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tionFor a p-tuple k = (k1, . . . , kp) of positive integers and k1 > 2, the multiple zetavalue ζ(k) is de�ned as
ζ(k) =

∑

n1>...>np>0

1

nk1
1 · · ·n

kp

p

.These values satisfy two families of algebrai
 (quadrati
) relations known as doubleshu�e relations, or shu�e and stu�e des
ribed below.In [GM04℄ A.B. Gon
harov and Y. Manin de�ned a motivi
 version of multiplezeta values using 
ertain framed mixed Tate motives atta
hed to moduli spa
esof genus 0 
urves. In this 
ontext, the real multiple zeta values appear naturallyas periods of those motives atta
hed to the moduli spa
es of 
urves. They do notprove the double shu�e relations dire
tly, referring instead to previous work by A.B.Gon
harov in whi
h, using a di�erent de�nition of motivi
 multiple polylogarithmsbased on (P1)n rather than moduli spa
es, the motivi
 double shu�e relations areshown via results on variations of mixed Hodge stru
ture.The goal of this arti
le is to give an elementary proof of the double shu�erelations dire
tly for the Gon
harov and Manin motivi
 multiple zeta values. Theshu�e relation (Proposition 3.8) is straightforward, but for the stu�e (PropositionDate: September 18, 2008.1this work has been partially supported by a Marie Curie Early Stage Training fellowship.1



2 ISMAEL SOUDÈRES114.23) we use a modi�
ation of a method �rst introdu
ed by P. Cartier for thepurpose of proving stu�e for the real multiple zeta values via integrals and blow-up sequen
es. In this arti
le, we will work over the base �eld Q.1. Integral representation of the double shuffle relations1.1. Series representation of the stu�e relations. The stu�e produ
t of a
p-tuple k = (k1, . . . , kp) and a q-tuple l = (l1, . . . , lq) is de�ned re
ursively by theformula:(1) k ∗ l = (k ∗ (l1, . . . , lq−1)) · lq + ((k1, . . . , kp−1) ∗ l) · kp

+ ((k1, . . . , kp−1) ∗ (l1, . . . , lq−1)) · (kp + lq)and k∗() = ()∗k = k. Here the + is a formal sum, A ·a means that we 
on
atenate
a at the end of the tuple A and · is linear in A.Let k and l be two su
h tuples of integers. We will write st(k, l) for the set ofthe individual terms of the formal sum k ∗ l whose 
oe�
ients are all equal to 1,su
h a generi
 term is then denoted by σ ∈ st(k, l).In order to multiply two multiple zeta values ζ(k) and ζ(l), we split the summa-tion domain of the produ
t ζ(k)ζ(l)

{0 < n1 < . . . < np} × {0 < m1 < . . . < mq}into all the domains that preserve the order of the ni as well as the order of the mjand into the boundary domains where some ni are equal to some mj . We obtainthe following well-known proposition, giving the quadrati
 relations (2) betweenmultiple zeta values known as the stu�e relations :Proposition 1.1. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) as above with k1, l1 > 2.Then we have:(2)
ζ(k)ζ(l) =


 ∑

n1>...>np>0

1

nk1
1 · · ·n

kp

p





 ∑

m1>...>mq>0

1

ml1
1 · · ·m

lq
q


 =

∑

σ∈st(k,l)

ζ(σ).1.2. Integral representation of the shu�e relations. To the tuple k, with
n = k1 + · · · + kp, we asso
iate the n-tuple:

k = ( 0, . . . , 0︸ ︷︷ ︸
k1−1 times, 1, . . . , 0, . . . , 0︸ ︷︷ ︸

kp−1 times, 1) = (εn, . . . , ε1)and the di�erential form, introdu
ed by Kontsevi
h
ωk = ωk = (−1)p dt1

t1 − ε1
∧ · · · ∧

dtn
tn − εn

.(3)Then, setting ∆n = {0 < t1 < . . . < tn < 1}, dire
t integration yields:
ζ(k) =

∫

∆n

ωk.The shu�e produ
t of an n-tuple (e1, . . . , en) = e1 ·e and an m-tuple (f1, . . . , fm) =
f1 · f is de�ned re
ursively by:(4) (e1, . . . , en) X (f1, . . . , fm) = e1 · (e X (f1 · f)) + f1 · ((e1 · e) X f)and e X () = () X e = e. Here, as above, the + is a formal sum, b · B means thatwe 
on
atenate b at the beginning of the tuple B and · is linear in B.Let k and l be two tuples of integers as above. We will write sh(k, l) for theset of the individual terms of the formal sum k X l whose 
oe�
ients are all equalto 1. Su
h a generi
 term is then denoted by σ ∈ sh(k, l) and 
an be identify



MOTIVIC DOUBLE SHUFFLE 3with a unique permutation σ̃ of {1, . . . n + m} su
h that σ̃(1) < . . . < σ̃(n) and
σ̃(n + 1) < . . . < σ̃(n + m). The permutation σ̃ will simply be denoted by σ whenthe 
ontext will be 
lear enough.We will put an index σ on any obje
t whi
h naturally depends on a shu�e.The following proposition yields the quadrati
 relations (5) known as the shu�erelations.Proposition 1.2. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) with k1, l1 > 2. Then:(5) ∫

∆n

ωk

∫

∆m

ωl =
∑

σ∈sh(k,l)

∫

∆n+m

ωσ.Proof. Let n = k1 + ... + kp and m = l1 + ... + lq. Then we have:
∫

∆n

ωk

∫

∆m

ωl =

(∫

∆n

dt1
1 − t1

· · ·
dtn
tn

) (∫

∆m

dtn+1

1 − tn+1
· · ·

dtn+m

tn+m

)

=

∫

∆

dt1
1 − t1

· · ·
dtn
tn

dtn+1

1 − tn+1
· · ·

dtn+m

tn+m
.The set ∆ = {0 < t1 < . . . < tn < 1} × {0 < tn+1 < . . . < tn+m < 1} 
an be, up to
odimension 1 sets, split into a union of simpli
es

∐

σ∈sh([[1,n]],[[n+1,m]])

∆σ with ∆σ = {0 < tσ(1) < tσ(2) < ... < tσ(n+m) < 1},where [[a, b]] denotes the ordered sequen
e of integers from a to b.The integral over ∆ is the sum of the integrals over the individual simpli
es. Butthe integral over one of these simpli
es is, up to the numbering of the variables,exa
tly one term of the sum ∑

σ∈sh(k,l)

∫

∆n+m

ωσ. �1.3. The stu�e relations in terms of integrals. We explain here ideas al-ready written in arti
les of Gon
harov [Gon02℄ and in Fran
is Brown's Ph.D. thesis[Bro06℄, showing how to express the stu�e relations (2) in terms of integrals.Example. We have ζ(2) =
∫
∆2

dt2
t2

dt1
1−t1

. The 
hange of variables t2 = x1 and t1 =
x1x2 gives:

ζ(2) =

∫

[0,1]2

dx1

x1

x1dx2

1 − x1x2
=

∫

[0,1]2

dx1dx2

1 − x1x2
.This 
hange of variables is nothing but the blow-up of the point (0, 0) in the pro-je
tive plane, given in n dimensions by a sequen
e of blow-ups:(6) tn = x1, tn−1 = x1x2, . . . , t1 = x1...xn.We will write dnx for dx1 · · · dxn where n is the number of variables under theintegral. Using the 
hange of variables (6) for n = 4 we write the Kontsevi
h formsas follows:

ζ(4) =

∫

[0,1]4

d4x

1 − x1x2x3x4
, ζ(2, 2) =

∫

[0,1]4

x1x2d
4x

(1 − x1x2)(1 − x1x2x3x4)and
ζ(2)ζ(2) =

∫

[0,1]4

1

(1 − x1x2)

1

(1 − x3x4)
d4x.For any variables α and β we have the equality:(7) 1

(1 − α)(1 − β)
=

α

(1 − α)(1 − αβ)
+

β

(1 − β)(1 − βα)
+

1

1 − αβ
.This identity will be the key of this se
tion.



4 ISMAEL SOUDÈRES11Setting α = x1x2 and β = x3x4 and applying (7), we re
over the stu�e relation:
ζ(2)ζ(2) =

∫

[0,1]4

(
x1x2

(1 − x1x2)(1 − x1x2x3x4)
+

x3x4

(1 − x3x4)(1 − x3x4x1x2)

+
1

1 − x1x2x3x4

)
d4x

ζ(2)ζ(2) = ζ(2, 2) + ζ(2, 2) + ζ(4).General 
ase. We will show that the Cartier de
omposition (9) below makes itpossible to express all the stu�e relations in terms of integrals as in the exampleabove.Let k = (k1, . . . , kp) and l = (l1, . . . , lq) two tuples of integers with k1, l1 > 2.As above, if σ is a term of the formal sum k ∗ l, we will write σ ∈ st(k, l). We willput an index σ on any obje
t whi
h naturally depends on a stu�e.Let k = (k1, . . . , kp) be as above and n = k1 + · · ·+ kp. We de�ne fk1,...,kp
to bethe fun
tion of n variables de�ned on [0, 1]n given by:

fk1,...,kp
(x1, . . . , xn) =

1

1 − x1 · · ·xk1

x1 · · ·xk1

1 − x1 · · ·xk1xk1+1 · · ·xk1+k2

x1 · · ·xk1+k2

1 − x1 · · ·xk1+k2+k3

· · ·
x1 · · ·xk1+...+kp−1

1 − x1 · · ·xk1+···+kp

.Proposition 1.3. For all p-tuples of integers (k1, . . . , kp) with k1 > 2, we have(with n = k1 + · · · + kp):(8) ζ(k1, . . . , kp) =

∫

[0,1]n
fk1,...,kp

(x1, . . . , xn)dnx.Proof. Let ωk be the Kontsevi
h form asso
iated to a p-tuple (k1, . . . , kp) with
n = k1 + · · · + kp, so that ζ(k1, . . . , kp) =

∫
∆n

ωk.Applying the variable 
hange (6) to ωk, we see that for ea
h term dti

ti
, therearises from the 1

ti
a term 1

x1···xn−i+1
whi
h 
an
els with dti−1

··· = x1···xn−i+1dxn−i+2

··· .This gives the result. �To derive the stu�e relations in general using integrals and the fun
tions fk1,...,kp
,we will use the following notation.Notation. Let k be a sequen
e (k1, . . . , kp), n = k1 + · · ·+kp. We have n variables

x1, . . . , xn.
• For any sequen
e a = (a1, . . . , ar), we will write ∏

a = a1 · · ·ar.
• The sequen
e (x1, . . . , xn) will be written x. We set x(k, 1) = (x1, . . . , xk1)and

x(k, i) = (xk1+···+ki−1+1, . . . , xk1+···+ki
),so the x is the 
on
atenation of sequen
es x(k, 1) · · ·x(k, p).

