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Abstract

In this paper, we provide a new dynamic asset pricing model for plain vanilla op-
tions and we discuss its ability to produce minimum mispricing errors on equity
option books. The data set is the daily log returns of the French CAC 40 index,
on the period January 2, 1988, October 26, 2007. Under the historical measure,
we estimate an EGARCH model with Generalized Hyperbolic innovations, using
this dataset. We showed in Chorro, Guégan and Ielpo (2008) that when the
pricing kernel is an exponential affine function of the state variables, the risk
neutral distribution is unique and implies again a Generalized Hyperbolic dy-
namic, with changed parameters. Thus, using this theoretical result associated
to Monte Carlo simulations, we compare our approach to natural competitors in
order to test its efficiency. More generally, our empirical investigations analyze
the ability of specific parametric innovations to reproduce market prices in the
context of the exponential affine specification of the stochastic discount factor.
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1 Introduction

In this paper, we provide a new dynamic asset pricing model for plain vanilla options

and we discuss its ability to produce minimum mispricing errors on equity option books.

The data set is the daily log returns of the French CAC 40 index, on the period January

2, 1988, October 26, 2007. Under the historical measure, we estimate an EGARCH

model with Generalized Hyperbolic innovations, using this dataset. We showed in

Chorro, Guégan and Ielpo (2008) that when the pricing kernel is an exponential affine

function of the state variables, the risk neutral distribution is unique and implies again

a Generalized Hyperbolic dynamic, with changed parameters. Thus, using this theoret-

ical result associated to Monte Carlo simulations, we compare our approach to natural

competitors in order to test its efficiency. More generally, our empirical investigations

analyze the ability of specific parametric innovations to reproduce market prices in the

context of the exponential affine specification of the stochastic discount factor.

As soon as the assumption of market completeness is questionable in real-world equity

markets, we need to work in an incomplete setting which is more problematic. There-

fore, in an incomplete market with no arbitrage opportunities, there is more than one

equivalent martingale measure and hence a range of no-arbitrage prices for a contingent

claim. One crucial issue is to identify an equivalent martingale measure which gives

an economically consistent and justifiable price for contingent claims compatible with

market data.

To settle the latter problem, we proceed as follows:

• We use an EGARCH (Nelson (1991)) discrete time modeling for the underlying

asset (under the historical distribution P) with an appropriated distribution for

the innovations to take into account the most important features which charac-

terize financial time series (skewness, kurtosis).

• In order to price options we need to move from the historical to the risk neu-

tral world. Under the assumption of an exponential affine Stochastic Discount

Factor, we exhibit the exact representation of this model under the risk neutral

probability measure Q, proving the stability of the innovation distribution, with

changed parameters.

• We show, throughout a deep empirical study based on Monte Carlo simulations

on the CAC 40 French index that our model behaves fairly well to price options for

a wide range of moneyness and maturities comparing to its natural competitors.

The first point is the choice of the model under the historical measure P. Until recently,

classical well known methods have been considered like the Black and Scholes (1973)
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model in continuous time, or the Duan (1995) and Heston and Nandi (2000) models

in discrete time. These latter models are known to fail to capture the short term be-

havior of equity options smiles. In this paper we propose an EGARCH model with

Generalized Hyperbolic innovations. This distribution introduced by Barndorff-Nielsen

(1977) is known to fit financial datasets remarkably especially to handle the particular

tail behavior found in equity indexes returns (see section 2). It has already been used

with empirical successes to model the dynamic of several stock markets in discrete or

continuous time (see e.g Eberlein and Prause (2002) or Guégan and Zhang (2007)).

For the second point we have to select a particular risk neutral probability with an

interesting economic interpretation. One of the major attempt in this topic was pro-

posed by Gerber and Siu (1994) that provide an elegant way to choose an equivalent

martingale measure using the Esscher transformation. This tool has been introduced

in actuarial science by Esscher (1932), in an incomplete market setting. This latter ap-

proach permits to choose a wide variety of parametric models within the class of infinite

divisible distributions (see Chorro, Guégan and Ielpo, 2008 proposition 4 for a general

result in the GARCH setting). This method has been used to price options in discrete

financial models (Bühlmann, Delbaen, Embretchs and Shiryaev (1996), Siu, Tong and

Yang (2004) or Christoffersen, Heston and Jacobs (2006)) and even in continuous time

Lévy type ones (Eberlein and Prause (2002)). An equivalent formulation of the work

of Gerber and Siu (1994) consists in using for the classical Stochastic Discount Factor

an exponential affine parameterization. We have shown in Chorro, Guégan and Ielpo

(2008) that in the framework of an EGARCH model with Generalized Hyperbolic in-

novations, this particular change of probability implies again a Generalized Hyperbolic

dynamic with explicit parameters allowing for Monte Carlo simulations.

