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MOTIVIC DOUBLE SHUFFLEISMAEL SOUDÈRES1ContentsIntrodution 11. Integral representation of the double shu�e relations 21.1. Series representation of the stu�e relations 21.2. Integral representation of the shu�e relations 21.3. The stu�e relations in terms of integrals 32. Moduli spaes of urves; double shu�e and forgetful maps 62.1. Shu�e and moduli spaes of urves 62.2. Stu�e and moduli spaes of urves 73. Motivi shu�e for the "onvergent" words 83.1. Framed mixed Tate motives and motivi multiple zeta values 83.2. Motivi Shu�e 104. The stu�e ase 124.1. Blow up preliminaries 124.2. The spae Xn and some of its properties 154.3. An alternative de�nition for motivi MZV 204.4. Motivi Stu�e 24Referenes 27IntrodutionFor a p-tuple k = (k1, . . . , kp) of positive integers and k1 > 2, the multiple zetavalue ζ(k) is de�ned as
ζ(k) =

∑

n1>...>np>0

1

nk1
1 · · ·n

kp

p

.These values satisfy two families of algebrai (quadrati) relations known as doubleshu�e relations, or shu�e and stu�e desribed below.In [GM04℄ A.B. Gonharov and Y. Manin de�ned a motivi version of multiplezeta values using ertain framed mixed Tate motives attahed to moduli spaesof genus 0 urves. In this ontext, the real multiple zeta values appear naturallyas periods of those motives attahed to the moduli spaes of urves. They do notprove the double shu�e relations diretly, referring instead to previous work by A.B.Gonharov in whih, using a di�erent de�nition of motivi multiple polylogarithmsbased on (P1)n rather than moduli spaes, the motivi double shu�e relations areshown via results on variations of mixed Hodge struture.The goal of this artile is to give an elementary proof of the double shu�erelations diretly for the Gonharov and Manin motivi multiple zeta values. Theshu�e relation (Proposition 3.8) is straightforward, but for the stu�e (PropositionDate: September 18, 2008.1this work has been partially supported by a Marie Curie Early Stage Training fellowship.1



2 ISMAEL SOUDÈRES114.23) we use a modi�ation of a method �rst introdued by P. Cartier for thepurpose of proving stu�e for the real multiple zeta values via integrals and blow-up sequenes. In this artile, we will work over the base �eld Q.1. Integral representation of the double shuffle relations1.1. Series representation of the stu�e relations. The stu�e produt of a
p-tuple k = (k1, . . . , kp) and a q-tuple l = (l1, . . . , lq) is de�ned reursively by theformula:(1) k ∗ l = (k ∗ (l1, . . . , lq−1)) · lq + ((k1, . . . , kp−1) ∗ l) · kp

+ ((k1, . . . , kp−1) ∗ (l1, . . . , lq−1)) · (kp + lq)and k∗() = ()∗k = k. Here the + is a formal sum, A ·a means that we onatenate
a at the end of the tuple A and · is linear in A.Let k and l be two suh tuples of integers. We will write st(k, l) for the set ofthe individual terms of the formal sum k ∗ l whose oe�ients are all equal to 1,suh a generi term is then denoted by σ ∈ st(k, l).In order to multiply two multiple zeta values ζ(k) and ζ(l), we split the summa-tion domain of the produt ζ(k)ζ(l)

{0 < n1 < . . . < np} × {0 < m1 < . . . < mq}into all the domains that preserve the order of the ni as well as the order of the mjand into the boundary domains where some ni are equal to some mj . We obtainthe following well-known proposition, giving the quadrati relations (2) betweenmultiple zeta values known as the stu�e relations :Proposition 1.1. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) as above with k1, l1 > 2.Then we have:(2)
ζ(k)ζ(l) =


 ∑

n1>...>np>0

1

nk1
1 · · ·n

kp

p





 ∑

m1>...>mq>0

1

ml1
1 · · ·m

lq
q


 =

∑

σ∈st(k,l)

ζ(σ).1.2. Integral representation of the shu�e relations. To the tuple k, with
n = k1 + · · · + kp, we assoiate the n-tuple:

k = ( 0, . . . , 0︸ ︷︷ ︸
k1−1 times, 1, . . . , 0, . . . , 0︸ ︷︷ ︸

kp−1 times, 1) = (εn, . . . , ε1)and the di�erential form, introdued by Kontsevih
ωk = ωk = (−1)p dt1

t1 − ε1
∧ · · · ∧

dtn
tn − εn

.(3)Then, setting ∆n = {0 < t1 < . . . < tn < 1}, diret integration yields:
ζ(k) =

∫

∆n

ωk.The shu�e produt of an n-tuple (e1, . . . , en) = e1 ·e and an m-tuple (f1, . . . , fm) =
f1 · f is de�ned reursively by:(4) (e1, . . . , en) X (f1, . . . , fm) = e1 · (e X (f1 · f)) + f1 · ((e1 · e) X f)and e X () = () X e = e. Here, as above, the + is a formal sum, b · B means thatwe onatenate b at the beginning of the tuple B and · is linear in B.Let k and l be two tuples of integers as above. We will write sh(k, l) for theset of the individual terms of the formal sum k X l whose oe�ients are all equalto 1. Suh a generi term is then denoted by σ ∈ sh(k, l) and an be identify



MOTIVIC DOUBLE SHUFFLE 3with a unique permutation σ̃ of {1, . . . n + m} suh that σ̃(1) < . . . < σ̃(n) and
σ̃(n + 1) < . . . < σ̃(n + m). The permutation σ̃ will simply be denoted by σ whenthe ontext will be lear enough.We will put an index σ on any objet whih naturally depends on a shu�e.The following proposition yields the quadrati relations (5) known as the shu�erelations.Proposition 1.2. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) with k1, l1 > 2. Then:(5) ∫

∆n

ωk

∫

∆m

ωl =
∑

σ∈sh(k,l)

∫

∆n+m

ωσ.Proof. Let n = k1 + ... + kp and m = l1 + ... + lq. Then we have:
∫

∆n

ωk

∫

∆m

ωl =

(∫

∆n

dt1
1 − t1

· · ·
dtn
tn

) (∫

∆m

dtn+1

1 − tn+1
· · ·

dtn+m

tn+m

)

=

∫

∆

dt1
1 − t1

· · ·
dtn
tn

dtn+1

1 − tn+1
· · ·

dtn+m

tn+m
.The set ∆ = {0 < t1 < . . . < tn < 1} × {0 < tn+1 < . . . < tn+m < 1} an be, up toodimension 1 sets, split into a union of simplies

∐

σ∈sh([[1,n]],[[n+1,m]])

∆σ with ∆σ = {0 < tσ(1) < tσ(2) < ... < tσ(n+m) < 1},where [[a, b]] denotes the ordered sequene of integers from a to b.The integral over ∆ is the sum of the integrals over the individual simplies. Butthe integral over one of these simplies is, up to the numbering of the variables,exatly one term of the sum ∑

σ∈sh(k,l)

∫

∆n+m

ωσ. �1.3. The stu�e relations in terms of integrals. We explain here ideas al-ready written in artiles of Gonharov [Gon02℄ and in Franis Brown's Ph.D. thesis[Bro06℄, showing how to express the stu�e relations (2) in terms of integrals.Example. We have ζ(2) =
∫
∆2

dt2
t2

dt1
1−t1

. The hange of variables t2 = x1 and t1 =
x1x2 gives:

ζ(2) =

∫

[0,1]2

dx1

x1

x1dx2

1 − x1x2
=

∫

[0,1]2

dx1dx2

1 − x1x2
.This hange of variables is nothing but the blow-up of the point (0, 0) in the pro-jetive plane, given in n dimensions by a sequene of blow-ups:(6) tn = x1, tn−1 = x1x2, . . . , t1 = x1...xn.We will write dnx for dx1 · · · dxn where n is the number of variables under theintegral. Using the hange of variables (6) for n = 4 we write the Kontsevih formsas follows:

ζ(4) =

∫

[0,1]4

d4x

1 − x1x2x3x4
, ζ(2, 2) =

∫

[0,1]4

x1x2d
4x

(1 − x1x2)(1 − x1x2x3x4)and
ζ(2)ζ(2) =

∫

[0,1]4

1

(1 − x1x2)

1

(1 − x3x4)
d4x.For any variables α and β we have the equality:(7) 1

(1 − α)(1 − β)
=

α

(1 − α)(1 − αβ)
+

β

(1 − β)(1 − βα)
+

1

1 − αβ
.This identity will be the key of this setion.



4 ISMAEL SOUDÈRES11Setting α = x1x2 and β = x3x4 and applying (7), we reover the stu�e relation:
ζ(2)ζ(2) =

∫

[0,1]4

(
x1x2

(1 − x1x2)(1 − x1x2x3x4)
+

x3x4

(1 − x3x4)(1 − x3x4x1x2)

+
1

1 − x1x2x3x4

)
d4x

ζ(2)ζ(2) = ζ(2, 2) + ζ(2, 2) + ζ(4).General ase. We will show that the Cartier deomposition (9) below makes itpossible to express all the stu�e relations in terms of integrals as in the exampleabove.Let k = (k1, . . . , kp) and l = (l1, . . . , lq) two tuples of integers with k1, l1 > 2.As above, if σ is a term of the formal sum k ∗ l, we will write σ ∈ st(k, l). We willput an index σ on any objet whih naturally depends on a stu�e.Let k = (k1, . . . , kp) be as above and n = k1 + · · ·+ kp. We de�ne fk1,...,kp
to bethe funtion of n variables de�ned on [0, 1]n given by:

fk1,...,kp
(x1, . . . , xn) =

1

1 − x1 · · ·xk1

x1 · · ·xk1

1 − x1 · · ·xk1xk1+1 · · ·xk1+k2

x1 · · ·xk1+k2

1 − x1 · · ·xk1+k2+k3

· · ·
x1 · · ·xk1+...+kp−1

1 − x1 · · ·xk1+···+kp

.Proposition 1.3. For all p-tuples of integers (k1, . . . , kp) with k1 > 2, we have(with n = k1 + · · · + kp):(8) ζ(k1, . . . , kp) =

∫

[0,1]n
fk1,...,kp

(x1, . . . , xn)dnx.Proof. Let ωk be the Kontsevih form assoiated to a p-tuple (k1, . . . , kp) with
n = k1 + · · · + kp, so that ζ(k1, . . . , kp) =

∫
∆n

ωk.Applying the variable hange (6) to ωk, we see that for eah term dti

ti
, therearises from the 1

ti
a term 1

x1···xn−i+1
whih anels with dti−1

··· = x1···xn−i+1dxn−i+2

··· .This gives the result. �To derive the stu�e relations in general using integrals and the funtions fk1,...,kp
,we will use the following notation.Notation. Let k be a sequene (k1, . . . , kp), n = k1 + · · ·+kp. We have n variables

x1, . . . , xn.
• For any sequene a = (a1, . . . , ar), we will write ∏

a = a1 · · ·ar.
• The sequene (x1, . . . , xn) will be written x. We set x(k, 1) = (x1, . . . , xk1)and

x(k, i) = (xk1+···+ki−1+1, . . . , xk1+···+ki
),so the x is the onatenation of sequenes x(k, 1) · · ·x(k, p).

