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Cavitation is a general phenomenon of the fluid flows with obstacles. It appears in the cooling conduits of the fast nuclear engines. A model of this phenomenon using the theory of Laplace and a common non-convex energy for the liquid and vapour bulks is proposed. This model makes it possible to determine a higher limit of the density of bubbles (a number of bubbles per unit of volume in the flow). The maximum intensity of cavitation is associated with the mechanical and thermal characteristics of the fluid flow.

Introduction

The Laplace theory applied to a closed tank allows us to obtain an equilibrium equation of a liquid in presence of vapour bubbles. We analytically prove that the total number of bubbles cannot exceed a maximum value. We extend the model to the mixture of fluid and gas in the case of steady flows without viscosity: the number of bubbles transported by the current admits an upper limit. It was observed in experiments that the number of bubbles created in a cavitating flow depends on the quality of the carrying fluid. It is well known that an injection of gas bubbles does not affect this upper limit. The number of particles and microscopic gas bubbles is a significant cause of the intensity of cavitation [START_REF] Briançon-Marjollet | La prévision de la cavitation en fonction de l'état de nucléation de l'eau et des conditions hydrodynamiques[END_REF][START_REF] Lecoffre | Aspects pratiques du contrôle des germes de cavitation en moyens d'essais[END_REF][START_REF] Gindroz | Lois de similitude dans les essais de cavitation des turbines Francis[END_REF]. Unfortunately, this parameter is generally inaccessible to measurement. The practical case is associated with the flows existing in coolant circuits of fast nuclear engines; the used cooling agent consists of a mixture of sodium and argon. Sodium in liquid form or vapour is called "fluid". Argon in form of gas, possibly dissolved, is a neutral constituent at a temperature much higher than its critical value. It is called "gas". It is not possible to analyze the quality of the mixture. To estimate a maximum number of bubbles produced by a possible phenomenon of cavitation is very significant. It is an essential data of the nuclear security.

Simplified model of cavitating flow

We consider an isothermal permanent two-phase flow made up of fluid (for example sodium at the temperature of 400 • C) and neutral gas far from its critical point (for example argon). We consider the approximation of a flow without viscosity. With an aim of simplifying the diagram of the system of cooling of fast nuclear engines, we separate the coolant circuit in two parts: -a first part of constant section s and volume v, in which the flow is carried along with cavitation. Cooling agent consists of sodium either in liquid form or in form of vapour bubbles; argon is dissolved in the liquid sodium or mixed with its vapour in the bubbles. The mixture contains n bubbles each one of volume v 1 . The bubbles are supposed in equilibrium in a reference frame convected by the flow and the edge effects of the pipe are not taken into account. The bubbles supposed without interactions are identical and in spherical form.

-a second part of constant section s 0 and volume v 0 without cavitation in which sodium is in liquid form and saturated by dissolved argon.

The motion of the mixture in each compartment is supposed to be uniform. One denotes respectively by u and u 0 the velocity values in each compartment. The loop is closed and contains a total mass M of fluid (sodium). A pump discharges the fluid according to an imposed flow d. We denote by ρ m the average density of the fluid in the cavitating part. The theorem of Bernoulli is supposed to be applicable to each of the two components of the fluid-gas mixture. This simplifying assumption associated with a barotropic permanent motion makes it possible to connect the velocity to the density of each component. The theorem of Bernoulli extends to dynamics the equality of the chemical potentials between phases and components [START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF]. These relations can be replaced by more advancing equations of the motion representing, for a permanent flow, the connections between velocities and densities.