• The sequen
e (x1, . . . , xk1+···+ki
) = x(k, 1) · · ·x(k, i) will be denoted by

x(k, 6 i). If k = (k0, kp), x0 = x(k, 6 p − 1) will be the sequen
e
(x1, . . . , xk1+···+kp−1).

• If l is a q-tuple with l1 + · · · lq = m and σ ∈ st(k, l), yσ will be the sequen
ein the variables x1, . . . , xn, x′
1, . . . , x

′
m in whi
h ea
h group of variables

x(k, i) = (xk1+···+ki−1+1, . . . , xk1+···+ki
)

(resp. x
′(l, j) = (x′

l1+···+lj−1+1, . . . , x
′
l1+···+lj ))



MOTIVIC DOUBLE SHUFFLE 5is in the position of ki (resp. lj) in σ. Components of σ of the form ki + ljgive rise to subsequen
es like
(xk1+···+ki−1+1, . . . , xk1+···+ki

, x′
l1+···+lj−1+1, . . . , x

′
l1+···+lj ) = (x(k, i),x′(l, j)).

• Following these notations, produ
ts x1 · · ·xk1 , xk1+···+ki−1+1 · · ·xk1+···+ki
,

x1 · · ·xk1+···+ki
will be written respe
tively ∏

x(k, 1), ∏
x(k, i), ∏

x(k, 6
i). As x(k, 6 p − 1) = x0 and x(k, 6 p) = x, produ
ts ∏

x(k, 6 p − 1) and∏
x(k, 6 p) will be written ∏

x0 and ∏
x.We remark that for ea
h σ ∈ st(k, l), ∏

σ =
∏

x
∏

x
′.Remark 1.4. Let (k1, . . . , kp) = (k0, kp) be a sequen
e of integers. Then:

fk1,...,kp
(x) = fk1,...,kp−1(x(k, 6 p − 1))

∏
x(k, 6 p − 1)

1 −
∏

x(k, 6 p)
= fk1,...,kp−1(x0)

∏
x0

1 −
∏

x
.Proposition 1.5. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) be two sequen
es ofweight n and m. Then:(9) fk1,...,kp

(x(k, 1), . . . ,x(k, p)) · fl1,...,lq(x
′(l, 1), . . . ,x′(l, q)) =

∑

σ∈st(k,l)

fσ(yσ).Proof. We pro
eed by indu
tion on the depth of the sequen
e. The re
ursion for-mula for the stu�e is given in (1).If p = q = 1 : As we have
fn(x(k, 1))fm(x′(l, 1)) =

1

1 −
∏

x(k, 6 1)
·

1

1 −
∏

x′(l, 6 1)
=

1

1 −
∏

x
·

1

1 −
∏

x′
,using the formula (7) with α =

∏
x and β =

∏
x
′ leads to(10)

fn(x(k, 1))fm(x′(l, 1)) =

∏
x

(1 −
∏

x)(1 −
∏

x
∏

x′)
+

∏
x
′

(1 −
∏

x′)(1 −
∏

x′
∏

x)

+
1

1 −
∏

x
∏

x′
.Indu
tive step: Let (k1, . . . , kp) = (k0, kp) and (l1, . . . , lq) = (l0, lq) be twosequen
es. By Remark 1.4, the following equality holds

fk0,kp
(x0,x(k, p))fl0,lq(x0

′,x′(l, q)) = fk0
(x0)

∏
x0

1 −
∏

x
fl0(x0

′)

∏
x
′
0

1 −
∏

x′
.Applying the formula (7) with α =

∏
x and β =

∏
x
′, one sees that the RHS ofthe previous equation is equal to

fk0
(x0)fl0(x0

′) · (
∏

x0 ·
∏

x
′
0)

( ∏
x

(1 −
∏

x)(1 −
∏

x
∏

x′)

+

∏
x
′

(1 −
∏

x′)(1 −
∏

x′
∏

x)
+

1

(1 −
∏

x
∏

x′)

)
.



6 ISMAEL SOUDÈRES11Expanding and using the Remark 1.4 we obtain:(11) fk0,kp
(x0,x(k, p))fl0,lq(x0

′,x′(l, q)) =

(
fk0,kp

(x)fl0(x0
′)

)
·

∏
x

∏
x
′
0

1 −
∏

x
∏

x′
+

(
fk0

(x0)fl0,lq(x
′)

)
·

∏
x
′ ∏

x0

1 −
∏

x′
∏

x

+ (fk0
(x0)fl0(x0

′)) ·

∏
x0

∏
x
′
0

1 −
∏

x
∏

x′
.Hen
e, the produ
t of fun
tions fk1,...,kp

and fl1,...,lq satis�es a re
ursion formulaidenti
al to the formula (1) that de�nes the stu�e produ
t. Using indu
tion, theproposition follows. �Corollary 1.6 (integral representation of the stu�e). Integrating the statement ofthe previous proposition over the 
ube and permuting the variables in ea
h term ofthe RHS, we obtain:
ζ(k)ζ(l) =

∫

[0,1]n
fkdnx

∫

[0,1]m
fld

mx =

∫

[0,1]n+m

∑

σ∈st(k,l)

fσ dn+mx =
∑

σ∈st(k,l)

ζ(σ).Proof. We only need to 
he
k that all integrals are 
onvergent. As all the fun
tionsare positive on the integration domain, all 
hanges of variable are allowed andwe 
an dedu
e the 
onvergen
e of ea
h term from the 
onvergen
e of the iteratedintegral representation for the multiple zeta values.Another argument is to remark that the orders of the poles of our fun
tions alonga 
odimension k subvariety is at most k. Then, for ea
h integral, a su

ession ofblow-up ensures that the integral 
onverge. �2. Moduli spa
es of 
urves; double shuffle and forgetful maps2.1. Shu�e and moduli spa
es of 
urves. Let k and l be as in the previousse
tion, let n = k1+· · ·+kp and m = l1+· · ·+lq. Following the arti
le of Gon
harovand Manin [GM04℄, we will identify a point of M0,j+3, the moduli spa
e of 
urvesof genus 0 with j + 3 marked points, with a sequen
e (0, z1, . . . , zj, 1,∞), the zibeing pairwise distin
t and distin
t from 0, 1 and ∞, and write Φj for the open
ell in M0,j+3(R) whi
h is mapped onto ∆j , the standard simplex, by the map:
M0,j+3 → (P1)j , (0, z1, . . . , zj , 1,∞) 7→ (z1, . . . , zj). Then we have:

ζ(k1, . . . , kp) =

∫

Φn

ωk.Proposition 2.1. Let β be the map de�ned by
M0,n+m+3

β
−−→ M0,n+3 ×M0,m+3

(0, z1, . . . , zn+m, 1,∞) 7−→ (0, z1, . . . , zn, 1,∞) × (0, zn+1, . . . , zn+m, 1,∞).Then, letting ti be the 
oordinate su
h that ti(0, z1, . . . , zn+m, 1,∞) = zi, we have
β∗(ωk ∧ ωl) =

dt1
1 − t1

∧ · · · ∧
dtn
tn

∧
dtn+1

1 − tn+1
∧ · · · ∧

dtn+m

tn+m
.Furthermore, if for σ ∈ sh([[1, n]], [[n + 1, n + m]]) we write Φσ

n+m for the open 
ellof M0,n+m+3(R) in whi
h the points are in the same order as their indi
es are in
σ, we have

β−1(Φn × Φm) =
∐

σ∈sh([[1,n]],[[n+1,n+m]])

Φσ
n+m.