For the last point, we compare the pricing performances of our EGARCH model Gen-

eralized Hyperbolic innovations to the Black and Scholes (1973), Heston and Nandi

(2000) and Bertolon, Monfort and Pegoraro (2003) ones. The choice of this competi-

tors is natural because, for each of them, the exponential affine form of the pricing

kernel is assumed (implicitly or explicitly) to move from the historical distribution to

the risk neutral one. Especially, for the Bertolon, Monfort and Pegoraro (2003) model,

the use of a mixture of two normal distributions to model the innovations may be in-

terestingly compared to our choice of the Generalized Hyperbolic distribution because

these two families have exactly the same number of parameters. With this study we

want to highlight the importance of the choice of the Generalized Hyperbolic distribu-

tion to model stock price processes.

The paper is organized as follows. In section two, we describe the dataset on which

we work. Section three is a summary of the methodology used in this paper. Mathe-
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matical details being provided in a previous paper (Chorro, Guégan and Ielpo, 2008),

we especially focus on the explicit description of the carrying out of the theoretical

method. The section four is devoted to the analysis of empirical results. Section five

concludes.

2 The dataset

The dataset that we use contains the following time series. We consider daily log re-

turns of the French CAC 40 whose value at time t is denoted St. The sample starts on

January 2, 1988 and ends on October 26, 2007.

Number of observations Mean Minimum Maximum

4159 0.0003 -0.0768 0.07

Median Annualized Volatility Skewness Kurtosis

0.0005 0.0021 -0.15 2.87

Table 1: Descriptive statistics for the CAC 40 dataset.

Following this preliminary study we test various probability distributions in order to

find the best one. The results are provided in Table 2. In this paper we are particularly

interested in the Generalized Hyperbolic (GH) distributions introduced by Barndorff-

Nielsen (1977). Let us remind briefly its definition.

For (λ, α, β, δ, µ) ∈ R5 with δ > 0 and α >| β |> 0, the one dimensional GH(λ, α, β, δ, µ)

distribution is defined by the following density function

dGH(x, λ, α, β, δ, µ) =
(
√

α2 − β2/δ)λ

√
2πKλ(δ

√
α2 − β2)

eβ(x−µ)
Kλ−1/2

(
α
√

δ2 + (x− µ)2
)

(√
δ2 + (x− µ)2/α

)1/2−λ
, (1)

where Kλ is the modified Bessel function of the third kind. For λ ∈ 1
2
Z, the basic prop-

erties of the Bessel function allow to find simpler forms for the density. In particular,

for λ = 1, we get the Hyperbolic distributions (HYP) whose log-density is a hyperbola.

For λ = −1
2
, we obtain the Normal Inverse Gaussian distribution (NIG) which is closed

under convolution. This family has already been suggested as a model for financial price

processes because its exponentially decreasing tails seem to fit the statistical behav-

ior of asset returns remarkably (Barndorff-Nielsen (1995), Eberlein and Prause (2002)).

From the results provided in Table 2 we observe that the Gaussian distribution is

strongly rejected as a model for the conditional distribution of the CAC 40 log returns.