The volumic free energy of the fluid-gas mixture is supposed to be the sum of partial volumic free energies. The pressure of mixture is the sum of the partial pressures. The set of the assumptions leads to the following relations:

ρ m v = ρ l v + nv 1 (ρ v -ρ l ) ,
which gives the value of the fluid mass in the zone of cavitation; ρ l and ρ v stand for the densities of liquid and vapour. It follows:

n = v v 1 ρ l -ρ m ρ l -ρ v . (1) 
The total fluid mass in the coolant circuit is:

M = ρ m v + ρ 0 v 0 , (2) 
where ρ 0 denotes the density of the fluid in the part without cavitation. A pump gives the fluid flow d in the circuit,

s ρ m u = s 0 ρ 0 u 0 = d. (3) 
Let us denote by F the volumic free energy of the fluid. The theorem of Bernoulli applied to each phase of the fluid component gives:

1 2 u 2 + F ′ (ρ l ) = 1 2 u 2 0 + F ′ (ρ 0 ) (for the liquid phase), (4) 
1 2 u 2 + F ′ (ρ v ) = 1 2 u 2 0 + F ′ (ρ 0 )
(for the vapour phase).
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The approximations suppose a moderate cavitation. Although very synopsis, this schematization allows to get a first estimate of the maximum number of bubbles in the zone with cavitation. We take a state law of van der Waals type for expressing the fluid partial pressure. The free volumic energy F is given by a single expression in the liquid and the vapour phases [START_REF] Rocard | Thermodynamique[END_REF]. The relations (4) and ( 5) imply:

F ′ (ρ l ) = F ′ (ρ v ) (6) 
which is the equality of the chemical potentials of the two phases of the fluid component. The free energy of the fluid being a non-convex function of ρ, the values of ρ l and ρ v are different. We denote by G the volumic free energy of the gas. We obtain G ′ (r v ) = G ′ (r l ) where r v is the density of argon in the bubble and r l the density of saturated gas dissolved in the liquid. Argon being a gas at a temperature far from its critical value, the function G is a convex function of the density r.

Consequently, r v = r l .
The partial pressures of the fluid and the gas are respectively:

p s (ρ) = ρF ′ (ρ) -F (ρ) et p a (r) = r G ′ (r) -G (r) .
Within the framework of the Laplace model, the equilibrium of a bubble in the zone of cavitation is:

p s (ρ v ) + p a (r v ) -p s (ρ l ) -p a (r l ) = 2σ R , (7) 
where σ is the constant surface tension at the temperature of the flow and R is the radius of the bubble [START_REF] Bruhat | [END_REF]. Owing to the fact that r v = r l and with K denoting (36π) 1/3 σ, the relation ( 7) is written in the equivalent form:

F (ρ l ) -F (ρ v ) -F ′ (ρ l )(ρ l -ρ v ) = 2 3 Kv -1/3 1 . ( 8 
)
This relation remains unchanged if adding to F an unspecified linear function of ρ. Thus, F ′ (ρ) is chosen null for the densities of saturation ρ ls and ρ vs of the liquid and the vapour.

The volumic free energy is supposed to be a regular function near the densities of saturation. The Taylor expansions to the second order in the vicinity of ρ ls and ρ vs yield:

F (ρ v ) = 1 2 (ρ v -ρ vs ) 2 F ′′ (ρ vs ), F (ρ l ) = 1 2 (ρ l -ρ ls ) 2 F ′′ (ρ ls ).
With taking into account the relation ( 6), we have

F ′′ (ρ vs )(ρ v -ρ vs ) = F ′′ (ρ ls )(ρ l -ρ ls ),
and the relation (8) yields:

F ′′ (ρ ls )(ρ ls -ρ l )(ρ l -ρ v ) 1 + 1 2 ρ ls -ρ l ρ l -ρ v 1 - F ′′ (ρ ls ) F ′′ (ρ vs ) = 2 3 Kv -1/3 1 . (9)
The value C l of the sound velocity in the liquid is

C 2 l = ∂p s ∂ρ l ρ ls = (ρF ′ (ρ) -F (ρ)) ′ ρ ls = ρ ls F ′′ (ρ ls ) .
The value C v of the sound velocity in the saturating vapour is

C 2 v = ρ vs F ′′ (ρ vs ) .
So, we obtain

F ′′ (ρ ls ) F ′′ (ρ vs ) = C 2 l C 2 v ρ vs ρ ls .
Far from the critical point of the fluid, we have

F ′′ (ρ ls ) F ′′ (ρ vs ) ≪ 1.
Such is the case of liquid sodium at the temperature of the nuclear engine [START_REF]Handbook of Chemistry and Physics[END_REF].