• The sequene (x1, . . . , xk1+···+ki
) = x(k, 1) · · ·x(k, i) will be denoted by

x(k, 6 i). If k = (k0, kp), x0 = x(k, 6 p − 1) will be the sequene
(x1, . . . , xk1+···+kp−1).

• If l is a q-tuple with l1 + · · · lq = m and σ ∈ st(k, l), yσ will be the sequenein the variables x1, . . . , xn, x′
1, . . . , x

′
m in whih eah group of variables

x(k, i) = (xk1+···+ki−1+1, . . . , xk1+···+ki
)

(resp. x
′(l, j) = (x′

l1+···+lj−1+1, . . . , x
′
l1+···+lj ))



MOTIVIC DOUBLE SHUFFLE 5is in the position of ki (resp. lj) in σ. Components of σ of the form ki + ljgive rise to subsequenes like
(xk1+···+ki−1+1, . . . , xk1+···+ki

, x′
l1+···+lj−1+1, . . . , x

′
l1+···+lj ) = (x(k, i),x′(l, j)).

• Following these notations, produts x1 · · ·xk1 , xk1+···+ki−1+1 · · ·xk1+···+ki
,

x1 · · ·xk1+···+ki
will be written respetively ∏

x(k, 1), ∏
x(k, i), ∏

x(k, 6
i). As x(k, 6 p − 1) = x0 and x(k, 6 p) = x, produts ∏

x(k, 6 p − 1) and∏
x(k, 6 p) will be written ∏

x0 and ∏
x.We remark that for eah σ ∈ st(k, l), ∏

σ =
∏

x
∏

x
′.Remark 1.4. Let (k1, . . . , kp) = (k0, kp) be a sequene of integers. Then:

fk1,...,kp
(x) = fk1,...,kp−1(x(k, 6 p − 1))

∏
x(k, 6 p − 1)

1 −
∏

x(k, 6 p)
= fk1,...,kp−1(x0)

∏
x0

1 −
∏

x
.Proposition 1.5. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) be two sequenes ofweight n and m. Then:(9) fk1,...,kp

(x(k, 1), . . . ,x(k, p)) · fl1,...,lq(x
′(l, 1), . . . ,x′(l, q)) =

∑

σ∈st(k,l)

fσ(yσ).Proof. We proeed by indution on the depth of the sequene. The reursion for-mula for the stu�e is given in (1).If p = q = 1 : As we have
fn(x(k, 1))fm(x′(l, 1)) =

1

1 −
∏

x(k, 6 1)
·

1

1 −
∏

x′(l, 6 1)
=

1

1 −
∏

x
·

1

1 −
∏

x′
,using the formula (7) with α =

∏
x and β =

∏
x
′ leads to(10)

fn(x(k, 1))fm(x′(l, 1)) =

∏
x

(1 −
∏

x)(1 −
∏

x
∏

x′)
+

∏
x
′

(1 −
∏

x′)(1 −
∏

x′
∏

x)

+
1

1 −
∏

x
∏

x′
.Indutive step: Let (k1, . . . , kp) = (k0, kp) and (l1, . . . , lq) = (l0, lq) be twosequenes. By Remark 1.4, the following equality holds

fk0,kp
(x0,x(k, p))fl0,lq(x0

′,x′(l, q)) = fk0
(x0)

∏
x0

1 −
∏

x
fl0(x0

′)

∏
x
′
0

1 −
∏

x′
.Applying the formula (7) with α =

∏
x and β =

∏
x
′, one sees that the RHS ofthe previous equation is equal to

fk0
(x0)fl0(x0

′) · (
∏

x0 ·
∏

x
′
0)

( ∏
x

(1 −
∏

x)(1 −
∏

x
∏

x′)

+

∏
x
′

(1 −
∏

x′)(1 −
∏

x′
∏

x)
+

1

(1 −
∏

x
∏

x′)

)
.



6 ISMAEL SOUDÈRES11Expanding and using the Remark 1.4 we obtain:(11) fk0,kp
(x0,x(k, p))fl0,lq(x0

′,x′(l, q)) =

(
fk0,kp

(x)fl0(x0
′)

)
·

∏
x

∏
x
′
0

1 −
∏

x
∏

x′
+

(
fk0

(x0)fl0,lq(x
′)

)
·

∏
x
′ ∏

x0

1 −
∏

x′
∏

x

+ (fk0
(x0)fl0(x0

′)) ·

∏
x0

∏
x
′
0

1 −
∏

x
∏

x′
.Hene, the produt of funtions fk1,...,kp

and fl1,...,lq satis�es a reursion formulaidential to the formula (1) that de�nes the stu�e produt. Using indution, theproposition follows. �Corollary 1.6 (integral representation of the stu�e). Integrating the statement ofthe previous proposition over the ube and permuting the variables in eah term ofthe RHS, we obtain:
ζ(k)ζ(l) =

∫

[0,1]n
fkdnx

∫

[0,1]m
fld

mx =

∫

[0,1]n+m

∑

σ∈st(k,l)

fσ dn+mx =
∑

σ∈st(k,l)

ζ(σ).Proof. We only need to hek that all integrals are onvergent. As all the funtionsare positive on the integration domain, all hanges of variable are allowed andwe an dedue the onvergene of eah term from the onvergene of the iteratedintegral representation for the multiple zeta values.Another argument is to remark that the orders of the poles of our funtions alonga odimension k subvariety is at most k. Then, for eah integral, a suession ofblow-up ensures that the integral onverge. �2. Moduli spaes of urves; double shuffle and forgetful maps2.1. Shu�e and moduli spaes of urves. Let k and l be as in the previoussetion, let n = k1+· · ·+kp and m = l1+· · ·+lq. Following the artile of Gonharovand Manin [GM04℄, we will identify a point of M0,j+3, the moduli spae of urvesof genus 0 with j + 3 marked points, with a sequene (0, z1, . . . , zj, 1,∞), the zibeing pairwise distint and distint from 0, 1 and ∞, and write Φj for the openell in M0,j+3(R) whih is mapped onto ∆j , the standard simplex, by the map:
M0,j+3 → (P1)j , (0, z1, . . . , zj , 1,∞) 7→ (z1, . . . , zj). Then we have:

ζ(k1, . . . , kp) =

∫

Φn

ωk.Proposition 2.1. Let β be the map de�ned by
M0,n+m+3

β
−−→ M0,n+3 ×M0,m+3

(0, z1, . . . , zn+m, 1,∞) 7−→ (0, z1, . . . , zn, 1,∞) × (0, zn+1, . . . , zn+m, 1,∞).Then, letting ti be the oordinate suh that ti(0, z1, . . . , zn+m, 1,∞) = zi, we have
β∗(ωk ∧ ωl) =

dt1
1 − t1

∧ · · · ∧
dtn
tn

∧
dtn+1

1 − tn+1
∧ · · · ∧

dtn+m

tn+m
.Furthermore, if for σ ∈ sh([[1, n]], [[n + 1, n + m]]) we write Φσ

n+m for the open ellof M0,n+m+3(R) in whih the points are in the same order as their indies are in
σ, we have

β−1(Φn × Φm) =
∐

σ∈sh([[1,n]],[[n+1,n+m]])

Φσ
n+m.



MOTIVIC DOUBLE SHUFFLE 7Proof. The �rst part is obvious.In order to show that β−1(Φn × Φm) =
∐

Φσ
n+m we have to remember that aell in M0,n+m+3(R) is given by a yli order on the marked points. Let X =

(0, z1, . . . , zn+m, 1,∞) be a point in M0,n+m+3(R) suh that β(X) ∈ Φn × Φm.The values of the zi have to be suh that(12) 0 < z1 < . . . < zn < 1 (< ∞) and 0 < zn+1 < . . . < zn+m < 1 (< ∞).However there is no order ondition relating, say z1 to zn+1.So, points on M0,n+m+3(R) whih are in β−1(Φn ×Φm) are suh that the zi areompatible with (12). That is there are in ∐

σ∈sh([[1,n]],[[n+1,n+m]])

Φσ
n+m. �The open embedding β being suh that Φn × Φm \

(
β(β−1(Φn × Φm))

) is ofodimension 1, we have the following propositionProposition 2.2. The shu�e relation ζ(k)ζ(l) =
∑

σ∈sh(k,l) ζ(σ) is a onsequeneof the following hange of variables:
∫

Φn×Φm

ωk ∧ ωl =

∫

β−1(Φn×Φm)

β∗(ωk ∧ ωl).Proof. Using the previous proposition, the right hand side of this equality is equalto ∑

σ∈sh([[1,n]],[[n+1,n+m]])

∫

Φσ
n+m

dt1
1 − t1

∧ · · · ∧
dtn+m

tn+m
.Then we permute the variables and hange their names in order to have an integralover Φn+m for eah term. This is the same omputation we did for the integralover Rn+m in proposition 1.2.As the form dt1

1−t1
∧ · · · ∧ dtn+m

tn+m
(resp. dtσ(1)

1−tσ(1)
∧ · · · ∧

dtσ(n+m)

tσ(n+m)
) does not have anypole on the boundary of Φσ

n+m (resp. Φn+m), all the integrals are onvergent. �2.2. Stu�e and moduli spaes of urves. In Setion 1.3, in order to have anintegral representation of the stu�e produt, we introdued, using the integral overa simplex and a hange of variables, a ubial representation of the MZVs (integralover a ube). We use here a similar hange of variable to introdue an othersystem of loal oordinates on M0,r+3, the Deligne-Mumford ompati�ation ofthe moduli spae of urves. We will, following [Bro06℄, speak of ubial oordinates.Those ubial oordinates, ui, are de�ned on an open of M0,r+3 by u1 = tr and
ui = tr−i+1/tr−i+2 for i < r where the ti are the usual (simpliial) oordinates on
M0,r+3. This ubial system is well adapted to express the stu�e relations on themoduli spaes of urves.Proposition 2.3. Let δ be the map de�ned by

M0,n+m+3
δ

−−−−−→ M0,n+3 ×M0,m+3

(0, z1, . . . , zn+m, 1,∞) 7−→ (0, zm+1, . . . , zm+n, 1,∞) × (0, z1, . . . , zm, zm+1,∞).Writing the expression of ωk and ωl in the ubial oordinates, one �nds ωk =
fk(u1, . . . , un)dnu and ωl = fl(un+1, . . . , un+m)dmu where the fk are as in setion1.3. Then, using those oordinates we have

δ∗(ωk ∧ ωl) = fk1,...,kp
(u1, . . . , un)fl1,...,lq(un+1, . . . , un+m)dn+muand

δ−1(Φn × Φm) = Φn+m.



