cb1〉 or 〈[ε3ξε

−1
3 ], cb1〉, both isomorphic to Σ3. In either case,

the image under χQ of the restriction to Q of AutF(R4) is generated by χQ(OutT ∗(Q))
and (1 3 5)(2 4 6).

Proof. By Lemma 7.1(b), each automorphism of R4 leaves Q invariant. Hence by
Lemma 1.2, there is an exact sequence

1 −−−→ H1(R4/Q;Z(Q))
η−−−−→ Out(R4)

ResQ−−−−→ NOut(Q)(OutR4(Q))/OutR4(Q).
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Also, since R4/Q = 〈r1r2, r2r3〉 ∼= C2
2 and Z(Q) = 〈z〉 ∼= C2,

H1(R4/Q;Z(Q)) ∼= Hom(R4/Q, Z(Q)) ∼= C2
2 ,

and η sends a homomorphism ϕ to the class of the automorphism (g 7→ g·ϕ(gQ)).
Thus Ker(ResQ) = 〈[ε1], [ε2]〉.

By (9), χQ(OutR4(Q)) = 〈(1 2)(3 4), (3 4)(5 6)〉. The normalizer of this subgroup
is the group of all permutations which leave {7, 8} invariant, and permute the three
subsets {1, 2}, {3, 4}, {5, 6}. Hence

NOut(Q)(OutR4(Q))/OutR4(Q) ∼= Σ3 × C2
2 ,

where the direct factor C2
2 is represented by the permutations (1 2)(3 4)(5 6) = χQ(θ1)

and (7 8) = χQ(θ2) (see (10)). Also, (1 3 5)(2 4 6) = χQ(ξ) and (1 3)(2 4) = χQ(cb1)
represent generators of the first factor. This proves that ResQ in the above exact
sequence is onto, and also shows that Out(R4) is generated by the classes of ε1, ε2, θ1,
θ2, ξ, and cb1 .

The exact structure of this extension follows from (10) (and the relation ε1ε2ε3 =
Id). Also, 〈θ1, θ2〉 is the subgroup of elements which restrict to the identity on A =
〈a1, a2, a3, c〉 = 〈r2

1, r1r2, r1r3〉, and hence is normal in Out(R4). Thus the subgroup
〈[ε1], [ε2], [θ1], [θ2]〉 in Out(R4) is elementary abelian, and 〈[ξ], cb1〉 ∼= Σ3 permutes the
three involutions εi and acts trivially on 〈[θ1], [θ2]〉.

If R4 is F -essential for some saturated fusion system F over T ∗, then OutF(R4) =
〈α, cb1〉 ∼= Σ3 for some α ∈ 〈[ε1], [ε2], [ξ], cb1〉 ∼= Σ4 of order three which is normalized
by cb1 . Any transposition in Σ4 normalizes exactly two subgroups of order 3, and in
this case, these are easily seen to be the subgroups 〈[ξ]〉 and 〈[ε3ξε

−1
3 ]〉. �

It remains to examine the outer automorphism groups of the Hi.

Lemma 7.7. (a) For i = 1, 2, or 3, let α, α′ ∈ Aut(Hi) be two automorphisms of
order three such that χQ(α|Q) = χQ(α′|Q) in Out(Q). Then [α] = [α′] in Out(Hi).

(b) If F is a saturated fusion system over T ∗ and H1 and H2 are F-essential, then
OutF(Hi) = 〈[αi], cc〉 ∼= Σ3 (i = 1, 2) for some αi ∈ Aut(Hi) of order 3 such that
χQ(α1|Q) = (1 2x) and χQ(α2|Q) = (3 4x) for the same x = 7 or 8.

Proof. Set x1 = c, x2 = a1c, and x3 = a1; thus Hi = 〈Q, xi〉 for i = 1, 2, 3. For
each such i, Q is characteristic in Hi by Lemma 7.1(b), so there is a well defined
homomorphism

Resi : Out(Hi) −−−−→ COut(Q)(cxi
)/〈cxi

〉
induced by restriction, and Ker(Resi) ∼= H1(Hi/Q;Z(Q)) ∼= H1(C2; Z/2) has order 2
(Lemma 1.2). In particular, for any [α] ∈ Out(Q) of order three which centralizes cxi

,
its class in the quotient lifts to at most one element of order three in Out(Hi), and this
proves (a).