On the contrary, the distributions belonging to the Generalized Hyperbolic family give
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CAC

KS p-value for NIG 0.3

KS p-value for HYP 0.73

KS p-value for GH 0.31

KS p-value for Gaussian 0

AD p-value for NIG 0.45

AD p-value for HYP 0.5

AD p-value for GH 0.23

AD p-value for Gaussian 0

Table 2: Kolmogorov-Smirnov (KS) and Andersen-Darling (AD) adequation tests

This table presents the Kolmogorov-Smirnov and Andersen-Darling adequation tests, testing the ad-

equation of the NIG, Hyperbolic, Generalized Hyperbolic and Gaussian distributions to a dataset of

the daily log returns of the French CAC 40. Time varying variance has been filtered out using an

EGARCH process. The sample starts on January 2, 1988 and ends on October 26, 2007.

rise to satisfactory results. We provide several figures that confirm these results. On

Figure 1, we present the empirical log-density (plain black line) vs. the estimated log

density obtained with the NIG (red), Hyperbolic (green), Generalized Hyperbolic (dark

blue) and Gaussian (light blue) distributions for the daily log returns of the French

CAC 40. In Figure 2, we present the qq-plots comparing the empirical quantiles of the

CAC 40 returns vs. the estimated quantiles obtained with the NIG (red), Hyperbolic

(green), Generalized Hyperbolic (dark blue) and Gaussian (light blue) distributions.

Based on the graphics and the tables previously mentioned, it is natural that a dy-

namic asset pricing model is based on a distribution that belongs to the Generalized

Hyperbolic family.

The financial theory states that the price of any asset is equal to the present value

of the expected pay-off, under a well chosen distribution. Thus, to compute option

prices, we need to know the risk-free rate that can be used to compute the necessary

discount factors. The risk free rate used in this paper is the zero rate obtained from

the European interest rates swap (IRS). We use closing swap rates whose maturities

range from 1 month to 3 years. Intermediate maturities required for option pricing are

computed using the Svensson (1994) model1.

Beyond this initial dataset, we use the available option contracts written on the French

CAC 40. The most liquid contracts available are the quarterly ones, that is the con-

1We compared the results obtained with the Nelson and Siegel (1987) approach and the perfor-
mances of the models presented here are globally unchanged.
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Figure 1: Log density

This figure presents the empirical log-density (plain black line) vs. the estimated log density obtained

with the NIG (red), Hyperbolic (green), Generalized Hyperbolic (dark blue) and Gaussian (light blue)

distributions using the CAC 40 returns dataset. Time varying variance has been filtered out using an

EGARCH process. The sample starts on January 2, 1988 and ends on October 26, 2007.

tracts maturing on March, June, September and December for every available years.

We focused on these maturities, neglecting the intermediate monthly maturities that

are far less liquid on average. The option dataset starts on January 2, 2006 and ends on

October 26, 2007. The strikes are chosen so that the moneynesses used here range from

.8 to 1.2, which is the standard moneyness window used in the literature. The table 3

presents key statistics regarding the option dataset across moneynesses and maturities.

3 Methodology

3.1 Theoretical approach

In this section, we recall briefly the methodology we are going to use. Since we devel-

oped it in Chorro, Guégan and Ielpo (2008), we only focus on the main points here :

• Under the historical measure P, the discrete time economy we consider is character-
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Figure 2: QQ-Plot

This figure presents the qq-plots comparing the empirical quantiles of the CAC 40 returns vs. the

estimated quantiles obtained with the NIG (red), Hyperbolic (green), Generalized Hyperbolic (dark

blue) and Gaussian (light blue) distributions. Time varying variance has been filtered out using an

EGARCH process. The sample starts on January 2, 1988 and ends on October 26, 2007.

ized by the time series dynamic of the stock price process (St)t∈{0,1,...,T} given by

Yt = log

(
St

St−1

)
= r + mt +

√
htzt, S0 = s ∈ R+, (2)

where r is the risk free rate expressed on a daily basis and supposed to be constant

and where zt is a sequence of independent and identically distributed centered random

variables with variance 1. In this model we allow for non Gaussian innovations in order

to model extreme returns behavior. Following our previous study, we assume that

the random variables zt follow a centered and reduced Generalized Hyperbolic (GH)

distribution GH(λ, α, β, δ, µ) where (λ, α, β, δ, µ) ∈ R5 with δ > 0 and α >| β |> 0.