8 ISMAEL SOUDÈRES11Proof. To prove the seond statement, let X = (0, z1, . . . , zn+m, 1,∞) suh that
δ(X) ∈ Φn × Φm. Then the values of the zi's have to verify(13)

0 < z1 < . . . < zm < zm+1 (< ∞) and 0 < zm+1 < . . . < zn+m < 1 (< ∞).These onditions show that 0 < z1 < . . . < zm < zm+1 < . . . < 1 < ∞, so
X ∈ Φn+m.To prove the �rst statement, we laim that δ is expressed in ubial oordinatesby

(u1, . . . , un+m) 7−→ (u1, . . . , un) × (un+1, . . . , un+m).It is obvious to see that for the left hand fator the oordinates are not hanged.For the right hand fator we have to rewrite the expression of the right side in termsof the standard representatives on M0,m+3. We have
(0, z1, . . . , zm, zm+1,∞) = (0, z1/zm+1, . . . , zm/zm+1, 1,∞) = (0, t1, . . . , tm, 1,∞)in simpliial oordinates. This point is given in ubial oordinates on M0,m+3 by

(tm, tm−1/tm, . . . , t1/t2) = (zm/zm+1, . . . , z1/z2) = (un+1, . . . , un+m).

�As a onsequene of this disussion and the results of Setion 1.3, we have thefollowing proposition.Proposition 2.4. Using the Cartier deomposition (9), the stu�e produt an beviewed as the hange of variables:∫

Φn×Φm

ωk ∧ ωl =

∫

δ−1(Φn×Φm)

δ∗(ωk ∧ ωl).Remark 2.5. We should point out here the fat that the Cartier deomposition"does not lie in the moduli spaes of urves", in the sense that forms appear in thedeomposition whih are not holomorphi on the moduli spae. For example, inthe Cartier deomposition of f2,1(u1, u2, u3)f2,1(u4, u5, u6), we see the term
u1u2u4u5du1du2du3du4du5du6

(1 − u1u2u4u5)(1 − u1u2u3u4u5u6)whih is not a holomorphi di�erential form on M0,6. However, it is a well-de�nedonvergent form on the standard ell where it is integrated. Changing the num-bering of the variables (whih stabilises the standard ell) gives the equality with
ζ(4, 2). This example represents the situation in the general ase: when simplydealing with integrals, the non-holomorphi forms are not a problem. However, inthe ontext of framed motives they are.3. Motivi shuffle for the "onvergent" words3.1. Framed mixed Tate motives and motivi multiple zeta values. Thissetion is a short introdution to the motivi tools we will use to prove the motividouble shu�e. The motivi ontext is a ohomologial version of Voevodsky'sategory DMQ [Voe00℄. Gonharov developed in [Gon99℄, [Gon05℄ and [Gon01℄ anadditional struture on mixed Tate motives, introdued in [BGSV90℄, in order toselet a spei� period of a mixed Tate motive.An n-framed mixed Tate motive is a mixed Tate motive M equipped with twonon-zero morphisms:

v : Q(−n) → GrW
2n M f : Q(0) →

(
GrW

0 M
)∨

= GrW
0 M∨.On the set of all n-framed mixed motives, we onsider the oarsest equivalene re-lation for whih (M, v, f) ∼ (M ′, v′, f ′) if there is a linear map M → M ′ respeting



MOTIVIC DOUBLE SHUFFLE 9the frames. Let An be the set of equivalene lasses and A• be the diret sum ofthe An. We write [M ; v; f ] for an equivalene lassTheorem 3.1 ([Gon05℄). A• has a natural struture of graded ommutative Hopfalgebra over Q.
A• is anonially isomorphi to the dual of Hopf algebra of all endomorphismsof the �bre funtor of the Tannakian ategory of mixed Tate motives.In our ontext, the morphism v of a frame should be linked with some di�erentialform and the morphism f is a homologial ounterpart of v, that is a real simplex.We give here two tehnial lemmas that will be used in the next setions. Wewrite [M, v, f ] for the equivalene lass of (M, v, f) in A•. We will speak of framedmixed Tate motives in both ases.We reall that the adition of two framed mixed Tate motives [M, v, f ] and

[M ′, v′, f ′] is
[M, v, f ] ⊕ [M ′, v′, f ′] := [M ⊕ M ′, (v, v′), f + f ′].Lemma 3.2. Let M be a mixed Tate motive. v, v1, v2 : Q(−n) → GrW

2n M and
f, f1, f2 : Q(0) → GrW

0 M∨. We have:
[M ; v; f1 + f2] = [M ; v; f1] + [M ; v; f2]and
[M ; v1 + v2; f ] = [M ; v1; f ] + [M ; v2; f ]Proof. It follow diretly from the de�nition in [Gon05℄. For the �rst ase, it isstraightforward to hek that the diagonal map ϕ : M → M ⊕ M is ompatiblewith the frames. For the seond equality, the map from M ⊕ M to M whihsends (m1, m2) to m1 +m2 gives the map between the underlying vetor spae andrespets the frames. �Lemma 3.3. Let M and M ′ be two mixed Tate motives. Let M be framed by

v : Q(−n) → GrW
2n and f : Q(0) → GrW

0 M∨. Suppose there exists v′ : Q(−n) →
GrW

2n M ′ and ϕ : M ′ → M ompatible with v and v′. Then f indues a map
f ′ : Q(0) → GrW

0 M ′∨ and if f ′ is non zero, then ϕ gives an equality of framedmixed Tate motives [M ; v; f ] = [M ; v′; f ′]We reall a lassial result, used in [GM04℄ and desribed more expliitly in[Gon02℄ that allows us to build mixed Tate motives from natural geometri situa-tions. In [Gon02℄, A.B. Gonharov de�ned a Tate variety as a smooth projetivevariety M suh that the motive of M is a diret sum of opies of the Tate motive
Q(m) (for ertain m). We say that a divisor D on M provides a Tate strati�ationon M if all strata of D, inluding D∅ = M, are Tate varieties.Let M be a smooth variety and X and Y be two normal rossing divisors on
M. Let Y X be Y \ (Y ∩ X), whih is a normal rossing divisor on M\ X .Lemma 3.4. Let M be a smooth variety of dimension n over Q and X ∪ Y be anormal rossing divisor on M providing a Tate strati�ation of M. If X and Yshare no ommon irreduible omponents then there exists a mixed Tate motive:

Hn(M\ X ; Y X)suh that its di�erent realisations are given by the respetive relative ohomologygroups.We have the following version given in [GM04℄.



10 ISMAEL SOUDÈRES11Corollary 3.5. Let X and Y be two normal rossing divisors on ∂M0,n+3 andsuppose they do not share any irreduible omponents. Then, any hoie of non-zero elements
[ωX ] ∈ GrW

2n(Hn(M0,n+3 \ X)); [ΦY ] ∈ GrW
0 (Hn(M0,n+3; Y ))∨de�nes a framed mixed Tate motive given by

[
Hn(M0,n+3 \ X ; Y X); [ωX ]; [ΦY ]

]
.The following lemma shows that we have some �exibility in hoosing X and Yfor the framed mixed Tate motive [

Hn(M\ X ; Y X); [ωX ]; [ΦY ]
].Lemma 3.6. With the notations of Lemma 3.4, let X ′ be a normal rossing divisorontaining X whih still does not share any irreduible omponent with Y , X ′ ∪ Ybeing a normal rossing divisor. Then:

[
Hn(M\ X ; Y X); [ωX ]; [ΦY ]

]
=

[
Hn(M\ X ′; Y X′

); [ωX ]; [ΦY ]
]
.Suppose now that Y ′ is a normal rossing divisor ontaining Y whih does not shareany irreduible omponent with X ′, X ′∪Y ′ being a normal rossing divisor. Then:

[
Hn(M\ X ′; Y X′

); [ωX ]; [ΦY ]
]

=
[
Hn(M\ X ′; Y ′X′

); [ωX ]; [ΦY ]
]
.We are now in a position to introdue Gonharov's and Manin's de�nition ofmotivi multiple zeta values.De�nition 3.7. In partiular, let k be a p-tuple with k1 > 2 and let Ak be thedivisor of singularities of ωk. Let Bn be the Zariski losure of the boundary of Φn.The motivi multiple zeta value is de�ned in [GM04℄ by:

[
Hn(M0,n+3 \ Ak; BAk

n ); [ωk]; [Φn]
]3.2. Motivi Shu�e. The map β de�ned in Proposition 2.1 will be the key tohek that the motivi multiple zeta values satisfy the shu�e relations.This mapextends ontinuously to the Deligne-Mumford ompati�ation of the moduli spaesof urves:

M0,n+m+3
β

−−−−−→ M0,n+3 ×M0,m+3.Let ωk and ωl be as in setion 2.1, and write Ak and Al for their respetive singu-larity divisors. Let Bn and Bm denote the Zariski losures of the boundary of Φnand Φm respetively. For σ ∈ sh([[1, n]], [[n + 1, n + m]]), let ωσ denote the di�eren-tial form whih orresponds to the shu�ed MZV and let Aσ denote its divisor ofsingularities. Let Bn+m denote the Zariski losure of the boundary of Φn+m and
Bσ that of Φσ

n+m. The shu�e relations between motivi multiple zeta values aregiven in the following proposition.Proposition 3.8. We have an equality of framed motives:
[
Hn

(
M0,n+3 \ Ak; BAk

n

)
; [ωk]; [Φn]

]
·
[
Hm

(
M0,m+3 \ Al; B

Al

m

)
; [ωl]; [Φm]

]
=

∑

σ∈sh([[1,n]],[[n+1,n+m]])

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.Proof. To prove this equality, we need to display a map between the underlyingvetor spaes whih respets the frames.We set A′ the boundary of (M0,n+3 \ Ak) × (M0,m+3 \ Al), it is equal to thedivisor of singularities of ωk ∧ ωl on M0,n+3 ×M0,m+3.