MOTIVIC DOUBLE SHUFFLE 7Proof. The �rst part is obvious.In order to show that β−1(Φn × Φm) =
∐

Φσ
n+m we have to remember that a
ell in M0,n+m+3(R) is given by a 
y
li
 order on the marked points. Let X =

(0, z1, . . . , zn+m, 1,∞) be a point in M0,n+m+3(R) su
h that β(X) ∈ Φn × Φm.The values of the zi have to be su
h that(12) 0 < z1 < . . . < zn < 1 (< ∞) and 0 < zn+1 < . . . < zn+m < 1 (< ∞).However there is no order 
ondition relating, say z1 to zn+1.So, points on M0,n+m+3(R) whi
h are in β−1(Φn ×Φm) are su
h that the zi are
ompatible with (12). That is there are in ∐

σ∈sh([[1,n]],[[n+1,n+m]])

Φσ
n+m. �The open embedding β being su
h that Φn × Φm \

(
β(β−1(Φn × Φm))

) is of
odimension 1, we have the following propositionProposition 2.2. The shu�e relation ζ(k)ζ(l) =
∑

σ∈sh(k,l) ζ(σ) is a 
onsequen
eof the following 
hange of variables:
∫

Φn×Φm

ωk ∧ ωl =

∫

β−1(Φn×Φm)

β∗(ωk ∧ ωl).Proof. Using the previous proposition, the right hand side of this equality is equalto ∑

σ∈sh([[1,n]],[[n+1,n+m]])

∫

Φσ
n+m

dt1
1 − t1

∧ · · · ∧
dtn+m

tn+m
.Then we permute the variables and 
hange their names in order to have an integralover Φn+m for ea
h term. This is the same 
omputation we did for the integralover Rn+m in proposition 1.2.As the form dt1

1−t1
∧ · · · ∧ dtn+m

tn+m
(resp. dtσ(1)

1−tσ(1)
∧ · · · ∧

dtσ(n+m)

tσ(n+m)
) does not have anypole on the boundary of Φσ

n+m (resp. Φn+m), all the integrals are 
onvergent. �2.2. Stu�e and moduli spa
es of 
urves. In Se
tion 1.3, in order to have anintegral representation of the stu�e produ
t, we introdu
ed, using the integral overa simplex and a 
hange of variables, a 
ubi
al representation of the MZVs (integralover a 
ube). We use here a similar 
hange of variable to introdu
e an othersystem of lo
al 
oordinates on M0,r+3, the Deligne-Mumford 
ompa
ti�
ation ofthe moduli spa
e of 
urves. We will, following [Bro06℄, speak of 
ubi
al 
oordinates.Those 
ubi
al 
oordinates, ui, are de�ned on an open of M0,r+3 by u1 = tr and
ui = tr−i+1/tr−i+2 for i < r where the ti are the usual (simpli
ial) 
oordinates on
M0,r+3. This 
ubi
al system is well adapted to express the stu�e relations on themoduli spa
es of 
urves.Proposition 2.3. Let δ be the map de�ned by

M0,n+m+3
δ

−−−−−→ M0,n+3 ×M0,m+3

(0, z1, . . . , zn+m, 1,∞) 7−→ (0, zm+1, . . . , zm+n, 1,∞) × (0, z1, . . . , zm, zm+1,∞).Writing the expression of ωk and ωl in the 
ubi
al 
oordinates, one �nds ωk =
fk(u1, . . . , un)dnu and ωl = fl(un+1, . . . , un+m)dmu where the fk are as in se
tion1.3. Then, using those 
oordinates we have

δ∗(ωk ∧ ωl) = fk1,...,kp
(u1, . . . , un)fl1,...,lq(un+1, . . . , un+m)dn+muand

δ−1(Φn × Φm) = Φn+m.



8 ISMAEL SOUDÈRES11Proof. To prove the se
ond statement, let X = (0, z1, . . . , zn+m, 1,∞) su
h that
δ(X) ∈ Φn × Φm. Then the values of the zi's have to verify(13)

0 < z1 < . . . < zm < zm+1 (< ∞) and 0 < zm+1 < . . . < zn+m < 1 (< ∞).These 
onditions show that 0 < z1 < . . . < zm < zm+1 < . . . < 1 < ∞, so
X ∈ Φn+m.To prove the �rst statement, we 
laim that δ is expressed in 
ubi
al 
oordinatesby

(u1, . . . , un+m) 7−→ (u1, . . . , un) × (un+1, . . . , un+m).It is obvious to see that for the left hand fa
tor the 
oordinates are not 
hanged.For the right hand fa
tor we have to rewrite the expression of the right side in termsof the standard representatives on M0,m+3. We have
(0, z1, . . . , zm, zm+1,∞) = (0, z1/zm+1, . . . , zm/zm+1, 1,∞) = (0, t1, . . . , tm, 1,∞)in simpli
ial 
oordinates. This point is given in 
ubi
al 
oordinates on M0,m+3 by

(tm, tm−1/tm, . . . , t1/t2) = (zm/zm+1, . . . , z1/z2) = (un+1, . . . , un+m).

�As a 
onsequen
e of this dis
ussion and the results of Se
tion 1.3, we have thefollowing proposition.Proposition 2.4. Using the Cartier de
omposition (9), the stu�e produ
t 
an beviewed as the 
hange of variables:∫

Φn×Φm

ωk ∧ ωl =

∫

δ−1(Φn×Φm)

δ∗(ωk ∧ ωl).Remark 2.5. We should point out here the fa
t that the Cartier de
omposition"does not lie in the moduli spa
es of 
urves", in the sense that forms appear in thede
omposition whi
h are not holomorphi
 on the moduli spa
e. For example, inthe Cartier de
omposition of f2,1(u1, u2, u3)f2,1(u4, u5, u6), we see the term
u1u2u4u5du1du2du3du4du5du6

(1 − u1u2u4u5)(1 − u1u2u3u4u5u6)whi
h is not a holomorphi
 di�erential form on M0,6. However, it is a well-de�ned
onvergent form on the standard 
ell where it is integrated. Changing the num-bering of the variables (whi
h stabilises the standard 
ell) gives the equality with
ζ(4, 2). This example represents the situation in the general 
ase: when simplydealing with integrals, the non-holomorphi
 forms are not a problem. However, inthe 
ontext of framed motives they are.3. Motivi
 shuffle for the "
onvergent" words3.1. Framed mixed Tate motives and motivi
 multiple zeta values. Thisse
tion is a short introdu
tion to the motivi
 tools we will use to prove the motivi
double shu�e. The motivi
 
ontext is a 
ohomologi
al version of Voevodsky's
ategory DMQ [Voe00℄. Gon
harov developed in [Gon99℄, [Gon05℄ and [Gon01℄ anadditional stru
ture on mixed Tate motives, introdu
ed in [BGSV90℄, in order tosele
t a spe
i�
 period of a mixed Tate motive.An n-framed mixed Tate motive is a mixed Tate motive M equipped with twonon-zero morphisms:

v : Q(−n) → GrW
2n M f : Q(0) →

(
GrW

0 M
)∨

= GrW
0 M∨.On the set of all n-framed mixed motives, we 
onsider the 
oarsest equivalen
e re-lation for whi
h (M, v, f) ∼ (M ′, v′, f ′) if there is a linear map M → M ′ respe
ting



MOTIVIC DOUBLE SHUFFLE 9the frames. Let An be the set of equivalen
e 
lasses and A• be the dire
t sum ofthe An. We write [M ; v; f ] for an equivalen
e 
lassTheorem 3.1 ([Gon05℄). A• has a natural stru
ture of graded 
ommutative Hopfalgebra over Q.
A• is 
anoni
ally isomorphi
 to the dual of Hopf algebra of all endomorphismsof the �bre fun
tor of the Tannakian 
ategory of mixed Tate motives.In our 
ontext, the morphism v of a frame should be linked with some di�erentialform and the morphism f is a homologi
al 
ounterpart of v, that is a real simplex.We give here two te
hni
al lemmas that will be used in the next se
tions. Wewrite [M, v, f ] for the equivalen
e 
lass of (M, v, f) in A•. We will speak of framedmixed Tate motives in both 
ases.We re
all that the adition of two framed mixed Tate motives [M, v, f ] and

[M ′, v′, f ′] is
[M, v, f ] ⊕ [M ′, v′, f ′] := [M ⊕ M ′, (v, v′), f + f ′].Lemma 3.2. Let M be a mixed Tate motive. v, v1, v2 : Q(−n) → GrW

2n M and
f, f1, f2 : Q(0) → GrW

0 M∨. We have:
[M ; v; f1 + f2] = [M ; v; f1] + [M ; v; f2]and
[M ; v1 + v2; f ] = [M ; v1; f ] + [M ; v2; f ]Proof. It follow dire
tly from the de�nition in [Gon05℄. For the �rst 
ase, it isstraightforward to 
he
k that the diagonal map ϕ : M → M ⊕ M is 
ompatiblewith the frames. For the se
ond equality, the map from M ⊕ M to M whi
hsends (m1, m2) to m1 +m2 gives the map between the underlying ve
tor spa
e andrespe
ts the frames. �Lemma 3.3. Let M and M ′ be two mixed Tate motives. Let M be framed by

v : Q(−n) → GrW
2n and f : Q(0) → GrW

0 M∨. Suppose there exists v′ : Q(−n) →
GrW

2n M ′ and ϕ : M ′ → M 
ompatible with v and v′. Then f indu
es a map
f ′ : Q(0) → GrW

0 M ′∨ and if f ′ is non zero, then ϕ gives an equality of framedmixed Tate motives [M ; v; f ] = [M ; v′; f ′]We re
all a 
lassi
al result, used in [GM04℄ and des
ribed more expli
itly in[Gon02℄ that allows us to build mixed Tate motives from natural geometri
 situa-tions. In [Gon02℄, A.B. Gon
harov de�ned a Tate variety as a smooth proje
tivevariety M su
h that the motive of M is a dire
t sum of 
opies of the Tate motive
Q(m) (for 
ertain m). We say that a divisor D on M provides a Tate strati�
ationon M if all strata of D, in
luding D∅ = M, are Tate varieties.Let M be a smooth variety and X and Y be two normal 
rossing divisors on
M. Let Y X be Y \ (Y ∩ X), whi
h is a normal 
rossing divisor on M\ X .Lemma 3.4. Let M be a smooth variety of dimension n over Q and X ∪ Y be anormal 
rossing divisor on M providing a Tate strati�
ation of M. If X and Yshare no 
ommon irredu
ible 
omponents then there exists a mixed Tate motive:

Hn(M\ X ; Y X)su
h that its di�erent realisations are given by the respe
tive relative 
ohomologygroups.We have the following version given in [GM04℄.