This distribution may be characterized by its moment generating function

GGH(u) = eµu

(
α2 − β2

α2 − (β + u)2

)λ
2 Kλ(δ

√
α2 − (β + u)2)

Kλ(δ
√

α2 − β2)
, | β + u |< α, (3)

where Kλ is the modified Bessel function of the third kind.
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Number of available option contracts

<.8 [.8-.9] [.9-1] [1-1.1] [1.1-1.2] >1.2

.25<Maturity<.5 903 2579 2879 2835 1519 100

.5<Maturity<1 1294 4577 5530 5511 4065 1859

Maturity>1 1026 7262 15067 16010 14823 14688

Average option price

Maturity/Moneyness <.8 [.8-.9] [.9-1] [1-1.1] [1.1-1.2] >1.2

.25<Maturity<.5 1435.2837 949.245273 471.477398 139.330296 20.6086241 2.4202

.5<Maturity<1 1547.91826 1051.23124 621.277436 287.889459 94.3190627 19.5322431

Maturity>1 1651.09504 1158.02038 780.151686 483.018575 261.69954 124.69807

Table 3: Descriptive statistics for the CAC 40 option dataset used in the paper.

In equation (2), we consider a general time varying excess of return mt that depends

on the constant risk premium λ0. In practice, it will be fixed for the empirical study

and we retain the following classical form:

mt = λ0

√
ht −

1

2
ht. (4)

In order to capture asymmetry phenomena (as the leverage effect) observed on our

dataset, we choose for the conditional variance of the returns ht an EGARCH model

(Nelson (1991)) that ensures positivity without restrictions on the coefficients

log(ht) = a0 + a1 (| zt−1 | +γ zt−1) + b1 log(ht−1). (5)

According to Blaesild (1981), the conditional distribution of Yt may be now deduced

from the zt one. In fact, given Ft−1 = σ(zu; 0 ≤ u ≤ t− 1),

Yt ↪→ GH

(
λ,

α√
ht

,
β√
ht

, δ
√

ht, Mt + µ
√

ht

)
, (6)

where Mt = r + mt.

• Now, our model is entirely specified under P. Since we want to use it to price

contingent claims, we need to postulate an explicit risk premium to perform the change

in distribution. Classically, in a discrete time dynamic equilibrium model (or in an

arbitrage free continuous one), the price of any asset equals the expected present value

of its future payoffs under an equivalent martingale measure Q. For example, the price

Pt at time t of an European asset paying ΦT at T (ΦT being FT measurable) is given

by

Pt = EQ[ΦT e−r(T−t) | Ft] (7)

or equivalently

Pt = EP[ΦT Mt,T | Ft]. (8)

The Ft+1 measurable random variable Mt,t+1 is the so called stochastic discount factor

(SDF) (the quantity Mt,t+1e
r is also known as the pricing kernel).
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An important point of our approach concerns the assumption on the stochastic discount

factor Mt,t+1 that is constrainted to be an exponential affine function of the log returns:

∀t ∈ {0, ..., T − 1}
Mt,t+1 = eθt+1Yt+1+ξt+1 , (9)

where θt+1 and ξt+1 are Ft measurable random variables. Thus, we need to compute

explicitly (θt+1, ξt+1).

• Under our previous assumptions, we may show that there exists a unique risk neutral

probability Q. This result comes from the following facts. For all t ∈ {0, ..., T − 1}, we

denote by Gt the conditional moment generating function of Yt+1 given Ft defined on

a non empty convex set. Applying the pricing equation (8) to the risky and the non

risky assets we just have to solve the following system, to get θt+1 and ξt+1:{
Gt(θt+1) = e−(r+ξt+1)

Gt(θt+1 + 1) = e−ξt+1 .
(10)

In the case where the innovations of the GARCH process (2) follow a GH distribution,

the following proposition ensures under mild conditions the existence of a solution for

(10) (see Chorro, Guégan and Ielpo, 2008 proposition 5 for the proof).

Proposition 1. For a GH(λ, α, β, δ, µ) distribution with α > 1
2
, then,

1. If λ ≥ 0, the equation log
(

GGH(1+θ)
GGH(θ)

)
= r has a unique solution,

2. If λ < 0, the equation log
(

GGH(1+θ)
GGH(θ)

)
= r has a unique solution if and only if

µ− C < r < µ + C where

C = log

(
Γ[−λ]

2λ+1

)
− log

(
Kλ(δ

√
α2 − (α− 1)2)

δ
√

α2 − (α− 1)2

)
. (11)

The constant C is strictly positive because d
dx

Kλ(x)
xλ = −Kλ+1(x)

xλ < 0.