MOTIVIC DOUBLE SHUFFLE 11Let A0 = β−1(A′) and let B0 be the Zariski losure of the boundary of Φ0 =
β−1(Φn ×Φm). Let Bn,m be the Zariski losure of the boundary of Φn ×Φm. Themap β gives a map:

(M0,n+m+3 \ A0; B
A0
0 )

β
//

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)
.

?�

α

OO

We introdue the the right-hand inlusion α beause B0 does not map onto Bn,mvia β. The map α indues a map on the mixed Tate motives:(14) Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

α∗

−−→

Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)The frames on the RHS of (14) is given by [Φn × Φm] and [ωk ∧ ωl]. Applyinglemma 3.3 to (14), [Φn ×Φm] indues a map Φ̃ from Q(0) to the −2(n+m) gradedpart of the LHS of (14). In fat, sine α is the identity map, we have [Φ̃] = [Φn×Φm],so [Φn × Φm] and [ωk ∧ ωl] give a frames on the LHS of (14) whih is ompatiblewith the map α∗.The map β indues a map on the mixed Tate motives:(15) Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

β∗

−−→

Hn+m(M0,n+m+3 \ A0; B
A0
0 )On the RHS of (15) the frames given by [ω0] where ω0 is β∗(ωk ∧ ωl) and [Φ0] =

[β−1(Φn × Φm)] whih is ompatible with the map β∗.Now we an prove the proposition. The Künneth formula gives us a map:
Hn

(
M0,n+3 \ Ak; BAk

n

)
⊗ Hm

(
M0,m+3 \ Al; B

Al

m

)
−−−−→

Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m.
)By theorem 3.1, this map also respets the frames, so the assoiated framed mixedTate motives are equal. By (14),

[
Hn+m

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)
; [ωk ⊗ ωl]; [Φn × Φm]

]is equal to
[
Hn+m

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

; [ωk ⊗ ωl]; [Φn × Φm]
]
,whih, using (15), is equal to

[
Hn+m(M0,n+m+3 \ A0; B

A0
0 ); [ω0]; [Φ0]

]
.It remains to show that:(16) [

Hn+m(M0,n+m+3 \ A0; B
A0
0 ); [ω0]; [Φ0]

]
=

∑

σ

[
Hn+m(M0,n+m+3 \ Aσ; BAσ

n+m); [ωσ]; [Φn+m]
]
.In the LHS of (16), B0 being inluded in Bsh =

⋃
σ Bσ, we an replae B0 by

Bsh using lemma 3.6.



12 ISMAEL SOUDÈRES11As [Φ0] =
∑

σ[Φσ
n+m], lemma 3.2 shows that the LHS of 16 is equal to

∑

σ

[
Hn+m(M0,n+m+3 \ A0; B

A0

sh ); [ω0]; [Φ
σ
n+m]

]
.Using the fat that Bσ ⊂ Bsh and the identity map, lemma 3.6 shows that thisframed motive is equal to

∑

σ

[
Hn+m(M0,n+m+3 \ A0; B

A0
σ ); [ω0]; [Φ

σ
n+m]

]
.As the divisor of singularities A of ω0 is inluded in A0, using lemma 3.6 we anreplae A0 by A in this framed motive. Then permuting the points gives an equalityof framed motives on eah term of the sum,

[
Hn+m(M0,n+m+3 \ A0; B

A0
σ ); [ω0]; [Φ

σ
n+m]

]
,with [

Hn+m(M0,n+m+3 \ Aσ; BAσ

n+m); [ωσ]; [Φn+m]
]
.Thus, we obtain the desired formula:

[
Hn

(
M0,n+3 \ Ak; BAk

n

)
; [ωk]; [Φn]

]
·
[
Hm

(
M0,m+3 \ Al; B

Al

m

)
; [ωl]; [Φm]

]
=

∑

σ∈sh((1,...,n),(n+1,...,n+m))

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.

�4. The stuffle aseThe goal of this setion is to be able to translate all the alulations done inSetion 1.3 into a motivi ontext. In order to ahieve this goal, we need to de�ne,for all n greater than 2, a variety Xn → An resulting of suessive blow-ups of
An together with a di�erential form Ωs

k1,...,kp
for any tuple of integer (k1, . . . , kp)(with k1 + · · · kp = n) and any permutation s of [[1, n]]. After de�ning another butequivalent motivi ounterpart of the multiple zeta values, we will show, using anatural map from Xn+m to an open subset of M0,n+m+3, that the stu�e produtis de�ned at a motivi level.4.1. Blow up preliminaries.Lemma 4.1 (Flag Blowup Lemma; [Uly02℄.). Let V 1

0 ⊂ V 2
0 ⊂ · · ·V r

0 ⊂ W0 be a �agof smooth subvarieties in a smooth algebrai variety W0. For k = 1, . . . , r, de�neindutively Wk as the blow-up of Wk−1 along V k
k−1, then V k

k as the exeptionaldivisor in Wk and V i
k , k 6 i, as the proper transform of V i

k−1 in Wk. Then thepreimage of V r
0 in the resulting variety Wr is a normal rossing divisor V 1

r ∪· · ·∪V r
r. If F is a �ag of subvarieties V i

0 of a smooth algebrai variety W0 as in theprevious lemma, the resulting spae Ws will be denoted by BlF W0.Theorem 4.2 ([Hu03℄). Let X0 be an open subset of a nonsingular algebrai variety
X. Assume that X \ X0 an be deomposed as a �nite union ∪i∈IDi of losedirreduible subvarieties suh that(1) For all i ∈ I, Di is smooth;(2) for all i, j ∈ I, Di and Dj meet leanly, that is the sheme-theoreti in-tersetion is smooth and the intersetion of the tangeant spae TX(Di) ∩

TX(Dj) is the tangeant spae of the intersetion TX(Di ∩ Dj);(3) for all i, j ∈ I, Di ∩ Dj = ∅ ; or a disjoint union of Dl.



MOTIVIC DOUBLE SHUFFLE 13The set D = {Di}i∈I is then a poset. Let k be the rank of D. Then there is asequene of well-de�ned blow-ups
BlD X → BlD6k−1 X → · · · → BlD60 X → Xwhere BlD60 X → X is the blowup of X along Di of rank 0, and, indutively,

BlD6r X → BlD6r−1 X is the blowup of BlD6r−1 X along the proper transforms of
Dj of rank r, suh that(1) BlD X is smooth;(2) BlD X \ X0 =

⋃
i∈I D̃i is a divisor with normal rossings;(3) For any integer k, D̃i1 ∩ · · · ∩ D̃ik

is non-empty if and only if, up to num-bering, Di1 ⊂ · · · ⊂ Dik
form a hain in the poset D. Consequently, D̃iand D̃j meet if and only if Di and Dj are omparable.The fat that blow-ups are loal onstrutions yields diretly to the followingCorollary 4.3 (Flags blow-up sequene). Let X and D be as in the previous the-orem. Let F1, . . . , Fk be �ags of subvarieties of D suh that(1) F1, . . . , Fk is a partition of D,(2) If D is in some Fi, then for all D′ ∈ D with D′ < D there exists some

j 6 i suh that D′ ∈ Fj .If F i
j denotes the �ag of the proper transform of elements of F

i−1
j in

Bl
F

i−1
i

(· · · (BlF1 X) · · · ) ,then
BlD X = Bl

F
k−1
k

(· · · (BlF1 X) · · · )We will denote suh sequene of blow-up by
BlFk,...,F1 XAs we want to apply these results in order to have a motivi desription of thestu�e produt in terms of blow-ups, we need some preisions about what sort ofmotives arise from the onstrution of Theorem 4.2. Following the notation of theartile [Hu03℄, in partiular using the proof of theorems 1.4, 1.7 and Corollary 1.6,we have the following proposition:Proposition 4.4. Suppose that X and D = ∪Di as in proposition 4.2 are suhthat X and all the Di are Tate varieties. Let Er+1 be the set of exeptional divisorsof BlD6r X → X. Then all possible intersetion of strata of Dr+1 ∪ Er+1 are TateVarieties and so is BlD6r XProof. Mainly following the proof of theorem 1.7 in [Hu03℄, we use an indution on

r. If r = 0 then BlD60 X → X is the blow up along the disjoint subvarities Di ofrank 0.All the exeptional divisors in E1 are of the form P(NXDi) (with Di of rank 0)and as the Di are Tate, so are the exeptional divisors.The Blow-up formula
h(XZ) = H(X)

d−1⊕

i=0

h(Z)(−i)[−2i](17)tell us that the blow-up of a Tate varietyX along some Tate variety Z o f odimesion
d is a Tate variety. Then BlD60 X is Tate. More over let D1

i be an element of D1, itis the proper transform of an element Di in D of rank bigger than 1. And theorem1.4 in [Hu03℄ tells us that D1
i = BlDj⊂Di;rank(Dj)=0 Dj and therefore is a Tatevariety



14 ISMAEL SOUDÈRES11We now need to show that all intersetion of strata of D1 ∩ E1 is Tate. As theentre of the Blow up were disjoint, elements in E1 do not interset.Let D1
i and D1

j be two elements of D1 being the proper transform of Di and Djin D. If Di ∩ Dj = ∅ then the same hold for their proper transform and there isnothing to prove, else Di ∩ Dj = ∪Dl. If the maximal rank of the Dl is 0 then thelemma 2.1 in [Hu03℄ ensures that the proper transform have an empty intersetion.If the maximal rank of the Dl is bigger than 1 the fat that Di and Dj meetleanly ensures that the proper transform of the intersetion is the intersetion ofthe proper transform, that is
D1

i ∩ D1
j = BlDl⊂Di∩Dj ;rank(Dl)=0 Di ∩ DjAnd the intersetion is Tate. Moreover from theorem 1.4 ([Hu03℄) we have D1

i ∩
D1

j = ∪D1
l . This allow to onsider only intersetion of the form E1∩D1

i with E1 in
E1 and D1

i in D1. Suh an intersetion is non empty if and only if E1 omes froman element Dj of rank 0 in D with Dj ⊂ Di. Then E1 ∩ D1
i is P(NDi