By (9), χQ(cxi
) = (3 4)(5 6) (i = 1), (1 2)(5 6) (i = 2), or (1 2)(3 4) (i = 3). Thus

COut(Q)(cxi
)/〈cxi

〉 ∼= C2
2 ×Σ4 in all three cases, and |Out(Hi)| = 2k or 3·2k for some k.

By the Sylow axiom, for each i, |OutF(Hi)| = 2 or 6. So if H1 and H2 are F -essential,
then for i = 1, 2, OutF(Hi) = 〈[αi], cx3〉 ∼= Σ3 for some αi ∈ Aut(Hi) of order 3 such
that

[
[αi|Q], cxi

]
= 1 in Out(Q). Thus χQ(α1|Q) commutes with χQ(cx1) = (3 4)(5 6) in

Σ8, and is also normalized by χQ(cx3) = (1 2)(3 4). This is possible only if χQ(α1|Q) =
(1 2x) for x = 7 or 8. Since H2 = b1H1b

−1
1 , and χQ(cb1) = (1 3)(2 4) by (9) again, we

can choose α2 = cb1α1c
−1
b1

, in which case χQ(α2|Q) = (3 4x). This proves (b). �
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In fact, the homomorphisms Resi in the above proof are surjective, and hence
|Out(Hi)| = 3·26. This can be shown for i = 3 by checking that COut(Q)(ca1)/〈ca1〉
is generated by restrictions of automorphisms of R2 (those which leave H3 invariant).
It then follows for i = 1, 2 since ξ ∈ Aut(R4) permutes transitively the Hi. However,
this will not be needed here.

7.3 Fusion systems over T ∗

We are now ready to list the saturated fusion systems over T ∗.

Theorem 7.8. Every nonconstrained centerfree fusion system over T ∗ is isomorphic
to the fusion system of Sol(3), Co3, or Aut(PSp6(3)).

Proof. Let F be a nonconstrained fusion system over T ∗ such that z3 is not central
in F . By Lemma 7.4(f), Out(T ∗) is a 2-group, and hence OutF(T ∗) = 1. So by
Proposition 7.3, all fusion in F is generated by fusion in R1, R2, R3, R4, H1, and H2.
Since each of these except R1 has center 〈z3〉, R1 must be F -essential, since otherwise
z3 would be central in F .

By Proposition 7.5, there is a fusion system F ′ over T ∗ isomorphic to F , such
that that the groups OutF ′(Ri) for i = 0, 1, 2, 3 are as in one of the four cases listed
there. Assume for simplicity F ′ = F . Then OutF(R1) = 〈[γ], cτ 〉, OutF(R2) ≤
〈[η(2)

12 ], [η
(2)
3 ], cc〉, and OutF(R0) determines OutF(R2) and OutF(R3).

If all F -essential subgroups contain R0, then R0 must be normal in F (Lemma
7.4(a)), which would contradict the assumption that F is nonconstrained. Hence either
R4, or H1 and H2, are also F -essential. (Recall that H1 and H2 are conjugate in T ∗.)
If R4 is essential, then H1, H2, and H3 are all F -conjugate by Lemma 7.6, since ξ and
ε3ξε

−1
3 both permute them transitively. Since H3 C T ∗, this implies neither H1 nor H2

is fully normalized in F , and hence neither is F -essential.

The cases where R4 is F -essential will be handled in Step 1, and the cases where H1

and H2 are F -essential in Step 2. Afterwards, the distinct (possible) fusion systems
found in those two steps will be identified in Step 3.

Step 1: Assume R4 is F -essential. The automorphisms ξ, ε3 ∈ Aut(R4) both leave
invariant the subgroup

V = 〈z1, z2, a1a2a3,b1b2b3〉 = 〈z, r2
1r

2
2, r

2
1r

3
3, s1s2s3〉 ∼= C4

2 ,

and hence OutF(R4) leaves leaves V invariant by Lemma 7.6. Since we are assuming
F is not constrained, V is not normal in F , and this implies OutF(R0) does not leave
V invariant. So F must be of Type 3 or 4 by Proposition 7.5.