The range of values of ρ v and ρ l allows to write:

ρ ls -ρ l ρ l -ρ v ≪ 1.
So, from the respective values of the various terms of relation (9), one deduces the approximated relation:

v 1 = 2K 3C 2 l 3 1 (ρ ls -ρ l ) 3 .
(10)

An estimation of an upper bound value of the number of bubbles

With the approximation (10), the relation ( 1) is written in the form:

n = v v 1 (ρ l -ρ m ) ρ ls .
By taking into account relation (10), one obtains the number of bubbles in the flow:

n = 3C 6 l 32πσ 3 ρ ls v (ρ ls -ρ l ) 3 (ρ l -ρ m ) . (11) 
Let us notice that ρ l and ρ m are not independent but bounded by the relations (2), ( 3) and (4) expressing ρ m as function of ρ l . Let us regard n as a continuous quantity; from these relations one deduces the differential system:

                   v dρ m + v 0 dρ 0 = 0, u dρ m + ρ m du = 0, u 0 dρ 0 + ρ 0 du 0 = 0, u du + F ′′ (ρ l )dρ l -u 0 du 0 -F ′′ (ρ 0 )dρ 0 = 0.
By eliminating du, du 0 et dρ 0 between the four relations one obtains:

u 2 ρ m + u 2 0 v ρ 0 v 0 -F ′′ (ρ 0 ) v v 0 dρ m = F ′′ (ρ l )dρ l .
The respective orders of magnitude of the different terms of the preceding relation and the fact that ρ 0 and ρ l are close to ρ ls yield:

-F ′′ (ρ 0 ) v v 0 dρ m = F ′′ (ρ l )dρ l .
One obtains the derivative of ρ m as a function of ρ l in the simplified form:

dρ m dρ l = - v 0 v .
Relation (11) where n is considered as a function only of ρ m , implies:

n ′ (ρ l ) = 3C 6 l 32πσ 3 ρ ls v -3 (ρ ls -ρ l ) 2 (ρ l -ρ m ) + (ρ ls -ρ l ) 3 1 + v 0 v .
For ρ l different of ρ ls , n ′ (ρ l ) is null for:

ρ l -ρ m = 1 3 (ρ ls -ρ l ) 1 + v 0 v . ( 12 
)
Let us notice that n = 0 for ρ l = ρ ls and ρ l = ρ m . The value of ρ l associated with relation (12) corresponds to a maximum of bubbles in the flow. The value of the number of bubbles per unit of volume is N = n v such as:

N = C 6 l 32πσ 3 ρ ls (ρ ls -ρ l ) 4 1 + v 0 v . (13) 
Instead of the density of liquid, it is more realistic to consider the flow pressure in the part of the circuit subjected to cavitation. Indeed, this physical quantity is more accessible to measurements.

Let us denote by P = p s (ρ l ) + p a (r v ) and P sat = p s (ρ ls ) + p a (r v ), where p s (ρ ls ) is the saturated vapour pressure and p a (r v ) is the partial pressure of the gas. One obtains P sat -P = C 2 l (ρ ls -ρ l ). One deduces the value of the maximum number of bubbles per unit of volume in the form:

N = (P sat -P) 4 32πσ 3 C 2 l ρ ls 1 + v 0 v . (14) 
For example, we consider the physical values of liquid sodium at the temperature of 400 • C: surface tension σ = 0, 166 N/m ; sound velocity liquid sodium C l = 2350 m/s ; density of saturating sodium ρ ls = 856 Kg/m 3 [START_REF]Handbook of Chemistry and Physics[END_REF].