10 ISMAEL SOUDÈRES11Corollary 3.5. Let X and Y be two normal 
rossing divisors on ∂M0,n+3 andsuppose they do not share any irredu
ible 
omponents. Then, any 
hoi
e of non-zero elements
[ωX ] ∈ GrW

2n(Hn(M0,n+3 \ X)); [ΦY ] ∈ GrW
0 (Hn(M0,n+3; Y ))∨de�nes a framed mixed Tate motive given by

[
Hn(M0,n+3 \ X ; Y X); [ωX ]; [ΦY ]

]
.The following lemma shows that we have some �exibility in 
hoosing X and Yfor the framed mixed Tate motive [

Hn(M\ X ; Y X); [ωX ]; [ΦY ]
].Lemma 3.6. With the notations of Lemma 3.4, let X ′ be a normal 
rossing divisor
ontaining X whi
h still does not share any irredu
ible 
omponent with Y , X ′ ∪ Ybeing a normal 
rossing divisor. Then:

[
Hn(M\ X ; Y X); [ωX ]; [ΦY ]

]
=

[
Hn(M\ X ′; Y X′

); [ωX ]; [ΦY ]
]
.Suppose now that Y ′ is a normal 
rossing divisor 
ontaining Y whi
h does not shareany irredu
ible 
omponent with X ′, X ′∪Y ′ being a normal 
rossing divisor. Then:

[
Hn(M\ X ′; Y X′

); [ωX ]; [ΦY ]
]

=
[
Hn(M\ X ′; Y ′X′

); [ωX ]; [ΦY ]
]
.We are now in a position to introdu
e Gon
harov's and Manin's de�nition ofmotivi
 multiple zeta values.De�nition 3.7. In parti
ular, let k be a p-tuple with k1 > 2 and let Ak be thedivisor of singularities of ωk. Let Bn be the Zariski 
losure of the boundary of Φn.The motivi
 multiple zeta value is de�ned in [GM04℄ by:

[
Hn(M0,n+3 \ Ak; BAk

n ); [ωk]; [Φn]
]3.2. Motivi
 Shu�e. The map β de�ned in Proposition 2.1 will be the key to
he
k that the motivi
 multiple zeta values satisfy the shu�e relations.This mapextends 
ontinuously to the Deligne-Mumford 
ompa
ti�
ation of the moduli spa
esof 
urves:

M0,n+m+3
β

−−−−−→ M0,n+3 ×M0,m+3.Let ωk and ωl be as in se
tion 2.1, and write Ak and Al for their respe
tive singu-larity divisors. Let Bn and Bm denote the Zariski 
losures of the boundary of Φnand Φm respe
tively. For σ ∈ sh([[1, n]], [[n + 1, n + m]]), let ωσ denote the di�eren-tial form whi
h 
orresponds to the shu�ed MZV and let Aσ denote its divisor ofsingularities. Let Bn+m denote the Zariski 
losure of the boundary of Φn+m and
Bσ that of Φσ

n+m. The shu�e relations between motivi
 multiple zeta values aregiven in the following proposition.Proposition 3.8. We have an equality of framed motives:
[
Hn

(
M0,n+3 \ Ak; BAk

n

)
; [ωk]; [Φn]

]
·
[
Hm

(
M0,m+3 \ Al; B

Al

m

)
; [ωl]; [Φm]

]
=

∑

σ∈sh([[1,n]],[[n+1,n+m]])

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.Proof. To prove this equality, we need to display a map between the underlyingve
tor spa
es whi
h respe
ts the frames.We set A′ the boundary of (M0,n+3 \ Ak) × (M0,m+3 \ Al), it is equal to thedivisor of singularities of ωk ∧ ωl on M0,n+3 ×M0,m+3.



MOTIVIC DOUBLE SHUFFLE 11Let A0 = β−1(A′) and let B0 be the Zariski 
losure of the boundary of Φ0 =
β−1(Φn ×Φm). Let Bn,m be the Zariski 
losure of the boundary of Φn ×Φm. Themap β gives a map:

(M0,n+m+3 \ A0; B
A0
0 )

β
//

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)
.

?�

α

OO

We introdu
e the the right-hand in
lusion α be
ause B0 does not map onto Bn,mvia β. The map α indu
es a map on the mixed Tate motives:(14) Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

α∗

−−→

Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)The frames on the RHS of (14) is given by [Φn × Φm] and [ωk ∧ ωl]. Applyinglemma 3.3 to (14), [Φn ×Φm] indu
es a map Φ̃ from Q(0) to the −2(n+m) gradedpart of the LHS of (14). In fa
t, sin
e α is the identity map, we have [Φ̃] = [Φn×Φm],so [Φn × Φm] and [ωk ∧ ωl] give a frames on the LHS of (14) whi
h is 
ompatiblewith the map α∗.The map β indu
es a map on the mixed Tate motives:(15) Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

β∗

−−→

Hn+m(M0,n+m+3 \ A0; B
A0
0 )On the RHS of (15) the frames given by [ω0] where ω0 is β∗(ωk ∧ ωl) and [Φ0] =

[β−1(Φn × Φm)] whi
h is 
ompatible with the map β∗.Now we 
an prove the proposition. The Künneth formula gives us a map:
Hn

(
M0,n+3 \ Ak; BAk

n

)
⊗ Hm

(
M0,m+3 \ Al; B

Al

m

)
−−−−→

Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m.
)By theorem 3.1, this map also respe
ts the frames, so the asso
iated framed mixedTate motives are equal. By (14),

[
Hn+m

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)
; [ωk ⊗ ωl]; [Φn × Φm]

]is equal to
[
Hn+m

(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); β(B0)

A′
)

; [ωk ⊗ ωl]; [Φn × Φm]
]
,whi
h, using (15), is equal to

[
Hn+m(M0,n+m+3 \ A0; B

A0
0 ); [ω0]; [Φ0]

]
.It remains to show that:(16) [

Hn+m(M0,n+m+3 \ A0; B
A0
0 ); [ω0]; [Φ0]

]
=

∑

σ

[
Hn+m(M0,n+m+3 \ Aσ; BAσ

n+m); [ωσ]; [Φn+m]
]
.In the LHS of (16), B0 being in
luded in Bsh =

⋃
σ Bσ, we 
an repla
e B0 by

Bsh using lemma 3.6.
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∑

σ[Φσ
n+m], lemma 3.2 shows that the LHS of 16 is equal to

∑

σ

[
Hn+m(M0,n+m+3 \ A0; B

A0

sh ); [ω0]; [Φ
σ
n+m]

]
.Using the fa
t that Bσ ⊂ Bsh and the identity map, lemma 3.6 shows that thisframed motive is equal to

∑

σ

[
Hn+m(M0,n+m+3 \ A0; B

A0
σ ); [ω0]; [Φ

σ
n+m]

]
.As the divisor of singularities A of ω0 is in
luded in A0, using lemma 3.6 we 
anrepla
e A0 by A in this framed motive. Then permuting the points gives an equalityof framed motives on ea
h term of the sum,

[
Hn+m(M0,n+m+3 \ A0; B

A0
σ ); [ω0]; [Φ

σ
n+m]

]
,with [

Hn+m(M0,n+m+3 \ Aσ; BAσ

n+m); [ωσ]; [Φn+m]
]
.Thus, we obtain the desired formula:

[
Hn

(
M0,n+3 \ Ak; BAk

n

)
; [ωk]; [Φn]

]
·
[
Hm

(
M0,m+3 \ Al; B

Al

m

)
; [ωl]; [Φm]

]
=

∑

σ∈sh((1,...,n),(n+1,...,n+m))

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.

�4. The stuffle 
aseThe goal of this se
tion is to be able to translate all the 
al
ulations done inSe
tion 1.3 into a motivi
 
ontext. In order to a
hieve this goal, we need to de�ne,for all n greater than 2, a variety Xn → An resulting of su

essive blow-ups of
An together with a di�erential form Ωs

k1,...,kp
for any tuple of integer (k1, . . . , kp)(with k1 + · · · kp = n) and any permutation s of [[1, n]]. After de�ning another butequivalent motivi
 
ounterpart of the multiple zeta values, we will show, using anatural map from Xn+m to an open subset of M0,n+m+3, that the stu�e produ
tis de�ned at a motivi
 level.4.1. Blow up preliminaries.Lemma 4.1 (Flag Blowup Lemma; [Uly02℄.). Let V 1

0 ⊂ V 2
0 ⊂ · · ·V r

0 ⊂ W0 be a �agof smooth subvarieties in a smooth algebrai
 variety W0. For k = 1, . . . , r, de�neindu
tively Wk as the blow-up of Wk−1 along V k
k−1, then V k

k as the ex
eptionaldivisor in Wk and V i
k , k 6 i, as the proper transform of V i

k−1 in Wk. Then thepreimage of V r
0 in the resulting variety Wr is a normal 
rossing divisor V 1

r ∪· · ·∪V r
r. If F is a �ag of subvarieties V i

0 of a smooth algebrai
 variety W0 as in theprevious lemma, the resulting spa
e Ws will be denoted by BlF W0.Theorem 4.2 ([Hu03℄). Let X0 be an open subset of a nonsingular algebrai
 variety
X. Assume that X \ X0 
an be de
omposed as a �nite union ∪i∈IDi of 
losedirredu
ible subvarieties su
h that(1) For all i ∈ I, Di is smooth;(2) for all i, j ∈ I, Di and Dj meet 
leanly, that is the s
heme-theoreti
 in-terse
tion is smooth and the interse
tion of the tangeant spa
e TX(Di) ∩

TX(Dj) is the tangeant spa
e of the interse
tion TX(Di ∩ Dj);(3) for all i, j ∈ I, Di ∩ Dj = ∅ ; or a disjoint union of Dl.