By Lemma 7.6 again, OutF(R4) is one of the two groups 〈[ξ], cb1〉 or 〈[ε3ξε
−1
3 ], cb1〉. So

we are reduced to at most four different possibilities for F . We claim that OutF(R4) =
〈[ε3ξε

−1
3 ], cb1〉 is the only possibility, given our choice of AutF(R1). This is closely re-

lated to [LO2, Lemma 1.2] (and to the error in [LO] which made a correction necessary),
but we give a more direct argument here. Consider the subgroup A = 〈a1, a2, a3, c〉 ∼=
C3

4 of Lemma 7.1(a). For each α ∈ Aut(A), let M(α) ∈ GL3(Z/4) be the matrix for
α with respect to the ordered basis {a1, a2, c}. Note that AutF(A) is generated by
restrictions of automorphisms in AutF(R4) and in AutF(R1) = 〈Inn(R1), γ, cτ 〉. Then

M(ξ) =
( −1 0 −1
−1 0 0
1 1 1

)
, M(ε3ξε

−1
3 ) =

(
1 2 −1
1 2 0
1 1 1

)
, M(γ) =

(
0 −1 0
1 −1 0
0 2 1

)
, M(ξγ) =

(
0 −1 −1
0 1 0
1 0 1

)
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(where we drop “|A” to simplify the notation); and M((ξγ)3) =
( −1 0 0

0 1 0
0 2 −1

)
≡ Id (mod

2). Since this has order two, (ξγ)3 must be conjugate in Aut(A) to some element of the
Sylow 2-subgroup AutT ∗(A) = 〈cb1 , cb2 , cb3 , cτ 〉. But this is impossible, since the only
element of AutT ∗(A) which is the identity modulo 2 is cb1b2b3 , and M(cb1b2b3) = −Id.
So ξ and γ cannot both be in AutF(A), and thus OutF(R4) = 〈[ε3ξε

−1
3 ], cb1〉. (In fact,

(ε3ξε
−1
3 γ|A)3 = 1.)

Thus F must be isomorphic to one of two fusion systems, which we denote F1 (of
Type 3) and F2 (of Type 4). The restriction of AutF(R4) to Q is generated by ξ|Q
(since ε3|Q = Id) and AutT ∗(Q). Hence if we let X0 ≤ OutF(Q) be the subgroup
generated by OutT ∗(Q) and classes of restrictions of F -automorphisms of R4, then by
(9) and (10),

χQ(X0) =
〈
(1 2)(3 4)
χQ(ca1 )

, (3 4)(5 6)
χQ(cc)

〉
o

〈
(1 3 5)(2 4 6)

χQ(ξ|Q)

, (1 3)(2 4)
χQ(cb1

)

〉
.

Since χQ(OutF(Q)) is generated by χQ(X0) and restrictions of elements in OutF(R2),
Proposition 7.5 and (9) imply

χQ(OutF(Q)) =

{
〈χQ(X0), (2 3 4)(5 7 6)〉 if F = F1

〈χQ(X0), (2 3 4), (5 7 6)〉 if F = F2.

Since χQ(X0) contains all even permutations which fix 7 and 8 and permute the three
subsets {1, 2}, {3, 4}, {5, 6}, 〈χQ(X0), (2 3 4)〉 contains all even permutations which fix
7 and 8, and so χQ(OutF2(Q)) ∼= A7 is the group of all even permutations which fix 8.

An isomorphism χQ(OutF1(Q)) ∼= GL3(2) is defined via the bijection 8
∼=−−−→ F3

2

which sends n ∈ 8 to the three digits in the binary expansion of 8− n. Thus 1 is sent
to (1, 1, 1), 2 to (1, 1, 0), 8 to (0, 0, 0), etc.

Step 2: Now assume H1 and H2 are F -essential (and R4 is not). By Lemma 7.7(b),
OutF(Hi) ∼= Σ3 for i = 1, 2, and there are elements αi ∈ AutF(Hi) of order three
such that χQ(α1|Q) = (1 2x) and χQ(α2|Q) = (3 4x) for some fixed x ∈ {7, 8}. Thus
χQ(OutF(Q)) contains 〈(1 2x), (3 4x)〉, which is the group of all even permutations of
the set {1, 2, 3, 4, x}.

Now, since χQ(η
(2)
12 |Q) = (2 3 4) (where η

(2)
12 ∈ Aut(R2)), this implies η

(2)
12 |Q ∈

AutF(Q), and hence (by the extension axiom) that η
(2)
12 (or some other automorphism

with the same restriction) is in AutF(R2). So F has Type 4 by Proposition 7.5, and

χQ(OutF(Q)) also contains χQ(η
(2)
3 |Q) = (5 7 6).

If x = 7, then χQ(OutF(Q)) contains all even permutations which fix the element
8. In particular, it contains χQ(ξ|Q), where ξ ∈ Aut(R4) has order three (see Step 1).
By the extension axiom, ξ|Q ∈ AutF(Q) extends to an automorphism in AutF(R4) of
order 3, so R4 is F -essential, contradicting our original assumption.