For the unicity we just have to apply the general result of Gerber and Siu (1994) and

we denote by (θq
t+1, ξ

q
t+1) the unique solution of (10). Then, the Stochastic discount

factor

Mt,t+1 = eθq
t+1Yt+1+ξq

t+1 (12)

being explicitly known, we may deduce easily the form of the associated equivalent

martingale measure Q and the dynamic of the log returns under Q (see Chorro, Guégan

and Ielpo, 2008 propositions 3 and 4).

Proposition 2. Under Q, the distribution of Yt given Ft−1 is a

GH

(
λ,

α√
ht

,
β√
ht

+ θq
t , δ
√

ht, Mt + µ
√

ht

)
(13)

where Mt = r + mt.
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We deduce from the preceding result that, under Q,

Yt = r + mt +
√

htzt︸ ︷︷ ︸
εt

, S0 = s, (14)

where the zt are Ft measurable random variables such that, conditionally to Ft−1,

zt ↪→ GH(λ, α, β +
√

htθ
q
t , δ, µ). (15)

In particular, we can observe that the GH distribution is stable under the change of

measure, allowing us to simulate easily the sample paths of the risky asset and price

contingent claims by Monte Carlo simulations.

We can also remark that under Q, conditionally to Ft−1, the random variable εt is no

more centered and its variance is not ht but

var(εt) = ht

(
δKλ+1(δγt)

γtKλ(δγt)
+

(β +
√

htθ
q
t )

2δ2

γ2
t

(
Kλ+2(δγt)

Kλ(δγt)
−

K2
λ+1(δγt)

K2
λ(δγt)

))
where γt =

√
α2 − (β +

√
htθ

q
t )

2. Thus the GARCH structure of the volatility is mod-

ified in a nonlinear way when we move from P to Q.

3.2 Carrying out

Now, we apply the preceding methodology to price european vanilla options on the

CAC 40 index.

The strategy to price all available call options at a given date t between January 2,

2006 and October 26, 2007 unfolds as follows.

1. We first select a subsample containing 4000 working days2 and ending on the

date t.

2. Using this subsample, we estimate the EGARCH model with GH innovations

(2) favoring a two-stages estimation procedure explained in details below. This

estimation step also yields the conditional variance of returns for the date t + 1,

ht+1.

3. Now, starting from the date t + 1, we then simulate sampled paths, under the

risk neutral distribution:

(a) Start from the estimated conditional variance ht+1.

2We compared the empirical results for samples of size 4000 and 4500, and the results work broadly
the same.
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(b) Compute θq
t+1 and ξq

t+1 by solving equation (10).

(c) Sample zt+1 from a distribution GH(α, β+
√

ht+1θ
q
t+1, δ, µ) using the method-

ology of Bibby and Sorensen, (2003).

(d) Compute the log return Yt+1 and the conditional variance ht+2.

(e) Then go back to step (a), replacing t by t + 1, until t = T − 1, where T is

the maturity of the option we need to price.

This simulation scheme gives the sample returns under the properly chosen risk

neutral distribution, from time t to time T . The final price for the underlying

asset at time T is given by:

ST = St

T∏
k=t+1

eYk . (16)

4. Finally, to price a vanilla call option with time to maturity T − t and strike price

K, we simulate N paths for the underlying future price ST . The ith sampled

final price for the underlying is denoted by ST,i. Then using the Monte Carlo

option pricing standard approach, we get the approximated option price Ĉ(.) as

the sample average of the simulated final prices:

Ĉ(t, T,K) = e−r(T−t) 1

N

N∑
i=1

(ST,i −K)+ . (17)

In practice, the number of sampled paths N is equal to 10 0003.

The previous option pricing strategy requires a few remarks. At step (2), a Quasi

Maximum Likelihood Estimation (QMLE) is first used to determine the parameters

(λ0, a0, a1, b1, γ) of the EGARCH model. At the second stage, since we exactly know

the form of the density function of a GH distribution (1) we adopt a classical maximum

likelihood approach to estimate the unknown remaining parameters (λ, α, β, δ, µ) using

the residuals obtained at the previous stage. The maximization of the log-likelihood

of the EGARCH process is initialized using the unconditional variance of the process.