MOTIVIC DOUBLE SHUFFLE 13The set D = {Di}i∈I is then a poset. Let k be the rank of D. Then there is asequen
e of well-de�ned blow-ups
BlD X → BlD6k−1 X → · · · → BlD60 X → Xwhere BlD60 X → X is the blowup of X along Di of rank 0, and, indu
tively,

BlD6r X → BlD6r−1 X is the blowup of BlD6r−1 X along the proper transforms of
Dj of rank r, su
h that(1) BlD X is smooth;(2) BlD X \ X0 =

⋃
i∈I D̃i is a divisor with normal 
rossings;(3) For any integer k, D̃i1 ∩ · · · ∩ D̃ik

is non-empty if and only if, up to num-bering, Di1 ⊂ · · · ⊂ Dik
form a 
hain in the poset D. Consequently, D̃iand D̃j meet if and only if Di and Dj are 
omparable.The fa
t that blow-ups are lo
al 
onstru
tions yields dire
tly to the followingCorollary 4.3 (Flags blow-up sequen
e). Let X and D be as in the previous the-orem. Let F1, . . . , Fk be �ags of subvarieties of D su
h that(1) F1, . . . , Fk is a partition of D,(2) If D is in some Fi, then for all D′ ∈ D with D′ < D there exists some

j 6 i su
h that D′ ∈ Fj .If F i
j denotes the �ag of the proper transform of elements of F

i−1
j in

Bl
F

i−1
i

(· · · (BlF1 X) · · · ) ,then
BlD X = Bl

F
k−1
k

(· · · (BlF1 X) · · · )We will denote su
h sequen
e of blow-up by
BlFk,...,F1 XAs we want to apply these results in order to have a motivi
 des
ription of thestu�e produ
t in terms of blow-ups, we need some pre
isions about what sort ofmotives arise from the 
onstru
tion of Theorem 4.2. Following the notation of thearti
le [Hu03℄, in parti
ular using the proof of theorems 1.4, 1.7 and Corollary 1.6,we have the following proposition:Proposition 4.4. Suppose that X and D = ∪Di as in proposition 4.2 are su
hthat X and all the Di are Tate varieties. Let Er+1 be the set of ex
eptional divisorsof BlD6r X → X. Then all possible interse
tion of strata of Dr+1 ∪ Er+1 are TateVarieties and so is BlD6r XProof. Mainly following the proof of theorem 1.7 in [Hu03℄, we use an indu
tion on

r. If r = 0 then BlD60 X → X is the blow up along the disjoint subvarities Di ofrank 0.All the ex
eptional divisors in E1 are of the form P(NXDi) (with Di of rank 0)and as the Di are Tate, so are the ex
eptional divisors.The Blow-up formula
h(XZ) = H(X)

d−1⊕

i=0

h(Z)(−i)[−2i](17)tell us that the blow-up of a Tate varietyX along some Tate variety Z o f 
odimesion
d is a Tate variety. Then BlD60 X is Tate. More over let D1

i be an element of D1, itis the proper transform of an element Di in D of rank bigger than 1. And theorem1.4 in [Hu03℄ tells us that D1
i = BlDj⊂Di;rank(Dj)=0 Dj and therefore is a Tatevariety



14 ISMAEL SOUDÈRES11We now need to show that all interse
tion of strata of D1 ∩ E1 is Tate. As the
entre of the Blow up were disjoint, elements in E1 do not interse
t.Let D1
i and D1

j be two elements of D1 being the proper transform of Di and Djin D. If Di ∩ Dj = ∅ then the same hold for their proper transform and there isnothing to prove, else Di ∩ Dj = ∪Dl. If the maximal rank of the Dl is 0 then thelemma 2.1 in [Hu03℄ ensures that the proper transform have an empty interse
tion.If the maximal rank of the Dl is bigger than 1 the fa
t that Di and Dj meet
leanly ensures that the proper transform of the interse
tion is the interse
tion ofthe proper transform, that is
D1

i ∩ D1
j = BlDl⊂Di∩Dj ;rank(Dl)=0 Di ∩ DjAnd the interse
tion is Tate. Moreover from theorem 1.4 ([Hu03℄) we have D1

i ∩
D1

j = ∪D1
l . This allow to 
onsider only interse
tion of the form E1∩D1

i with E1 in
E1 and D1

i in D1. Su
h an interse
tion is non empty if and only if E1 
omes froman element Dj of rank 0 in D with Dj ⊂ Di. Then E1 ∩ D1
i is P(NDi

Dj) and is aTate variety.Assume the statement is true for BlD6r−1 X, Er and Dr. By 
orollary 1.6in [Hu03℄, the blow-up BlD6r X → BlD6r−1 X is
BlDr

60
(BlD6r X) −→ BlD6r−1 X.The 
entre of the blow-up are the element in Dr of rank r whi
h by assumptionare Tate, as BlD6r−1 X , then BlD6r X and the new ex
eptional divisors are Tate.The other ex
eptional divisor are proper transform of element in Er and are of theform

Er+1
i = BlEr

i
∩Dr

l
;rank(Dl)=r Er

iwith Er
i in Er and Dr

l in Dr 
oming from some Dl in D. As by indu
tion hypothesisboth Er
i and Er

i ∩ Dr
l are Tate, Er+1

i is a Tate variety. The same argument provethat all element in Dr+1 are Tate. As previously the interse
tion of two element in
Dr+1 is either empty or the proper transform of the interse
tion of two element in
Dr ; again this proper transform is Tate.Theorem 1.4 tells us that the interse
tion Dr+1

i ∩Dr+1
j of two elements of Dr+1is either empty either the union of some elements Dr+1

l in Dr+1. Then, to provethat all possible interse
tions of strata of Er+1 ∪Dr+1 is Tate it is enough to provethat the interse
tion of some Dr+1
i with any interse
tion Er+1

1 ∩ · · ·Er+1
k is Tate.If two of the Er+1

i are ex
eptional divisor of BlDr
60

(BlD6r X) → BlD6r−1 X thenthe interse
tion is empty be
ause the 
orresponding strata Dr
i and Dr

j have anempty interse
tion (they have been separated at a previous stage).Hen
e at most one of Er+1
i is an ex
eptional divisor 
oming from the last blow-upand we 
an suppose that the strata Dr+1

i , Er+1
1 , . . . , Er+1

k−1 are 
oming from strataat the previous stage Dr
i , E

r
1 , . . . , Er

k−1.
• Suppose that Er+1

k is the proper transform of an ex
eptional divisor Er
k in

Er. The subvariety Y = Dr
i ∩ Er

1 ∩ · · ·Er
k is Tate by indu
tion hypothesisand its proper transform is

BlDr
j
∩Y ;rank(Dj)=r Ywhi
h is a Tate variety (Dr

j ∩Y is either empty or Tate and Y is Tate). Onthe other side the proper transform of Y is the interse
tion Dr+1
i ∩Er+1

1 ∩
· · · ∩ Er+1

k whi
h is therefore Tate.
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• Suppose that Er

k is the ex
eptional divisor 
oming from the blow-up of
BlD6r−1 X along Dr

j . Let Y be the interse
tion Dr
i ∩ Er

1 ∩ · · ·Er
k−1. Then

Dr
j ∩ Y is either empty or a Tate variety In the �rst 
ase the interse
tion

Dr+1
i ∩ Er+1

1 ∩ · · · ∩ Er+1
k is empty. In the later 
ase we have

Dr+1
i ∩ Er+1

1 ∩ · · · ∩ Er+1
k = P(NY Y ∩ Dr

j )whi
h is Tate.
�4.2. The spa
e Xn and some of its properties. Let n be an integer greaterthan 2 and for i ∈ [[1, n]] and let x1, . . . , xn be the natural 
oordinates on An. Wede�ne the divisors AI , B0

i , B1
i , An, Bn, D1

n, D0
n and Dn as follow:

• For all subset non empty I of [[1, n]], AI is the divisor de�ned by
1 −

∏

i∈I

xi = 0;

• for all i ∈ [[1, n]], B0
i is the divisor de�ned by xi = 0;

• for all i ∈ [[1, n]], B1
i = A{i} is the divisor de�ned by 1 − xi = 0;

• Bn is the union (
⋃

i B0
i )

⋃
(
⋃

i B1
i );

• An is the union ⋃
I⊂[[1,n]];|I|>2 AI ;

• D1
n is the union ⋃

I⊂[[1,n]];I 6=∅ AI ;
• D0

n is the union ⋃
i B0

i ;
• Dn is the union D0

n

⋃
D1

n.Remark 4.5. The divisor Bn is the Zariski 
losure of the boundary of the real 
ube
Cn = [0, 1]n in An(R).As the divisor Dn is not normal 
rossing, we would like to �nd a suitable su
-
ession of blow-up that will allow us to have a normal 
rossing divisor D̂n over Dn.In order to a
hieve that we �rst need the following remark and lemma.Remark 4.6. Let I be a non-empty subset of [[1, n]] and x = (x1, . . . , xn) a point in
AI , then the normal ve
tor of AI at the point x is

nAI

|x =
∑

i∈I

1

xi
dxi.(18)Therefore, if I and J are two distin
t non-empty subsets of [[1, n]], the interse
tionof AI and AJ is transverse.Lemma 4.7. Let I1, . . . , Ik (k > 3) be distin
t non-empty subsets of [[1, n]] and let

x be a point in
AI1 ∩ · · · ∩ AIk

.Suppose that n
AIk

|x is in Vect(n
AI1

|x , . . . , n
AIk−1

|x ) then
AI1 ∩ · · · ∩ AIk−1

= AI1 ∩ · · · ∩ AIk
.Proof. By assumption, there exists rational numbers α1, . . . , αk su
h that

n
AIk

|x = α1n
AI1

|x + · · · + αk−1n
AIk−1

|x .Considering the expression (18), if δI is the 
hara
teristi
 fun
tion of I, we �ndthat for all i in [[1, n]]

δIk
(i) = α1δI1(i) + · · · + αk−1δIk−1

(i).