Dj) and is aTate variety.Assume the statement is true for BlD6r−1 X, Er and Dr. By orollary 1.6in [Hu03℄, the blow-up BlD6r X → BlD6r−1 X is
BlDr

60
(BlD6r X) −→ BlD6r−1 X.The entre of the blow-up are the element in Dr of rank r whih by assumptionare Tate, as BlD6r−1 X , then BlD6r X and the new exeptional divisors are Tate.The other exeptional divisor are proper transform of element in Er and are of theform

Er+1
i = BlEr

i
∩Dr

l
;rank(Dl)=r Er

iwith Er
i in Er and Dr

l in Dr oming from some Dl in D. As by indution hypothesisboth Er
i and Er

i ∩ Dr
l are Tate, Er+1

i is a Tate variety. The same argument provethat all element in Dr+1 are Tate. As previously the intersetion of two element in
Dr+1 is either empty or the proper transform of the intersetion of two element in
Dr ; again this proper transform is Tate.Theorem 1.4 tells us that the intersetion Dr+1

i ∩Dr+1
j of two elements of Dr+1is either empty either the union of some elements Dr+1

l in Dr+1. Then, to provethat all possible intersetions of strata of Er+1 ∪Dr+1 is Tate it is enough to provethat the intersetion of some Dr+1
i with any intersetion Er+1

1 ∩ · · ·Er+1
k is Tate.If two of the Er+1

i are exeptional divisor of BlDr
60

(BlD6r X) → BlD6r−1 X thenthe intersetion is empty beause the orresponding strata Dr
i and Dr

j have anempty intersetion (they have been separated at a previous stage).Hene at most one of Er+1
i is an exeptional divisor oming from the last blow-upand we an suppose that the strata Dr+1

i , Er+1
1 , . . . , Er+1

k−1 are oming from strataat the previous stage Dr
i , E

r
1 , . . . , Er

k−1.
• Suppose that Er+1

k is the proper transform of an exeptional divisor Er
k in

Er. The subvariety Y = Dr
i ∩ Er

1 ∩ · · ·Er
k is Tate by indution hypothesisand its proper transform is

BlDr
j
∩Y ;rank(Dj)=r Ywhih is a Tate variety (Dr

j ∩Y is either empty or Tate and Y is Tate). Onthe other side the proper transform of Y is the intersetion Dr+1
i ∩Er+1

1 ∩
· · · ∩ Er+1

k whih is therefore Tate.
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• Suppose that Er

k is the exeptional divisor oming from the blow-up of
BlD6r−1 X along Dr

j . Let Y be the intersetion Dr
i ∩ Er

1 ∩ · · ·Er
k−1. Then

Dr
j ∩ Y is either empty or a Tate variety In the �rst ase the intersetion

Dr+1
i ∩ Er+1

1 ∩ · · · ∩ Er+1
k is empty. In the later ase we have

Dr+1
i ∩ Er+1

1 ∩ · · · ∩ Er+1
k = P(NY Y ∩ Dr

j )whih is Tate.
�4.2. The spae Xn and some of its properties. Let n be an integer greaterthan 2 and for i ∈ [[1, n]] and let x1, . . . , xn be the natural oordinates on An. Wede�ne the divisors AI , B0

i , B1
i , An, Bn, D1

n, D0
n and Dn as follow:

• For all subset non empty I of [[1, n]], AI is the divisor de�ned by
1 −

∏

i∈I

xi = 0;

• for all i ∈ [[1, n]], B0
i is the divisor de�ned by xi = 0;

• for all i ∈ [[1, n]], B1
i = A{i} is the divisor de�ned by 1 − xi = 0;

• Bn is the union (
⋃

i B0
i )

⋃
(
⋃

i B1
i );

• An is the union ⋃
I⊂[[1,n]];|I|>2 AI ;

• D1
n is the union ⋃

I⊂[[1,n]];I 6=∅ AI ;
• D0

n is the union ⋃
i B0

i ;
• Dn is the union D0

n

⋃
D1

n.Remark 4.5. The divisor Bn is the Zariski losure of the boundary of the real ube
Cn = [0, 1]n in An(R).As the divisor Dn is not normal rossing, we would like to �nd a suitable su-ession of blow-up that will allow us to have a normal rossing divisor D̂n over Dn.In order to ahieve that we �rst need the following remark and lemma.Remark 4.6. Let I be a non-empty subset of [[1, n]] and x = (x1, . . . , xn) a point in
AI , then the normal vetor of AI at the point x is

nAI

|x =
∑

i∈I

1

xi
dxi.(18)Therefore, if I and J are two distint non-empty subsets of [[1, n]], the intersetionof AI and AJ is transverse.Lemma 4.7. Let I1, . . . , Ik (k > 3) be distint non-empty subsets of [[1, n]] and let

x be a point in
AI1 ∩ · · · ∩ AIk

.Suppose that n
AIk

|x is in Vect(n
AI1

|x , . . . , n
AIk−1

|x ) then
AI1 ∩ · · · ∩ AIk−1

= AI1 ∩ · · · ∩ AIk
.Proof. By assumption, there exists rational numbers α1, . . . , αk suh that

n
AIk

|x = α1n
AI1

|x + · · · + αk−1n
AIk−1

|x .Considering the expression (18), if δI is the harateristi funtion of I, we �ndthat for all i in [[1, n]]

δIk
(i) = α1δI1(i) + · · · + αk−1δIk−1

(i).



16 ISMAEL SOUDÈRES11Now let y = (y1, . . . , yn) be a point in AI1 ∩ · · · ∩ AIk−1
we have

∏

i∈Ik

yi =
∏

i∈[[1,n]]

y
δIk

(i)

i =
∏

i∈[[1,n]]

(y
δI1 (i)
i )α1 · · ·

∏

i∈[[1,n]]

(y
δIk−1

(i)

i )αk−1 = 1

�Lemma 4.8. Let D1
n be the poset (for the inlusion) formed by all the irreduibleomponents of all possible intersetions of divisors AI . Then the poset D1

n satisfythe ondition (1), (2) and (3) of theorem 4.2.Proof. The intersetion ondition (3) follows from the de�nition of D1
n. From theformer lemma, we dedue that the dimension of the normal spae at a point of an in-tersetion is the odimension of this intersetion. Hene the irreduible omponentsof the intersetions are smooth.Let S1 and S2 be two elements of D1

n. To show that S1 and S2 meet leanly,it is enough to show that the normal bundle of the intersetion is spanned by thenormal bundles of S1 and S2, that is
NAn(S1 ∩ S2) = NAn(S1) + NAn(S2).As S1 and S2 are intersetion of some AI , it is enough show that the normal bundleof AI1 ∩ · · · ∩ AIk

is spanned by the normal vetor of the AIj
and that is ensuredby lemma 4.7 and remark 4.6. �Applying the onstrution of theorem 4.2 with D = D1

n and X = An leads to avariety Xn
pn
→ An, whih result from suessive blow-up of all the strata of D1

n suhthat the preimage D̂1
n of D1

n is a normal rossing divisor. We will write D̂1
n to meanthe preimage of D1

n.Lemma 4.9. Let D̂0
n be the proper transform in Xn of the divisor D0

n. Then
D̂n = D̂1

n

⋃
D̂0

n is a normal rossing divisor.Proof. Let I be a non-empty subset of [[1, n]], B̂0
I (resp. B0

I ) be the intersetion in
Xn (resp. An) of divisors {xi = 0} for i in I. And let Ŝ1, . . . , Ŝk be strata of D̂n

1suh that the intersetion of the Ŝi is non-empty. We want to show that there is aneighbourhood V of B̂0
I

⋂
Ŝ1

⋂
· · ·

⋂
Ŝk suh that V ∩ D̂n is normal rossing. Bytheorem 4.2, the Ŝi are oming from strata of D1

n, S1 ⊂ · · · ⊂ Sk. As the intersetionof the Ŝi's with B̂0
I is non-empty, the intersetion of B0

I with S1 is non-empty. Thereexists I1, . . . , Il non-empty subsets of [[1, n]] suh that S1 = AI1 ∩ · · · ∩ AIl
.As B0

I

⋂
S1 is non-empty, we have

I
⋂

(I1

⋃
· · ·

⋃
Il) = ∅.Then, in An, we have a neighbourhood V0 of B0

I

⋂
S1 isomorphi to a produt

Ad × A|I| with d = n − |I|:
Ad × A|I|

∪ ∪
D̃1

d

⋃
i∈I B̃0

i ,where B̃0
i is the hyperplane orresponding to {xi = 0} inside A|I|.Lifting this neighbourhood to V̂0 in Xn, it beomes isomorphi to Xd ×A|I| with

D̂1
d ⊂ Xd. Then, for any Ŝi there is a stratum Ŝd

i of D̂1
d suh that V̂0∩Ŝi ≃ Ŝd

i ×A|I|.As the Ŝd
i 's give a normal rossing divisor in Xd by Theorem 4.2, V̂0 gives theneighbourhood of B̂0

I

⋂
Ŝ1

⋂
· · ·

⋂
Ŝk suh that V ∩ D̂n is a normal rossing divisorin Xn.
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�De�nition 4.10. Let B̂n denote the preimage of Bn and Ân be the divisor D̂n\B̂n.Remark 4.11. The divisors Ân and B̂n do not share any irreduible omponentsand are both normal rossing divisors.Let Ĉn be the preimage of Cn = [0, 1]n in Xn and Ĉn its losure. Then B̂n isthe Zariski losure of the boundary of Ĉn and there is a non-zero lass

[Ĉn] ∈ GrW
0 Hn(Xn, B̂n).(19)If I is a subset of [[1, n]], we de�ne FI and GI to be the funtions