The option pricing methodology used here focuses on out-of-sample option pricing er-

rors: for a given current date, we estimate the time series parameters using a dataset of

constant size ending on the current date. We used each time 4000 observations. The key

point in our approach is to maintain as much outliers in the dataset as possible: these

extremal events are essential to fit the GH parameters and to control the tail behaviors.

3We compared the convergence of the estimator of the option price using 10 000, 15 000 and 20 000
simulations, and the results are globally the same. For the sake of numerical feasibility, we favored 10
000 simulations.
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a0 b1 a1 γ λ0

Average -5.51 0.47 0.01 0.91 0.08

Std. Dev. 0.33 0.04 0.02 0.02 0.03

Table 4: Descriptive statistics on the average estimated parameters for the EGARCH

model.

α β δ µ λ

Average 308.42 -2.77 335.64 3.04 -78.46

Std. Dev. 139.90 5.08 152.02 5.51 76.68

Table 5: Descriptive statistics on the average estimated parameters for the GH distri-

bution.

It is essential to remark that the Monte Carlo simulation we used is indeed path-

dependent: for any date t, we need to solve equation (10) to obtain θq
t+1 and ξq

t+1, given

the simulated volatility ht+1 and the GH parameters.

Finally, so as to reduce the option prices errors linked to the use of Monte Carlo

methods, we follow the Duan and Simonato (1998) method that imposes martingality

within the sampled processes. This approach makes it possible to reduce significantly

the variance of the estimator of the option price.

For any available date t between January 2, 2006 and October 26, 2007, we reproduce

the previous option pricing methodology. Thus we use in fact a rolling window esti-

mator for both the EGARCH and GH parameters. So, we are able to check for the

stability of the estimations across our dataset. Table 4 and Table 5 provide respec-

tively descriptive statistics for the estimated parameters of the EGARCH model and

the GH distribution. The estimated parameters for the EGARCH model seem to be

quite stable over the different rolling windows. This is not exactly the case for the

GH parameters : the standard deviation associated to each estimated parameters can

be large. This is not a real problem for our option pricing framework, given the good

pricing performances of our approach, when compared to market quotes.

Finally, to compare various option pricing models, we use the criterion introduced in

Heston and Nandi (2000): it corresponds to the average absolute relative pricing errors

criterion for the working days t between January 2, 2006 (τ1) and October 26, 2007

(τ2). Let Ĉ(t, Tj, Ki) be the estimated call option price with a time to maturity equal

to Tj − t and a strike price worth Ki. Let C(t, Tj, Ki) be the corresponding quoted
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market option price. Then the criterion we use here is

AARPE =

τ2∑
t=τ1

Jt∑
j=1

Gt,j∑
i=1

∣∣∣∣∣Ĉ(t, Tj, Ki)− C(t, Tj, Ki)

C(t, Tj, Ki)

∣∣∣∣∣ , (18)

where Jt is the number of call option maturities Tj available at time t and Gt,j the

number of strikes Ki available at time t for this particular maturity Tj.

We chose this criterion for two reasons. First, it is the usual criterion selected in the

empirical literature previously mentioned. We will thus be able to compare the range

of errors found in the dataset used with our model with the remaining major models

of the literature. Second, this criterion is robust to the well known fact that option

pricing errors are proportional to the moneyness: out of the money call option prices

are very low, and so are the usual errors found. The converse is true for deep in the

money option prices. This criterion rescales the errors using the level of the market

option price: it is therefore robust to this effect and the analysis is largely eased.

4 Results

Here, we present the pricing errors results obtained with our methodology and the

dataset presented previously. A deep empirical study have been done. We classically

compare our EGARCH-GH model with natural competitors for which the stochastic

discount factor is also constrainted to be an exponential affine function of the log re-

turns. Through this study we want to highlight the importance of the choice of the

GH distribution to model stock price processes.

More precisely, we compare the pricing performances of our EGARCH-GH model to

the Black and Scholes (1973) (BS), Heston and Nandi (2000) (HN) and Bertolon, Mon-

fort and Pegoraro (2003) (MN) ones. Each model is estimated on an equal basis to

make the inter-model comparison easier.