16 ISMAEL SOUDÈRES11Now let y = (y1, . . . , yn) be a point in AI1 ∩ · · · ∩ AIk−1
we have

∏

i∈Ik

yi =
∏

i∈[[1,n]]

y
δIk

(i)

i =
∏

i∈[[1,n]]

(y
δI1 (i)
i )α1 · · ·

∏

i∈[[1,n]]

(y
δIk−1

(i)

i )αk−1 = 1

�Lemma 4.8. Let D1
n be the poset (for the in
lusion) formed by all the irredu
ible
omponents of all possible interse
tions of divisors AI . Then the poset D1

n satisfythe 
ondition (1), (2) and (3) of theorem 4.2.Proof. The interse
tion 
ondition (3) follows from the de�nition of D1
n. From theformer lemma, we dedu
e that the dimension of the normal spa
e at a point of an in-terse
tion is the 
odimension of this interse
tion. Hen
e the irredu
ible 
omponentsof the interse
tions are smooth.Let S1 and S2 be two elements of D1

n. To show that S1 and S2 meet 
leanly,it is enough to show that the normal bundle of the interse
tion is spanned by thenormal bundles of S1 and S2, that is
NAn(S1 ∩ S2) = NAn(S1) + NAn(S2).As S1 and S2 are interse
tion of some AI , it is enough show that the normal bundleof AI1 ∩ · · · ∩ AIk

is spanned by the normal ve
tor of the AIj
and that is ensuredby lemma 4.7 and remark 4.6. �Applying the 
onstru
tion of theorem 4.2 with D = D1

n and X = An leads to avariety Xn
pn
→ An, whi
h result from su

essive blow-up of all the strata of D1

n su
hthat the preimage D̂1
n of D1

n is a normal 
rossing divisor. We will write D̂1
n to meanthe preimage of D1

n.Lemma 4.9. Let D̂0
n be the proper transform in Xn of the divisor D0

n. Then
D̂n = D̂1

n

⋃
D̂0

n is a normal 
rossing divisor.Proof. Let I be a non-empty subset of [[1, n]], B̂0
I (resp. B0

I ) be the interse
tion in
Xn (resp. An) of divisors {xi = 0} for i in I. And let Ŝ1, . . . , Ŝk be strata of D̂n

1su
h that the interse
tion of the Ŝi is non-empty. We want to show that there is aneighbourhood V of B̂0
I

⋂
Ŝ1

⋂
· · ·

⋂
Ŝk su
h that V ∩ D̂n is normal 
rossing. Bytheorem 4.2, the Ŝi are 
oming from strata of D1

n, S1 ⊂ · · · ⊂ Sk. As the interse
tionof the Ŝi's with B̂0
I is non-empty, the interse
tion of B0

I with S1 is non-empty. Thereexists I1, . . . , Il non-empty subsets of [[1, n]] su
h that S1 = AI1 ∩ · · · ∩ AIl
.As B0

I

⋂
S1 is non-empty, we have

I
⋂

(I1

⋃
· · ·

⋃
Il) = ∅.Then, in An, we have a neighbourhood V0 of B0

I

⋂
S1 isomorphi
 to a produ
t

Ad × A|I| with d = n − |I|:
Ad × A|I|

∪ ∪
D̃1

d

⋃
i∈I B̃0

i ,where B̃0
i is the hyperplane 
orresponding to {xi = 0} inside A|I|.Lifting this neighbourhood to V̂0 in Xn, it be
omes isomorphi
 to Xd ×A|I| with

D̂1
d ⊂ Xd. Then, for any Ŝi there is a stratum Ŝd

i of D̂1
d su
h that V̂0∩Ŝi ≃ Ŝd

i ×A|I|.As the Ŝd
i 's give a normal 
rossing divisor in Xd by Theorem 4.2, V̂0 gives theneighbourhood of B̂0

I

⋂
Ŝ1

⋂
· · ·

⋂
Ŝk su
h that V ∩ D̂n is a normal 
rossing divisorin Xn.
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�De�nition 4.10. Let B̂n denote the preimage of Bn and Ân be the divisor D̂n\B̂n.Remark 4.11. The divisors Ân and B̂n do not share any irredu
ible 
omponentsand are both normal 
rossing divisors.Let Ĉn be the preimage of Cn = [0, 1]n in Xn and Ĉn its 
losure. Then B̂n isthe Zariski 
losure of the boundary of Ĉn and there is a non-zero 
lass

[Ĉn] ∈ GrW
0 Hn(Xn, B̂n).(19)If I is a subset of [[1, n]], we de�ne FI and GI to be the fun
tions

GI : (x1, . . . , xn) 7−→
∏

i∈I xi

FI : (x1, . . . , xn) 7−→ 1 −
∏

i∈I xi.De�nition 4.12. A �ag F of [[1, n]] is a 
olle
tion of non-empty distin
t subsets Ijof [[1, n]] su
h that I1 ( . . . ( Ir. The length of the �ag F is the integer r and wemay say that F is an r-�ag of [[1, n]]. A �ag on length n will be a maximal �ag. Adistinguished r-�ag (F , i1, . . . ip) will be a �ag F of length r together with element
i1 < . . . < ip of [[1, r]].De�nition 4.13. Let (F , i1, . . . ip) be a distinguished r-�ag of [[1, n]]. Let ΩF

i1,...,ipdenote the di�erential form of Ω•
log(A

n \ Dn) de�ned by
ΩF

i1,...ip
=

r∧

j=1

d log(gj)where
gj =

{
FIj

if j ∈ {i1, . . . , ip}
GIj

otherwiseLet k = (k1, . . . , kp) be a tuple of positive integers with k1 > 2 su
h that k1 +
· · · + kp = n and s be a permutation of [[1, n]]. We de�ne a di�erential form
Ωk,s ∈ Ωn

log(A
n \ Dn) by

Ωk,s = fk1,...,kn
(xs(1), . . . , xs(n)) dx1 ∧ · · · ∧ dxn.Remark 4.14. Let k and s be as in the previous de�nition. We asso
iate to the pair

(k, s) the maximal distinguished �ag (Fk, i1, . . . , ip) de�ned by Ii = {s(1), . . . , s(i)}and ij = k1 + · · ·+ kj for j running from 1 to p. Then we 
an see that there existsan integer rs su
h that
Ωk,s = (−1)rsΩFk

i1,...ip
.De�nition 4.15. We shall write ωF

i1,...,ip
and ωk,s for the pull ba
k on Xn \ D̂n of,respe
tively, the forms ΩI1,...,Ip

and Ωk,s.Proposition 4.16. If (F , i1, . . . , ip) is a maximal �ag of [[1, n]] su
h that i1 > 2and ip = n then:
• The divisor of singularities AF

i1,...,ip
of ΩF

i1,...,ip
is AIi1

∪ · · · ∪ AIip
.

• The divisor of singularities ÂF
i1,...,ip

of ωF
i1,...,ip

lies in Ân.Thus, the divisorof singularities of ωk,s lies in Ân.Moreover, if (F , i1, . . . , ip) and (F ′, i′1, . . . , i
′
q) are two distinguished �ags of length

ip and i′q with |i1| > 2, |i′1| > 2 and Iip
, I ′iq

being a partition of [[1, n]], then thedivisor of singularities of ωF
i1,...,ip

∧ ωF ′

i′1,...,i′q
lies in Ân.



18 ISMAEL SOUDÈRES11Let (F , i1 ( . . . ( ip) be a �ag as in the previous proposition.It is straightforward to see that AF
Ii1 ,...Iip

is AIi1
∪ · · · ∪ AIip

. The followinglemma from Gon
harov 
an easily be modify to �t into our situation.Lemma 4.17 ([Gon02℄[lemma 3.8℄). Let Y be a normal 
rossing divisor in a smoothvariety X and ω ∈ Ωn
log(X \ Y ). Let p : X̂ −→ X be the blow-up of an irredu
iblevariety Z. Suppose that the generi
 point of Z is di�erent from the generi
 pointsof strata of Y . Then p∗ω does not have a singularity at the spe
ial divisor of X̂.That is:Lemma 4.18. Let Y be a normal 
rossing divisor in An and ω ∈ Ωn

log(A
n \Y ). Let

pn : Xn → An be the map of our previous 
onstru
tion. Suppose that the generi
points of the strata of Bn that are blow-up in the 
onstru
tion of Xn are di�erentfrom the generi
 points of strata of Y . Then p∗nω does not have singularities at the
orresponding ex
eptional divisors in B̂n.It is enough to 
he
k that the divisor of singularities of ΩF
i1,...,iP

is a a normal
rossing divisor and that none of its strata is a blown up strata of Bn.The divisor of singularities of ΩF
i1,...,ip

is AIi1
∪ · · · ∪ AIip

and to show it is anormal 
rossing divisor it is enough to show that the normal ve
tors of the AIijat any interse
tion of some of them are linearly independent. The normal ve
torof AIij
is ∑

i∈Iij
1/xi dxi and as we have I1 ( I2 ( . . . ( Ip, they are linearlyindependent.We now have to show that none of the strata of Bn that are blown up in the
onstru
tion of Xn are exa
tly some strata of AI1∪· · ·AIp

. Let S be su
h a strata of
Bn of 
odimension k. The strata S is de�ned by the equations xr1 = 1, . . . , xrk

= 1.If IS denotes the set {r1, . . . , rk} then, for any subset I of [[1, n]], S is in
luded in AIif and only I is in
luded in IS . As Ii ⊂ Ii′ for i < i′, if S is in
luded in a strata SAof AI1,...,Ip
, that strata is of the form AIi1

∩ · · · ∩AAij
with j < k be
ause |I1| 6 2.As a 
onsequen
e, SA is of 
odimension at most k − 1 and S 
an not be a strata of