GI : (x1, . . . , xn) 7−→
∏

i∈I xi

FI : (x1, . . . , xn) 7−→ 1 −
∏

i∈I xi.De�nition 4.12. A �ag F of [[1, n]] is a olletion of non-empty distint subsets Ijof [[1, n]] suh that I1 ( . . . ( Ir. The length of the �ag F is the integer r and wemay say that F is an r-�ag of [[1, n]]. A �ag on length n will be a maximal �ag. Adistinguished r-�ag (F , i1, . . . ip) will be a �ag F of length r together with element
i1 < . . . < ip of [[1, r]].De�nition 4.13. Let (F , i1, . . . ip) be a distinguished r-�ag of [[1, n]]. Let ΩF

i1,...,ipdenote the di�erential form of Ω•
log(A

n \ Dn) de�ned by
ΩF

i1,...ip
=

r∧

j=1

d log(gj)where
gj =

{
FIj

if j ∈ {i1, . . . , ip}
GIj

otherwiseLet k = (k1, . . . , kp) be a tuple of positive integers with k1 > 2 suh that k1 +
· · · + kp = n and s be a permutation of [[1, n]]. We de�ne a di�erential form
Ωk,s ∈ Ωn

log(A
n \ Dn) by

Ωk,s = fk1,...,kn
(xs(1), . . . , xs(n)) dx1 ∧ · · · ∧ dxn.Remark 4.14. Let k and s be as in the previous de�nition. We assoiate to the pair

(k, s) the maximal distinguished �ag (Fk, i1, . . . , ip) de�ned by Ii = {s(1), . . . , s(i)}and ij = k1 + · · ·+ kj for j running from 1 to p. Then we an see that there existsan integer rs suh that
Ωk,s = (−1)rsΩFk

i1,...ip
.De�nition 4.15. We shall write ωF

i1,...,ip
and ωk,s for the pull bak on Xn \ D̂n of,respetively, the forms ΩI1,...,Ip

and Ωk,s.Proposition 4.16. If (F , i1, . . . , ip) is a maximal �ag of [[1, n]] suh that i1 > 2and ip = n then:
• The divisor of singularities AF

i1,...,ip
of ΩF

i1,...,ip
is AIi1

∪ · · · ∪ AIip
.

• The divisor of singularities ÂF
i1,...,ip

of ωF
i1,...,ip

lies in Ân.Thus, the divisorof singularities of ωk,s lies in Ân.Moreover, if (F , i1, . . . , ip) and (F ′, i′1, . . . , i
′
q) are two distinguished �ags of length

ip and i′q with |i1| > 2, |i′1| > 2 and Iip
, I ′iq

being a partition of [[1, n]], then thedivisor of singularities of ωF
i1,...,ip

∧ ωF ′

i′1,...,i′q
lies in Ân.



18 ISMAEL SOUDÈRES11Let (F , i1 ( . . . ( ip) be a �ag as in the previous proposition.It is straightforward to see that AF
Ii1 ,...Iip

is AIi1
∪ · · · ∪ AIip

. The followinglemma from Gonharov an easily be modify to �t into our situation.Lemma 4.17 ([Gon02℄[lemma 3.8℄). Let Y be a normal rossing divisor in a smoothvariety X and ω ∈ Ωn
log(X \ Y ). Let p : X̂ −→ X be the blow-up of an irreduiblevariety Z. Suppose that the generi point of Z is di�erent from the generi pointsof strata of Y . Then p∗ω does not have a singularity at the speial divisor of X̂.That is:Lemma 4.18. Let Y be a normal rossing divisor in An and ω ∈ Ωn

log(A
n \Y ). Let

pn : Xn → An be the map of our previous onstrution. Suppose that the generipoints of the strata of Bn that are blow-up in the onstrution of Xn are di�erentfrom the generi points of strata of Y . Then p∗nω does not have singularities at theorresponding exeptional divisors in B̂n.It is enough to hek that the divisor of singularities of ΩF
i1,...,iP

is a a normalrossing divisor and that none of its strata is a blown up strata of Bn.The divisor of singularities of ΩF
i1,...,ip

is AIi1
∪ · · · ∪ AIip

and to show it is anormal rossing divisor it is enough to show that the normal vetors of the AIijat any intersetion of some of them are linearly independent. The normal vetorof AIij
is ∑

i∈Iij
1/xi dxi and as we have I1 ( I2 ( . . . ( Ip, they are linearlyindependent.We now have to show that none of the strata of Bn that are blown up in theonstrution of Xn are exatly some strata of AI1∪· · ·AIp

. Let S be suh a strata of
Bn of odimension k. The strata S is de�ned by the equations xr1 = 1, . . . , xrk

= 1.If IS denotes the set {r1, . . . , rk} then, for any subset I of [[1, n]], S is inluded in AIif and only I is inluded in IS . As Ii ⊂ Ii′ for i < i′, if S is inluded in a strata SAof AI1,...,Ip
, that strata is of the form AIi1

∩ · · · ∩AAij
with j < k beause |I1| 6 2.As a onsequene, SA is of odimension at most k − 1 and S an not be a strata of

AF
i1,...,ip

.We use the same argument in the ase of two distinguished �ags as in the lemmaand the proposition 4.16 is proved.Proposition 4.19. The divisor Ân does not interset the boundary of Ĉn in Xn(R).Proof. Let S be an irreduible odimension 1 stratum of B̂n ontaining an inter-setion of some Ân strata with the boundary of Ĉn. As, the divisor An intersetthe boundary of the real ube Cn only on strata of Bn that are of odimension atleast 2, S have to be suh that pn(S) is a stratum of Bn of odimension at least 2.Using the symmetry, with respet to the standard oordinates on An, we ansuppose that pn(S) is de�ned in those oordinates by xk = xk+1 = . . . = xn.Starting from An and blowing up �rst the point x1 = x2 = . . . = xn = 1, thenthe edge x2 = x3 = . . . = xn = 1 and after that the plane x3 = x4 = . . . = xn = 1and so on, we obtain a variety p̃n : X̃n → An. There are natural loal oordinates
(s1, . . . , sn)) on X̃n suh that the oordinates on An de�ned by yi = 1− xi satisfy:

y1 = s1, y2 = s1s2, . . . , yi = s1s2 · · · si, . . . , yn = s1s2 · · · sn.In the yi-oordinates the stratum xj = xj+1 = . . . = xn = 1 is yj = yj+1 = . . . =

yn = 0 and its preimage in X̃n is given by sj = 0.For any permutation s of [[1, n]] we ould apply the same onstrution, that isblowing the point xs(1) = xs(2) = . . . = xs(n) = 1 then the edge xs(2) = xs(3) =

. . . = xs(n) = 1 and so on, and have a variety p̃s
n : X̃s

n → An. The preimage of Dn
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n will be denoted by D̃s

n, B̃s
n will denote the preimage of Bn and Ãs

n is D̃s
n \B̃s

n.To prove that Ân does not interset the boundary of Ĉn in Xn(R) it is enough toshow that for any permutation s Ãs
n does not interset, in X̃s

n(R), the boundary ofthe preimage of Cn. It is then enought to show that the proper transforms of thedivisors AI do not interset the boundary of X̃s
n(R) beause it will then be the samefor the irreduible omponents of their intersetions as for the proper transforms ofthose omponents by the remaining blow-up used to reah Xn. By symmetry, it isenough to show it when s is the identity map and then in the ase of X̃n. Let C̃nbe the preimage of Cn in X̃n .Let AI be a odimension 1 stratum of An, I being the set {i0, . . . , ip} and supposethat i0 < . . . < ip. We want to show that the losure ÃI of the preimage of AI \Bnin X̃n does not interset the boundary of C̃n. The k-th symmetri funtion will bedenoted by σk with the following onvention

σ0 = 1, σk(X1, . . . , Xl) = 0 if l > kThe stratum AI is de�ned in the xi-oordinates by 1− xi0 · · ·xip
= 0 and in the yioordinates by

0 =

p+1∑

k=1

(−1)k−1σk(yi0 , yi1 . . . , yip
).(20)Before giving an expliit expression of ÃI with the si oordinates, we de�ne theset J0 as {1, . . . , i0} and the sets J1, . . . , Jp by

Jk = {i0 + 1, i0 + 2, . . . , ik}for all k in [[1, p]]For any subset J of [[1, n]], ΠJ
s will denote the produt ∏

j∈J sj and we have thefollowing relations
yi0 = ΠJ0s and ∀k ∈ [[1, p]], yik

= ΠJ0sΠJksThe RHS of the equation (20) an be written, using the hange of variables
yi = s1 · · · si as

p+1∑

k=1

(−1)k−1σk(ΠJ0s, ΠJ0sΠJ1s, . . . , ΠJ0sΠJps).(21)For any indeterminate λ one have, for any k,
σk(λ, λX1, λX2, . . . , λXp) = λk(σk−1(X1 . . . , Xp) + σk(X1, . . . , Xp)).Then the expression (21) is equal to

ΠJ0s

[
1 + σ1(Π

J1s, . . . , ΠJps)

+

p−1∑

k=1

(
(−1)k(ΠJ0s)k

(
σk(ΠJ1s, . . . , ΠJps) + σk+1(Π

J1s, . . . , ΠJps)
))

+ (−1)pσp(Π
J1s, . . . , ΠJps)

]



20 ISMAEL SOUDÈRES11The expression of ÃI in the si-oordinates is then(22) 0 = 1 + σ1(Π
J1s, . . . , ΠJps)

+

p−1∑

k=1

(
(−1)k(ΠJ0s)k

(
σk(ΠJ1s, . . . , ΠJps) + σk+1(Π

J1s, . . . , ΠJps)
))

+ (−1)pσp(Π
J1s, . . . , ΠJps)The losure of C̃n is given, in the si oordinates, by s1 ∈ [0, 1] and for any i ∈ [[1, n]]

s1 · · · si ∈ [0, 1]. It is enough to look the intersetion of ÃI with odimension 1strata of the boundary of C̃n.Suppose that si0 = 0 for some i0 ∈ J0 then the RHS of (22) beome
1 + σ1(Π

J1s, . . . , ΠJps)whih is stritly positive if for any i, si > 0. So the divisor ÃI does not intersetany omponent of the form si0 = 0 for i0 in J0.Then, we an suppose that si 6= 0 for all i ∈ J0 in order to study the intersetionof ÃI with the boundary of C̃n and the RHS of (22) an be written
1

ΠJ0s


1 −

p∏

j=1

(
1 − ΠJ0sΠJjs

)

 +

p∏

j=1

(
1 − ΠJ0sΠJjs

)
.Suppose that a point x = (s1, . . . , sn) with si > 0 for all i in J0, lies in the losureof C̃. That is, for all i in [[1, n]] the produt s1s2 · · · si is between 0 and 1 whihmeans all the produt ΠJ0sΠJjs are between 0 and 1 for j in [[1, p]] and then one�nd the following inequalities

0 6
1

ΠJ0s


1 −

p∏

j=1

(
1 − ΠJ0sΠJjs

)

 6

1

ΠJ0s
,

0 6

p∏

j=1

(
1 − ΠJ0sΠJjs

)
6 1.Both term an not be equal to 0 together, thus ÃI does not interset the boundaryof C̃n the si being stritly positive for i in J0 and the proposition is proved.