Thus x = 8, and

χQ(OutF(Q)) =
〈
(1 2)(3 4)
χQ(ca1 )

, (1 3)(2 4)
χQ(cb1

)

, (3 4)(5 6)
χQ(cc)

, (1 2 8)
χQ(α1)

, (3 4 8)
χQ(α2)

, (2 3 4)
χQ(η

(2)
12 )

, (5 7 6)
χQ(η

(2)
3 )

〉
is the group of all even permutations which leave the sets {1, 2, 3, 4, 8} and {5, 6, 7}
invariant. By Lemma 7.7(a), [αi] ∈ Out(Hi) is determined by χQ(αi|Q) ∈ Out(Q) for
i = 1, 2. Hence there is only one fusion system satisfying these conditions, and we
denote it by F3.
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Step 3: By the construction in [LO], T ∗ is a Sylow 2-subgroup of Spin7(3), and
also of the exotic fusion system Sol(3) constructed there. The sporadic simple group
Co3 contains 2·Sp6(2) with odd index (cf. [Fi, Theorem 2]). The orthogonal group
Ω7(3) contains Sp6(2) with odd index (as a subgroup of index two in the Weyl group
of E7), and hence Spin7(3) contains 2·Sp6(2) with odd index. Thus Co3 also has Sylow
2-subgroups isomorphic to T ∗.

Since Sp6(9) contains the wreath product Sp2(9) o Σ3 with odd index, and since
Sp2(9) ∼= SL2(9) has Sylow 2-subgroups isomorphic to Q16, the group S defined at
the beginning of the section is isomorphic to a Sylow 2-subgroup of PSp6(9), and its
subgroup R2 = 〈R0, τ 〉 is isomorphic to a Sylow 2-subgroup of PSp6(3). The group
Aut(PSp6(3)) is the extension of PSp6(3) by its diagonal automorphisms, hence the
normalizer of PSp6(3) in PSp6(9), and contains PSp6(3) with index two. Its Sylow 2-
subgroup is thus isomorphic to a subgroup of index four in S of the form 〈P, τ 〉 for some
R0 ≤ P ≤ S0 which is invariant under the action of Σ3 permuting the central factors;
and this can only be P = 〈R0, c〉 = R1. The Sylow 2-subgroups of Aut(PSp6(3)) are
thus isomorphic to 〈R1, τ 〉 = T ∗ ≤ S.

We showed in Steps 1 and 2 that every nonconstrained centerfree saturated fusion
system over T ∗ is isomorphic to one of the fusion systems F1, F2, or F3. Hence the
fusion systems of Co3, Sol(3), and Aut(PSp6(3)) must be among these, and it remains
to identify them.

As shown in Steps 1 and 2, the Fi are distinguished by OutFi
(Q):

OutF1(Q) ∼= GL3(2), OutF2(Q) ∼= A7, and OutF3(Q) ∼= (A5 × C3) o C2.

By Lemma 7.1(b), Q is the only subgroup of T ∗ of order 27 with quotient group C6
2 .

Hence to determine OutG(Q) for any finite group G with Sylow 2-subgroups isomorphic
to T ∗, it suffices to find any subgroup C6

2 in CG(z)/〈z〉 for some involution z in G, and
determine its automorphism group.

The centralizer in Co3 of a Sylow central involution is isomorphic to 2·Sp6(2) (cf.
[Fi, Lemma 4.4]), and Sp6(2) contains a maximal subgroup C6

2oGL3(2) (the stabilizer
subgroup of an isotropic plane). Hence FS(Co3) ∼= F1 for S ∈ Syl2(Co3).

The centralizer in Sol(3) of any involution is the fusion system of Spin7(3) [LO,
Theorem 2.1], and Ω7(3) contains a maximal subgroup C6

2oA7 (the elements which
leave an orthonormal basis invariant up to sign and permutation). Hence FT ∗(Sol(3)) ∼=
F2.

Finally, the group Aut(PSp6(3)) has involution centralizer (SL2(3)×C2 Sp4(3))oC2

(the elements which leave invariant an orthogonal decomposition F2
3×F4

3 of the vector
space). Since PSL2(3)×PSp4(3) contains a subgroup (C2

2oC3)× (C4
2oA5), this shows

that FS(Aut(PSp6(3))) ' F3 for S ∈ Syl2(Aut(PSp6(3))). �
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