With choosing for the coefficient 1 + v 0 v the value 10 and for difference of pressures P sat -P = 4000 P a, one obtains in the part prone to cavitation a maximum of bubbles N = 1200 per liter .

Conclusion

We presented an approach allowing to consider a higher limit number of the density of bubbles present in a closed loop of cavitating flow. This number is given by the relation ( 14). The effects of uncondensable gases (argon in our case) do not appear in the relation owing to the fact that the fluid (sodium) is saturated with gas. The bubbles are supposed in local equilibrium, which requires that their times of creation and collapse are weak with respect to the running time in the cavitating part of the circuit (a fine study could be carried out starting from the equation of Rayleigh-Plesset [START_REF] Franc | La cavitation[END_REF]). The relation binding the average densities of the fluid ρ m and of the liquid ρ l partially results from the relation ( 4). This relation corresponds to a permanent flow. It may be replaced by all other relations binding u, u 0 , ρ l et ρ 0 . The method corresponds to a very simplified model of a flow of complex nature. Nevertheless, this model offers the advantage of showing that in a closed pipe, cavitation is a limited phenomenon. It should be noted that relation ( 14) takes into account the ratio of dimensions between the zones of cavitation and without cavitation. To decrease cavitation, one may reduce this ratio by creating additional zones where cavitation is of no importance on the maintenance of the coolant circuit.

Abridged French version

Résumé

La cavitation est un phénomène général des écoulements fluides avec obstacles. Elle apparait dans les conduites de refroidissement des réacteurs nucléaires rapides. Un modèle de ce phénomène utilisant la théorie de Laplace et une énergie non convexe commune aux phases liquide et vapeur est proposé. Il permet de déterminer une borne supérieure de la densité de bulles (nombre de bulles par unité de volume dans l'écoulement). L'intensité maximum de la cavitation est associée aux caractéristiques mécaniques et thermiques de l'écoulement fluide.

Version française abrégée

Il a été constaté expérimentalement que le nombre de bulles dans un écoulement cavitant dépend de la qualité du fluide. En particulier, le nombre de particules et de bulles microscopiques de gaz est un paramètre qu'il est important de conna ître [START_REF] Briançon-Marjollet | La prévision de la cavitation en fonction de l'état de nucléation de l'eau et des conditions hydrodynamiques[END_REF][START_REF] Lecoffre | Aspects pratiques du contrôle des germes de cavitation en moyens d'essais[END_REF]. Malheureusement, ce nombre est difficilement mesurable dans la plupart des écoulements. C'est notamment le cas pour l'écoulement de sodium liquide en réacteur nucléaire de type RNR. D'autres expériences ont révélé l'existence, pour un débit fixé, d'une valeur maximale pour le nombre de bulles; au delà de ce seuil, l'injection de microbulles de gaz ne semble plus modifier l'intensité de la cavitation [START_REF] Gindroz | Lois de similitude dans les essais de cavitation des turbines Francis[END_REF]. L'objectif de ce travail est de quantifier l'intensité de la cavitation à partir de l'estimation analytique du nombre de bulles dans un écoulement. Nous considérons un écoulement diphasique permanent isotherme constitué d'un "fluide" (par exemple du sodium à la température de 400 • C) et d'un "gaz" neutre très au-dessus de son point critique (par exemple de l'argon). Nous envisageons l'approximation d'un écoulement sans viscosité. Dans le but de simplifier le schéma du système de refroidissement des réacteurs nucléaires rapides, nous séparons le circuit de refroidissement en deux parties: -Une première partie de section constante s et de volume v, dans laquelle l'écoulement s'effectue avec cavitation. Le réfrigérant est constitué de sodium soit sous forme liquide soit sous forme de bulles de vapeur; l'argon est dissous dans le sodium liquide ou mélangé à sa vapeur dans les bulles. Le mélange contient n bulles, chacune de volume v 1 . Les bulles sont supposées en équilibre dans un repère entra îné par l'écoulement et les effets de bord de la conduite ne sont pas pris en compte. Les bulles supposées sans interactions entre elles sont alors identiques et d'une forme sphérique. La zone de cavitation correspond à la région d'échange de chaleur entre les barres radioactives et le fluide réfrigérant.