�4.3. An alternative de�nition for motivi MZV. Both propositions 4.16 and4.19 lead to the following theorem and to an alternative de�nition for motivimultiple zeta values.Theorem 4.20. Let k = (k1, . . . , kp) be a tuple of integers with k1 > 2 and k1 +

. . .+kp = n and let s be a permutation of [[1, n]]. Let Âs
k
be the divisor of singularitiesof the di�erential form ωs

k
. Then there exist a mixed Tate motive

Hn(Xn \ Âs
k
; B̂

Âs
k

n ).The di�erential form ωs
k
and the preimage Ĉn of the real n-dimensional ube in Xngive two non zero elements

[ωs
k
] ∈ GrW

2n Hn(Xn \ Âs
k
; B̂

Âs
k

n ) and [Ĉn] ∈
(
GrW

0 Hn(Xn \ Âs
k
; B̂

Âs
k

n )
)∨The periods of the n-framed mixed Tate motive

ζfr.,M(k, s) =
[
Hn(Xn \ Âs

k; B̂
Âs

k

n ); [ωs
k], [Ĉn]

]



MOTIVIC DOUBLE SHUFFLE 21is equal to ζ(k1, . . . , kn).Moreover, let (F , i1, . . . , ip) and (F ′, i′1, . . . , i
′
q) are two distinguished �ags oflength ip and i′q with |i1| > 2, |i′1| > 2 and Iip

, I ′iq
being a partition of [[1, n]] and

Â
F|F ′

i1,...,lp|i′1,...,i′q
be the divisor of singularities of ωF

i1,...,ip
∧ ωF ′

i′1,...,i′q
. There exists an

n-framed mixed Tate motive
ζfr.,M(F , i1, . . . , ip|F

′, i′1, . . . , i
′
q) = Hn(Xn \ Â

F|F ′

i1,...,lp|i′1,...,i′q
; B̂

Â
F|F′

i1,...,lp|i′
1

,...,i′q
n ),the frames being given by [ωF

i1,...,ip
∧ ωF ′

i′1,...,i′q
] and [Ĉn].Proof. We want to apply theorem 3.6 in [Gon02℄ to our partiular ase. As D̂n is anormal rossing divisor and as proposition 4.19 ensures that Ân does not interset

[Ĉn],using Proposition 4.16, the only thing that remained to show is that we havea Tate strati�ation of Xn whih is ensured by Lemma 4.22.The omputation of the period follows from the fat that integrating over Ĉn isthe same as integrating over the real ube. �The following lemma is the key to prove Lemma 4.22.Lemma 4.21. Let I1, . . . , Ir be r subsets of [[1, n]] and X the intersetion AI1 ∩
· · · ∩ AIr

⊂ An. Then, X and its irreduible omponnents are Tate varieties.Proof. We an assume that the equations de�ning the AIi
are independent. If

|I1∪· · ·∪Ir | = a < n then X is isomorphi to (A′
I1
∩· · ·∩A′

Ir
)×An−a ⊂ Aa×An−awhere the A′

Ii
are de�ned by the same equations, 1−

∏
j∈Ii

xj = 0, that de�ne AIibut view in Aa instead of An.Thus, using the Künneth formula, it is enough to prove the lemma when I1 ∪
· · · ∪ Ir = [[1, n]]. We will now onstrut two �nite morphisms

Gn−r
m ×

r−1∏

k=1

{xdn−kak = 1}
f
−→ X

g
−→ Gn−r

m .Let k̄ be an algebraially losed �eld. The system of equations
Ei : 1 −

∏

j∈Ii

xj = 0an be redue in the following way.The variable xn is by assumption in some Ii, and we an assume without loss ofgenerality that i = 1, so E1 an be written
xn =

1∏
j∈I1

xj
=

∏

j<n

x
β

(1)
j

j 0 6 |β
(1)
j | 6 1 and β

(1)
j ∈ Z.Substituting xn by this produt into the other equations, we obtain E′

2, ..., E′
r,

r − 1 independent equations of the form ∏
j<n x

cj

i . At least one variable appearsin those equations and we an suppose that it is xn−1 in E′
2. We have then

x
dn−1

n−1 =
∏

j<n−1

x
α

(2)
j

j α
(2)
j ∈ Z and dn−1 ∈ N∗.There exists ζdn−1 suh that ζ

dn−1

dn−1
= 1 and

xn−1 = ζdn−1

∏

j<n−1

x
β

(2)
j

j β
(2)
j ∈ Q.



22 ISMAEL SOUDÈRES11Substituting xn−1 into the remaining equations we obtain new equations of theform ∏
j<n−1 x

c′j
i , now with the c′j in Q. We an then apply the same operation toanother variable, let's say

x
d̃n−2

n−2 =
∏

j<n−2

x
α̃

(3)
j

j α̃
(3)
j ∈ Q and d̃n−2 ∈ Q∗.If d̃n−2 is not in N∗, raising the equation to some power and taking the inverse, wean rewrite the previous equation as

x
dn−2

n−2 =
∏

j<n−2

x
α

(3)
j

i α
(3)
j ∈ Q and dn−2 ∈ N∗.We obtain an expression for xn−2 (as with xn−1) whih is a root of unity, ζdn−2 ,times the produt of powers (possibly negative) of roots of the xj for j < n − 2.We an substitute this expression into the remaining equations. Continuing theproess, we �nd r variables, xn, xn−1, xn−2, . . . , xn−r+1, and r − 1 roots of unity,

ζdn−1 , . . . , ζdn−r+1 , that allow us to write the system of equations E1, . . . , Er as atriangular system :
xn =

∏

j<n

x
β

(1)
j

j

xn−1 = ζdn−1

∏

j<n−1

x
β

(2)
j

j

...

xn−i = ζdn−i

∏

j<n−i

x
β

(i)
j

j

...

xn−r+1 = ζdn−r+1

∏

j<n−r+1

x
β

(r)
j

jsuh that for all i ∈ {0, . . . , r−1} ζ
dn−i

dn−i
= 1. Finally, solving this triangular system,we �nd integers pij and p′ik and positive integers qij and q′ik for all i in {0, . . . , r−1},all k in {1, . . . , r − 1} and all j in {1, . . . , n − r} suh that :

∀i ∈ {0, . . . , r − 1} xn−i = ζdn−i

∏

k>i

ζ
p′

ik/q′
ik

dn−k

n−r∏

j=1

x
pij/qij

j .Now, setting
∀j ∈ {1, . . . , n − r} aj = lcmi(qij)

∀k ∈ {1, . . . , r − 1} bk = lcmi(q
′
ij)we de�ne

Gn−r
m ×

∏r−1
k=1{x

dn−kak = 1}
f

// X

(λ1, . . . , λn−r) × (ζn−1, . . . , ζn−r+1)
�

// (f1, . . . , fn)with
∀i ∈ {1, . . . , n − r} fi(λ1, . . . , λn−r, ζn−1, . . . , ζn−r+1) = λai

i
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∀i ∈ {0, . . . , r − 1} fn−i(λ1, . . . , λn−r, ζn−1, . . . , ζn−r+1) =

ζbi

n−i

∏

k>i

ζ
p′

ikbk/q′
ik

n−k

n−r∏

j=1

λ
pijaj/qij

j .We also de�ne the morphism g : X −→ Gn−r
m to be the projetion onto the�rst n − r fator (X is embedded in An). The morphism g is �nite. Moreover theomposition g ◦ f raise eah λi to some power and is therefore �nite. As we ansolve the system over any algebraially losed �eld, the morphism f is surjetiveand therefore �nite, beause g and g ◦ f are.Moreover, there is a one to one map between the set of the irreduible omponentsof X the set of those of ∏r−1

k=1{x
dn−kak = 1} and the irreduible omponents of Xare disjointIn the Hodge-De Rham realisation, we then have the following omposition

H∗(Gn−r
m ×

∏r−1
k=1{x

dn−kak = 1}, Q) H∗(X, Q)
f∗

oo H∗(Gn−r
m , Q)

g∗
oo

(g◦f)∗

ii

.As f and g are �nite, both f∗ and g∗ are injetive. The morphism of mixed Hodgestrutures, f∗, is strit [Del71℄, therfore H∗(X, Q) is a diret sum of Hodge-TatestruturesQ(m) (for di�erentm) beause the ohomology of Gn−r
m ×

∏r−1
k=1{x

dn−kak =
1} is. The irreduible omponents of X being disjoint, eah is a Tate varietyFinally, using the fat that the Hodge-De Rham realisation is fully faithful, wean onlude that the motive of X is a diret sum of Tate motives, in other words
X is a Tate variety. �Lemma 4.22. The divisor D̂n = B̂0

n ∪ D̂1
n provides Xn with a Tate strati�ation.Proof. We �rst need to show that all the strata of D̂1

n and Xn are Tate but usingthe proposition 4.4, it is enough to show that all the strata of D1
n are Tate (Anbeing Tate). A stratum AI1 ∩ · · · ∩AIk

of D1
n is a Tate variety by Lemma 4.21. So

Xn and all the strata of D̂1
n are Tate.Note that the previous disussion tells us that for any k > 2, Xk and all thestrata of D̂1

k are Tate varieties.Let Ŝ be the intersetion of ertain odimension 1 strata of B̂0
n; it is the propertransform of the orresponding intersetion, say S = ∩j∈J{xj = 0} for some J ⊂