First, the choice of these competitors is natural because, in each of them, the exponen-

tial affine form of the pricing kernel is assumed to move from the historical distribution

to the risk neutral one. Moreover, it is well known that the historical Black and Scholes

(1973) model always appears as a benchmark in the financial literature and that the

Heston and Nandi (2000) model is the discrete time counterpart of the main model

used in the banking industry for option pricing: the Heston (1993) stochastic volatility

model. Finally, for the Bertolon, Monfort and Pegoraro (2003) model, the use of a

mixture of two normal distributions (MN) to model the innovations may be interest-

ingly compared to our choice of the GH distribution because these two families have

13



.25<Maturity<.5

Moneyness <.8 [.8-.9] [.9-1] [1-1.1] [1.1-1.2] >1.2

BS 0.049 0.073 0.234 1.694 20.504 56.189

HN 0.043 0.069 0.219 1.560 25.422 73.120

EGARCH-MN 0.055 0.077 0.174 0.656 6.604 55.893

EGARCH-GH 0.046 0.058 0.118 0.294 0.989 1.492

.5<Maturity<1

Moneyness <.8 [.8-.9] [.9-1] [1-1.1] [1.1-1.2] >1.2

BS 0.067 0.122 0.252 0.749 2.818 9.852

HN 0.057 0.120 0.248 0.766 3.143 9.615

EGARCH-MN 0.069 0.101 0.152 0.384 1.245 4.542

EGARCH-GH 0.055 0.071 0.080 0.181 0.343 0.699

Maturity>1

Moneyness <.8 [.8-.9] [.9-1] [1-1.1] [1.1-1.2] >1.2

BS 0.132 0.215 0.361 0.664 1.379 3.064

HN 0.139 0.220 0.387 0.727 1.525 3.549

EGARCH-MN 0.125 0.150 0.177 0.272 0.534 1.287

EGARCH-GH 0.106 0.111 0.088 0.104 0.169 0.307

Table 6: Absolute average pricing errors for CAC 40 option prices.

exactly the same number of parameters.

Table 6 presents the values of the AARPE criterion given in (18) for each model. These

results are graphically presented in figure 3.

Looking at these results, wo observe that

• The worst competitors are the Black and Scholes and Heston and Nandi models,

yielding errors beyond 100 percent in this out-of-sample testing strategy.

• The EGARCH-GH and EGARCH-MN models behaved fairly well.

Thus, it appears that

• The models based on a fine understanding of the tail behaviors (EGARCH-GH

and EGARCH-MN models) yield the best results.

• Our model outperforms the EGARCH-MN one for a wide range of moneynesses

and maturities, or is equivalent to it.
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Figure 3: Absolute average pricing errors expressed in percentage for CAC 40 option

prices using the exponential affine pricing kernel for different kinds of maturities.
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• The EGARCH-GH model clearly outperforms the EGARCH-MN one for deep

out-of-the-money option prices.

What is more, for the EGARCH-GH model, the size of the errors obtained is close to

what is obtained during a calibration exercise, see for example Barone-Adesi, Engle

and Mancini (2008). This result is very interesting because, in our approach, we do

not perform any optimization exercise to call options: we especially focus on the di-

rect modeling approach. In fact, starting from the historical distribution, we impose

no arbitrage restrictions based on a specific choice on the shape of risk aversion and

we compute after option prices, using an enhanced Monte Carlo method. We must

underline that our approach is much less time consuming since it avoids the Monte

Carlo based optimization. The key idea here is that a successful option pricing ap-

proach should focus on the tail behavior of the returns time series, under the historical

distribution. The best competing models are the one based on the choice of a realistic

distribution for the stock market returns especially the GH one.

5 Conclusion

In this paper, we presented a new model based on two assumptions. First, the pricing

kernel is an exponential affine function of the log of the future value of the underly-

ing asset. Second, returns in this economy are conditionally Generalized Hyperbolic

distributed. Using these assumptions, we show how to price options and compare the

empirical performances of our model with the one found in the existing literature. The

performances of the model are found to be close to those found when performing a cal-

ibration exercise. Finally, we find that what seems to really matter for option pricing

is the degree of fit in the tails of the historical distribution, which is a very interesting

message for the econometrics of asset pricing framework.
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