-Une deuxième partie supposée sans cavitation, de section constante s 0 et de volume v 0 dans laquelle le sodium est sous la forme liquide et saturé par de l'argon dissous. Le mouvement du mélange dans chaque compartiment est pris uniforme. On note respectivement par u et u 0 les valeurs de la vitesse dans chaque compartiment. Le circuit est fermé et contient une masse totale donnée M de fluide. Une pompe entra îne le fluide suivant un débit imposé d. Nous noterons ρ m la masse volumique moyenne du fluide dans la partie cavitante. Le théorème de Bernoulli est supposé applicable à chacun des deux constituants du mélange fluide-gaz. Cette hypothèse simplificatrice associée à un mouvement permanent et barotrope permet de relier la vitesse à la masse volumique de chaque constituant. Ces relations peuvent être remplacées par des équations du mouvement plus évoluées représentant, lorsque l'écoulement est permanent, les liaisons entre la vitesse et la masse volumique de chaque constituant. Considérons pour simplifier des bulles en équilibre dans un repère lié à cet écoulement. En utilisant la théorie de Laplace, l'énergie libre totale du milieu s'écrit comme la somme des énergies de chaque phase et de l'énergie superficielle des bulles. On obtient alors l'égalité des potentiels chimiques pour le constituant fluide et pour le gaz ainsi que l'expression du saut de pression à l'interface. Ces relations déterminent les caractéristiques géométriques des bulles de vapeur. On représente l'énergie libre du fluide supposée non convexe par deux paraboles dont les rayons de courbure aux sommets sont reliés à la vitesse du son dans chaque phase. L'ensemble des hypothèses effectuées conduit à l'expression (1) du nombre de bulles dans la zone de cavitation en fonction des densités du liquide et vapeur et de leur dimension, à la conservation de la masse totale de fluide (relation ( 2)), à l'expression du débit imposé (relation ( 3)). Le théorème de Bernoulli appliqué à chacune des phases du fluide conduit aux relations (4) et (5) d'où on déduit l'égalité (6) des potentiels chimiques [START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF]. De la définition de la pression à partir de l'énergie libre et de la loi de Laplace on obtient l'expression (8) reliant le rayon des bulles aux densités du liquide et de sa vapeur. En se limitant aux termes principaux, on montre que les deux relations ( 6) et [START_REF] Franc | La cavitation[END_REF] se réduisent alors à une seule expression: l'équation (10) reliant le volume des bulles à la densité du liquide dans la zone cavitante ρ l . La présence de gaz qui sature le fluide ne modifie pas la forme de l'équation de Laplace. Du fait des relations (2), (3) et (4), le nombre de bulles n peut être considéré comme un fonction uniquement de ρ l . On constate alors que le nombre n de bulles admet une valeur maximale. Cette valeur prend une forme explicitable en fonction de l'écart entre la densité du liquide et sa densité à la pression de saturation. C'est l'expression (13) donnant le nombre maximum de bulles par unité de volume. Elle constitue donc une première majoration analytique du nombre de bulles dans un écoulement cavitant. La densité du sodium liquide n'étant pas une grandeur physiquement mesurable, il convient de transformer la relation (13). En utilisant une loi d'état linéaire, on exprime le nombre maximum de bulles non plus en fonction de la densité du sodium liquide dans la zone de cavitation, mais en fonction de la pression totale. La relation obtenue (14) montre que le nombre maximum de bulles par unité de volume est fonction de l'écart entre la pression totale et la pression totale à la saturation. Un calcul numérique est effectué pour du sodium à la température des circuits de refroidissement des réacteurs nucléaires. Il constitue un ordre de grandeur réaliste du nombre de bulles dès lors que l'on est capable de mesurer la pression dans la zone cavitante.