AF
i1,...,ip

.We use the same argument in the 
ase of two distinguished �ags as in the lemmaand the proposition 4.16 is proved.Proposition 4.19. The divisor Ân does not interse
t the boundary of Ĉn in Xn(R).Proof. Let S be an irredu
ible 
odimension 1 stratum of B̂n 
ontaining an inter-se
tion of some Ân strata with the boundary of Ĉn. As, the divisor An interse
tthe boundary of the real 
ube Cn only on strata of Bn that are of 
odimension atleast 2, S have to be su
h that pn(S) is a stratum of Bn of 
odimension at least 2.Using the symmetry, with respe
t to the standard 
oordinates on An, we 
ansuppose that pn(S) is de�ned in those 
oordinates by xk = xk+1 = . . . = xn.Starting from An and blowing up �rst the point x1 = x2 = . . . = xn = 1, thenthe edge x2 = x3 = . . . = xn = 1 and after that the plane x3 = x4 = . . . = xn = 1and so on, we obtain a variety p̃n : X̃n → An. There are natural lo
al 
oordinates
(s1, . . . , sn)) on X̃n su
h that the 
oordinates on An de�ned by yi = 1− xi satisfy:

y1 = s1, y2 = s1s2, . . . , yi = s1s2 · · · si, . . . , yn = s1s2 · · · sn.In the yi-
oordinates the stratum xj = xj+1 = . . . = xn = 1 is yj = yj+1 = . . . =

yn = 0 and its preimage in X̃n is given by sj = 0.For any permutation s of [[1, n]] we 
ould apply the same 
onstru
tion, that isblowing the point xs(1) = xs(2) = . . . = xs(n) = 1 then the edge xs(2) = xs(3) =

. . . = xs(n) = 1 and so on, and have a variety p̃s
n : X̃s

n → An. The preimage of Dn
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n will be denoted by D̃s

n, B̃s
n will denote the preimage of Bn and Ãs

n is D̃s
n \B̃s

n.To prove that Ân does not interse
t the boundary of Ĉn in Xn(R) it is enough toshow that for any permutation s Ãs
n does not interse
t, in X̃s

n(R), the boundary ofthe preimage of Cn. It is then enought to show that the proper transforms of thedivisors AI do not interse
t the boundary of X̃s
n(R) be
ause it will then be the samefor the irredu
ible 
omponents of their interse
tions as for the proper transforms ofthose 
omponents by the remaining blow-up used to rea
h Xn. By symmetry, it isenough to show it when s is the identity map and then in the 
ase of X̃n. Let C̃nbe the preimage of Cn in X̃n .Let AI be a 
odimension 1 stratum of An, I being the set {i0, . . . , ip} and supposethat i0 < . . . < ip. We want to show that the 
losure ÃI of the preimage of AI \Bnin X̃n does not interse
t the boundary of C̃n. The k-th symmetri
 fun
tion will bedenoted by σk with the following 
onvention

σ0 = 1, σk(X1, . . . , Xl) = 0 if l > kThe stratum AI is de�ned in the xi-
oordinates by 1− xi0 · · ·xip
= 0 and in the yi
oordinates by

0 =

p+1∑

k=1

(−1)k−1σk(yi0 , yi1 . . . , yip
).(20)Before giving an expli
it expression of ÃI with the si 
oordinates, we de�ne theset J0 as {1, . . . , i0} and the sets J1, . . . , Jp by

Jk = {i0 + 1, i0 + 2, . . . , ik}for all k in [[1, p]]For any subset J of [[1, n]], ΠJ
s will denote the produ
t ∏

j∈J sj and we have thefollowing relations
yi0 = ΠJ0s and ∀k ∈ [[1, p]], yik

= ΠJ0sΠJksThe RHS of the equation (20) 
an be written, using the 
hange of variables
yi = s1 · · · si as

p+1∑

k=1

(−1)k−1σk(ΠJ0s, ΠJ0sΠJ1s, . . . , ΠJ0sΠJps).(21)For any indeterminate λ one have, for any k,
σk(λ, λX1, λX2, . . . , λXp) = λk(σk−1(X1 . . . , Xp) + σk(X1, . . . , Xp)).Then the expression (21) is equal to

ΠJ0s

[
1 + σ1(Π

J1s, . . . , ΠJps)

+

p−1∑

k=1

(
(−1)k(ΠJ0s)k

(
σk(ΠJ1s, . . . , ΠJps) + σk+1(Π

J1s, . . . , ΠJps)
))

+ (−1)pσp(Π
J1s, . . . , ΠJps)

]



20 ISMAEL SOUDÈRES11The expression of ÃI in the si-
oordinates is then(22) 0 = 1 + σ1(Π
J1s, . . . , ΠJps)

+

p−1∑

k=1

(
(−1)k(ΠJ0s)k

(
σk(ΠJ1s, . . . , ΠJps) + σk+1(Π

J1s, . . . , ΠJps)
))

+ (−1)pσp(Π
J1s, . . . , ΠJps)The 
losure of C̃n is given, in the si 
oordinates, by s1 ∈ [0, 1] and for any i ∈ [[1, n]]

s1 · · · si ∈ [0, 1]. It is enough to look the interse
tion of ÃI with 
odimension 1strata of the boundary of C̃n.Suppose that si0 = 0 for some i0 ∈ J0 then the RHS of (22) be
ome
1 + σ1(Π

J1s, . . . , ΠJps)whi
h is stri
tly positive if for any i, si > 0. So the divisor ÃI does not interse
tany 
omponent of the form si0 = 0 for i0 in J0.Then, we 
an suppose that si 6= 0 for all i ∈ J0 in order to study the interse
tionof ÃI with the boundary of C̃n and the RHS of (22) 
an be written
1

ΠJ0s


1 −

p∏

j=1

(
1 − ΠJ0sΠJjs

)

 +

p∏

j=1

(
1 − ΠJ0sΠJjs

)
.Suppose that a point x = (s1, . . . , sn) with si > 0 for all i in J0, lies in the 
losureof C̃. That is, for all i in [[1, n]] the produ
t s1s2 · · · si is between 0 and 1 whi
hmeans all the produ
t ΠJ0sΠJjs are between 0 and 1 for j in [[1, p]] and then one�nd the following inequalities

0 6
1

ΠJ0s


1 −

p∏

j=1

(
1 − ΠJ0sΠJjs

)

 6

1

ΠJ0s
,

0 6

p∏

j=1

(
1 − ΠJ0sΠJjs

)
6 1.Both term 
an not be equal to 0 together, thus ÃI does not interse
t the boundaryof C̃n the si being stri
tly positive for i in J0 and the proposition is proved.

�4.3. An alternative de�nition for motivi
 MZV. Both propositions 4.16 and4.19 lead to the following theorem and to an alternative de�nition for motivi
multiple zeta values.Theorem 4.20. Let k = (k1, . . . , kp) be a tuple of integers with k1 > 2 and k1 +

. . .+kp = n and let s be a permutation of [[1, n]]. Let Âs
k
be the divisor of singularitiesof the di�erential form ωs

k
. Then there exist a mixed Tate motive

Hn(Xn \ Âs
k
; B̂

Âs
k

n ).The di�erential form ωs
k
and the preimage Ĉn of the real n-dimensional 
ube in Xngive two non zero elements

[ωs
k
] ∈ GrW

2n Hn(Xn \ Âs
k
; B̂

Âs
k

n ) and [Ĉn] ∈
(
GrW

0 Hn(Xn \ Âs
k
; B̂

Âs
k

n )
)∨The periods of the n-framed mixed Tate motive

ζfr.,M(k, s) =
[
Hn(Xn \ Âs

k; B̂
Âs

k

n ); [ωs
k], [Ĉn]

]



MOTIVIC DOUBLE SHUFFLE 21is equal to ζ(k1, . . . , kn).Moreover, let (F , i1, . . . , ip) and (F ′, i′1, . . . , i
′
q) are two distinguished �ags oflength ip and i′q with |i1| > 2, |i′1| > 2 and Iip

, I ′iq
being a partition of [[1, n]] and

Â
F|F ′

i1,...,lp|i′1,...,i′q
be the divisor of singularities of ωF

i1,...,ip
∧ ωF ′

i′1,...,i′q
. There exists an

n-framed mixed Tate motive
ζfr.,M(F , i1, . . . , ip|F

′, i′1, . . . , i
′
q) = Hn(Xn \ Â

F|F ′

i1,...,lp|i′1,...,i′q
; B̂

Â
F|F′

i1,...,lp|i′
1

,...,i′q
n ),the frames being given by [ωF

i1,...,ip
∧ ωF ′

i′1,...,i′q
] and [Ĉn].Proof. We want to apply theorem 3.6 in [Gon02℄ to our parti
ular 
ase. As D̂n is anormal 
rossing divisor and as proposition 4.19 ensures that Ân does not interse
t

[Ĉn],using Proposition 4.16, the only thing that remained to show is that we havea Tate strati�
ation of Xn whi
h is ensured by Lemma 4.22.The 
omputation of the period follows from the fa
t that integrating over Ĉn isthe same as integrating over the real 
ube. �The following lemma is the key to prove Lemma 4.22.Lemma 4.21. Let I1, . . . , Ir be r subsets of [[1, n]] and X the interse
tion AI1 ∩
· · · ∩ AIr

⊂ An. Then, X and its irredu
ible 
omponnents are Tate varieties.Proof. We 
an assume that the equations de�ning the AIi
are independent. If

|I1∪· · ·∪Ir | = a < n then X is isomorphi
 to (A′
I1
∩· · ·∩A′

Ir
)×An−a ⊂ Aa×An−awhere the A′

Ii
are de�ned by the same equations, 1−

∏
j∈Ii

xj = 0, that de�ne AIibut view in Aa instead of An.Thus, using the Künneth formula, it is enough to prove the lemma when I1 ∪
· · · ∪ Ir = [[1, n]]. We will now 
onstru
t two �nite morphisms

Gn−r
m ×

r−1∏

k=1

{xdn−kak = 1}
f
−→ X

g
−→ Gn−r

m .Let k̄ be an algebrai
ally 
losed �eld. The system of equations
Ei : 1 −

∏

j∈Ii

xj = 0
an be redu
e in the following way.The variable xn is by assumption in some Ii, and we 
an assume without loss ofgenerality that i = 1, so E1 
an be written
xn =

1∏
j∈I1

xj
=

∏

j<n

x
β

(1)
j

j 0 6 |β
(1)
j | 6 1 and β

(1)
j ∈ Z.Substituting xn by this produ
t into the other equations, we obtain E′

2, ..., E′
r,

r − 1 independent equations of the form ∏
j<n x

cj

i . At least one variable appearsin those equations and we 
an suppose that it is xn−1 in E′
2. We have then

x
dn−1

n−1 =
∏

j<n−1

x
α

(2)
j

j α
(2)
j ∈ Z and dn−1 ∈ N∗.There exists ζdn−1 su
h that ζ

dn−1

dn−1
= 1 and

xn−1 = ζdn−1

∏

j<n−1

x
β

(2)
j

j β
(2)
j ∈ Q.