[[1, n]], in B0
n. That is, Ŝ is isomorphi to

BlS∩D : D∈D1
n

S.(23)The intersetion S is isomorphi to Ad for d = n− |J | and hene is Tate and if I isa subset of [[1, n]] then S∩AI is either empty (I∩J 6= ∅) or, if I∩J = ∅, isomorphito the subvariety of Ad given by {1−
∏

i∈I xi = 0} (up to renumbering). Thus, theproper transform Ŝ is isomorphi to Xd whih is Tate by the disussion above.Now, if Ŝi is some irreduible odimension 1 stratum of D̂1
n that have a non-empty intersetion with Ŝ then, as Ŝi is the exeptional divisor of some of the blow-ups in the onstrution of Xn, this intersetion Ŝ ∩ Ŝi is the exeptional divisor inthe blow-up sequene (23) that leads to Ŝ. As a onsequene, the intersetion Ŝ∩Ŝiis isomorphi to some irreduible stratum of D̂1

d in Xd and we an onlude thatany possible intersetion of strata in D̂1
n with Ŝ is isomorphi to an intersetion ofstrata in D̂1

d inside Xd ≃ Ŝ and so is Tate by the above disussion. �



24 ISMAEL SOUDÈRES114.4. Motivi Stu�e. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) be respetively a
p-tuple and a q-tuple of integers with k1, l1 > 2, ∑

ki = n and ∑
lj = m. Inthis setion, as in setion 1.1 and 1.3, if σ is a term of the formal sum k ∗ l withall oe�ients being equal to 1, we will write σ ∈ st(k, l). The map δ de�ned atproposition 2.3 extends to:

M0,n+m+3
δ

−−−−−→ M0,n+3 ×M0,m+3.Let Ak (resp. Al) be the divisor of singularities of the meromorphi di�erentialform ωk on M0,n+3 (resp. ωl on M0,m+3) given in simpliial oordinates by ωk(resp. ωl) (f. 3) and in the ubial oordinates by fk1,...,kp
(resp. fl1,...,lq ). Forall σ in st(k, l), let Aσ be the divisor of singularities of the form ωσ. As in setion3.2, let Φn, Φm and Φn+m denote respetively the standard ells in M0,n+3(R),

M0,m+3(R) and M0,n+m+3(R) and Bn, Bm and Bn+m be the Zariski losure ofthe boundary of respetively Φn, Φm and Φn+m.Proposition 4.23. We have an equality of framed motives:
[
Hn

(
M0,n+3 \ Ak; BAk

n

)
; [ωk]; [Φn]

]
·
[
Hm

(
M0,m+3 \ Al; B

Al

m

)
; [ωl]; [Φm]

]
=

∑

σ∈st(k,l)

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.Proof. Let A0 be the Zariski losure of ∂M0,n+m+3 \ Bn+m, Bn,m be the Zariskilosure of the boundary of Φn × Φm and A′ be the boundary of (

M0,n+3 \ Ak

)
×(

M0,m+3 \ Al

). As the map δ maps Bn+m onto Bn,m, we have an indued map
δ :

(
M0,n+m+3 \ A0; B

A0
n+m

)
−→

((
M0,n+3 \ Ak

)
×

(
M0,m+3 \ Al

)
; BA′

n,m

)
.Using the Künneth formula, we have maps of mixed Tate motives(24) Hn

(
M0,n+3 \ Ak; BAk

n

)
⊗ Hm

(
M0,m+3 \ Al; B

Al

m

)
−→

Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)
−→

Hn+m
(
M0,n+m+3 \ A0; B

A0
n+m

)whih are both ompatible with the respetive frames [ωk] ⊗ [ωl]; [Φn] ⊗ [Φm] ,
[ωk ∧ ωl]; [Φn × Φm] and [δ∗(ωk ∧ ωl)]; [Φn+m].We now need to show that

[
Hn+m

(
M0,n+m+3 \ A0; B

A0
n+m

)
; [δ∗(ωk ∧ ωl)], [Φn+m]

]
=

∑

σ∈st(k,l)

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.As Aσ is inluded in A0, using lemma 3.6 it enough to prove the previous equalitywith A0 instead of Aσ in the RHS. The two following lemma tell us that it is enoughto work with Xn+m (f. setion 4.2) instead of M0,n+m+3 \ A0.Lemma 4.24. Let r > 2 be an integer and let δ̃r : M0,r+3 → (P1)r be the mapgiven on the open set by

(0, z1, . . . , zr, 1,∞) 7−→ (0, z1, z2,∞) × (0, z2, z3,∞) × · · ·

× (0, zr−1, zr,∞) × (0, zr, 1,∞).Let Ar be the union of the odimension 1 irreduible omponents of ∂M0,r+3 thatare send by δ̃r into (P1)r \ Ar.



MOTIVIC DOUBLE SHUFFLE 25Then, Ar ⊂ A0 and there exist a sequene of �ags F1, . . . ,FN , of elements of
D1

r (Lemma 4.8) satisfying ondition of Corollary 4.3 suh that
Xr = BlFN ,...,F1 Ar αr−→ M0,r+3 \ Ar = BlFr,...,F1 Ar δ̃r−→ Ar(25)Proof. The map δ̃r is given in the ubial oordinates on M0,r+3 by xi = ui wherethe xi denotes the standard a�ne oordinates on (P1)r and send omponents of Brinto hyperplanes xi = 0 or xi = 1.The indued map M0,r+3 \ Ar → Ar is the blow-up along the strata

{xi = xi+1 = . . . = xj = 1}(26)whih are all elements of D1
r .The beginning F1, . . . ,Fr of the sequene of �ags is given by

F1 = {{x1 = x2 = · · · = xn = 1}, {x1 = x2 = · · · = xn−1 = 1}, . . . , {x1 = 1}}

F2 = {{x2 = x3 = · · · = xn = 1}, {x2 = x3 = · · · = xn−1 = 1}, . . . , {x2 = 1}}

· · ·

Fi = {{xi = xi+1 = · · · = xn = 1}, {xi = xi+1 = · · · = xn−1 = 1}, . . . , {xi = 1}}

· · ·

Fr = {{xr = 1}}That part of the sequene satis�es ondition (2) of Corollary 4.3. Then the easiestway to omplete the sequene is to take �ags with just one element beginning withthe rank 1 strata of D1
r (the only stratum of rank 0 is {x1 = x2 = . . . = xn = 1}),then the rank 2 strata and so on.Now that the sequene of �ags exists, Corollary 4.3 ensures that the morphismsin (25) holds.Indeed, the usual map M0,r+3 → (P1)r whih maps (0, z1, . . . , zr, 1,∞) to

(z1, . . . , zr) sends Φr to the standard simplex ∆r = {0 < t1 < . . . < tr < 1} andmaps Br to the algebrai boundary of ∆r. A �rst sequene of blow-up along the sub-varieties {0 = t1 = . . . ti} orresponds to the hange of variable from the simpliialto the ubial oordinates (6). In order to reover Br, the blow-up along the propertransform of the subvarieties {ti = ti+1 = . . . = tj} and {ti = ti+1 = . . . = tr = 1}has still to be performed. The expression of these subvarieties in the ubial oor-dinates is {xi = xi+1 = . . . = xj = 1}. The fat that it seems that we are blowingup less strata in order to reover M0,r+3 from (P1)r using δ̃r (25) omes from thefat that we are only looking at M0,r+3 \ Ar. �From the previous lemma we dedueCorollary 4.25. (1) Let a = (a1, . . . , ab) be a b-tuple of integer with a1 > 2with a1 + · · · + ab = n + m. Using the previous onvention we have thefollowing equality of framed mixed Tate motives
ζfr.M(a, id ) =

[
Hn+m

(
M0,n+m+3 \ A0; B

A0
n+m

)
; [ωa], [Φn+m]

]
.(2) Let k and l be as in proposition 4.23, then there exists two distinguished�ag (F , i1, . . . , ip) and (F ′, j1, . . . , jq) with i1, j1 > 2 and Iip

, Ijq
being apartition of [[1, n]] suh that the following equality of framed mixed Tatemotives holds

ζfr.M(F , i1, . . . ip|F
′, j1, . . . jq) =

[
Hn+m

(
M0,n+m+3 \ A0, B

A0
n+m

)
; [ωk ∧ ωl], [Φn+m]

]



26 ISMAEL SOUDÈRES11As a onsequene, for all σ ∈ st(k, l), the framed mixed Tate motives
[
Hn+m

(
M0,n+m+3 \ A0, B

A0
n+m

)
; [ωσ], [Φn+m]

]is equal to it ounterpart in Xn+m, ζfr.M(σ).Proof. In 1. and 2., the map on the underlying vetor spae is given by α∗
n+m (f.(25)). As Ĉn+m is map to Φn+m, knowing the behaviour of α∗

n+m with respet tothe form ωa and ωk ∧ ωl is enough to dedue that α∗
n+m respet the frames.(1) As the the map α∗

n+m as no e�et on the ubial oordinates, ui on
M0,n+m+3 \ A0, we have α∗

n+m(ωa) = ωid
a , and so the equality of framedmixed Tate motives.(2) Writing down in ubial oordinates the expression

ωk = fk(u1, . . . , un)dnu and ωl = fk(un+1, . . . , un+m)dmuleads to the de�nition of two distinguished �ag
(F , i1, . . . , ip) and (F ′, j1, . . . , jq),as in remark 4.14 with s = id . The fat that α∗

n+m respets the framesome from the equality
ωF ′

i1,...,ip
∧ ωF ′

j1,...,jq
= α∗

n+m(ωk ∧ ωl).

�The only thing that remain to be heked to omplete the proof of proposition4.23 is using the notation of the previous lemma
ζfr.M(F , i1, . . . ip|F

′, j1, . . . jq) =
∑

σ∈st(k,l)

ζfr.M(σ, id ).Using the omputation of setion 1.3, in partiular the proposition 1.5, we havethat for eah σ ∈ st(k, l) there exists a permutation sσ suh that
[ωF ′

i1,...,ip
∧ ωF ′

j1,...,jq
] =

∑

σ∈st(k,l)

[ωσ,sσ
].As the divisor A

F ,i1,...,ip

F ′,j1,··· ,jq
of ωF ′

i1,...,ip
∧ωF ′

j1,...,jq
and the divisors Aσ,sσ

are in Ân+m,lemma 3.6 and an analogue of lemma 3.3 show that
ζfr.M(F , i1, . . . ip|F

′, j1, . . . jq) =
∑

σ∈st(k,l)

ζfr.M(σ, sσ).(27)Permuting the variables give a well de�ned morphism Xn+m → Xn+m thatpreserve Ĉn+m and its algebrai boundary B̂n+m. It leads, on eah term of theRHS of 27, to an equality
ζfr.M(σ, sσ) = ζfr.M(σ, id ),and hene to

ζfr.M(F , i1, . . . ip|F
′, j1, . . . jq) =

∑

σ∈st(k,l)

ζfr.M(σ, id ).and the proposition 4.23
�
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