22 ISMAEL SOUDÈRES11Substituting xn−1 into the remaining equations we obtain new equations of theform ∏
j<n−1 x

c′j
i , now with the c′j in Q. We 
an then apply the same operation toanother variable, let's say

x
d̃n−2

n−2 =
∏

j<n−2

x
α̃

(3)
j

j α̃
(3)
j ∈ Q and d̃n−2 ∈ Q∗.If d̃n−2 is not in N∗, raising the equation to some power and taking the inverse, we
an rewrite the previous equation as

x
dn−2

n−2 =
∏

j<n−2

x
α

(3)
j

i α
(3)
j ∈ Q and dn−2 ∈ N∗.We obtain an expression for xn−2 (as with xn−1) whi
h is a root of unity, ζdn−2 ,times the produ
t of powers (possibly negative) of roots of the xj for j < n − 2.We 
an substitute this expression into the remaining equations. Continuing thepro
ess, we �nd r variables, xn, xn−1, xn−2, . . . , xn−r+1, and r − 1 roots of unity,

ζdn−1 , . . . , ζdn−r+1 , that allow us to write the system of equations E1, . . . , Er as atriangular system :
xn =

∏

j<n

x
β

(1)
j

j

xn−1 = ζdn−1

∏

j<n−1

x
β

(2)
j

j

...

xn−i = ζdn−i

∏

j<n−i

x
β

(i)
j

j

...

xn−r+1 = ζdn−r+1

∏

j<n−r+1

x
β

(r)
j

jsu
h that for all i ∈ {0, . . . , r−1} ζ
dn−i

dn−i
= 1. Finally, solving this triangular system,we �nd integers pij and p′ik and positive integers qij and q′ik for all i in {0, . . . , r−1},all k in {1, . . . , r − 1} and all j in {1, . . . , n − r} su
h that :

∀i ∈ {0, . . . , r − 1} xn−i = ζdn−i

∏

k>i

ζ
p′

ik/q′
ik

dn−k

n−r∏

j=1

x
pij/qij

j .Now, setting
∀j ∈ {1, . . . , n − r} aj = lcmi(qij)

∀k ∈ {1, . . . , r − 1} bk = lcmi(q
′
ij)we de�ne

Gn−r
m ×

∏r−1
k=1{x

dn−kak = 1}
f

// X

(λ1, . . . , λn−r) × (ζn−1, . . . , ζn−r+1)
�

// (f1, . . . , fn)with
∀i ∈ {1, . . . , n − r} fi(λ1, . . . , λn−r, ζn−1, . . . , ζn−r+1) = λai

i
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∀i ∈ {0, . . . , r − 1} fn−i(λ1, . . . , λn−r, ζn−1, . . . , ζn−r+1) =

ζbi

n−i

∏

k>i

ζ
p′

ikbk/q′
ik

n−k

n−r∏

j=1

λ
pijaj/qij

j .We also de�ne the morphism g : X −→ Gn−r
m to be the proje
tion onto the�rst n − r fa
tor (X is embedded in An). The morphism g is �nite. Moreover the
omposition g ◦ f raise ea
h λi to some power and is therefore �nite. As we 
ansolve the system over any algebrai
ally 
losed �eld, the morphism f is surje
tiveand therefore �nite, be
ause g and g ◦ f are.Moreover, there is a one to one map between the set of the irredu
ible 
omponentsof X the set of those of ∏r−1

k=1{x
dn−kak = 1} and the irredu
ible 
omponents of Xare disjointIn the Hodge-De Rham realisation, we then have the following 
omposition

H∗(Gn−r
m ×

∏r−1
k=1{x

dn−kak = 1}, Q) H∗(X, Q)
f∗

oo H∗(Gn−r
m , Q)

g∗
oo

(g◦f)∗

ii

.As f and g are �nite, both f∗ and g∗ are inje
tive. The morphism of mixed Hodgestru
tures, f∗, is stri
t [Del71℄, therfore H∗(X, Q) is a dire
t sum of Hodge-Tatestru
turesQ(m) (for di�erentm) be
ause the 
ohomology of Gn−r
m ×

∏r−1
k=1{x

dn−kak =
1} is. The irredu
ible 
omponents of X being disjoint, ea
h is a Tate varietyFinally, using the fa
t that the Hodge-De Rham realisation is fully faithful, we
an 
on
lude that the motive of X is a dire
t sum of Tate motives, in other words
X is a Tate variety. �Lemma 4.22. The divisor D̂n = B̂0

n ∪ D̂1
n provides Xn with a Tate strati�
ation.Proof. We �rst need to show that all the strata of D̂1

n and Xn are Tate but usingthe proposition 4.4, it is enough to show that all the strata of D1
n are Tate (Anbeing Tate). A stratum AI1 ∩ · · · ∩AIk

of D1
n is a Tate variety by Lemma 4.21. So

Xn and all the strata of D̂1
n are Tate.Note that the previous dis
ussion tells us that for any k > 2, Xk and all thestrata of D̂1

k are Tate varieties.Let Ŝ be the interse
tion of 
ertain 
odimension 1 strata of B̂0
n; it is the propertransform of the 
orresponding interse
tion, say S = ∩j∈J{xj = 0} for some J ⊂

[[1, n]], in B0
n. That is, Ŝ is isomorphi
 to

BlS∩D : D∈D1
n

S.(23)The interse
tion S is isomorphi
 to Ad for d = n− |J | and hen
e is Tate and if I isa subset of [[1, n]] then S∩AI is either empty (I∩J 6= ∅) or, if I∩J = ∅, isomorphi
to the subvariety of Ad given by {1−
∏

i∈I xi = 0} (up to renumbering). Thus, theproper transform Ŝ is isomorphi
 to Xd whi
h is Tate by the dis
ussion above.Now, if Ŝi is some irredu
ible 
odimension 1 stratum of D̂1
n that have a non-empty interse
tion with Ŝ then, as Ŝi is the ex
eptional divisor of some of the blow-ups in the 
onstru
tion of Xn, this interse
tion Ŝ ∩ Ŝi is the ex
eptional divisor inthe blow-up sequen
e (23) that leads to Ŝ. As a 
onsequen
e, the interse
tion Ŝ∩Ŝiis isomorphi
 to some irredu
ible stratum of D̂1

d in Xd and we 
an 
on
lude thatany possible interse
tion of strata in D̂1
n with Ŝ is isomorphi
 to an interse
tion ofstrata in D̂1

d inside Xd ≃ Ŝ and so is Tate by the above dis
ussion. �
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 Stu�e. Let k = (k1, . . . , kp) and l = (l1, . . . , lq) be respe
tively a
p-tuple and a q-tuple of integers with k1, l1 > 2, ∑

ki = n and ∑
lj = m. Inthis se
tion, as in se
tion 1.1 and 1.3, if σ is a term of the formal sum k ∗ l withall 
oe�
ients being equal to 1, we will write σ ∈ st(k, l). The map δ de�ned atproposition 2.3 extends to:

M0,n+m+3
δ

−−−−−→ M0,n+3 ×M0,m+3.Let Ak (resp. Al) be the divisor of singularities of the meromorphi
 di�erentialform ωk on M0,n+3 (resp. ωl on M0,m+3) given in simpli
ial 
oordinates by ωk(resp. ωl) (
f. 3) and in the 
ubi
al 
oordinates by fk1,...,kp
(resp. fl1,...,lq ). Forall σ in st(k, l), let Aσ be the divisor of singularities of the form ωσ. As in se
tion3.2, let Φn, Φm and Φn+m denote respe
tively the standard 
ells in M0,n+3(R),

M0,m+3(R) and M0,n+m+3(R) and Bn, Bm and Bn+m be the Zariski 
losure ofthe boundary of respe
tively Φn, Φm and Φn+m.Proposition 4.23. We have an equality of framed motives:
[
Hn

(
M0,n+3 \ Ak; BAk

n

)
; [ωk]; [Φn]

]
·
[
Hm

(
M0,m+3 \ Al; B

Al

m

)
; [ωl]; [Φm]

]
=

∑

σ∈st(k,l)

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.Proof. Let A0 be the Zariski 
losure of ∂M0,n+m+3 \ Bn+m, Bn,m be the Zariski
losure of the boundary of Φn × Φm and A′ be the boundary of (

M0,n+3 \ Ak

)
×(

M0,m+3 \ Al

). As the map δ maps Bn+m onto Bn,m, we have an indu
ed map
δ :

(
M0,n+m+3 \ A0; B

A0
n+m

)
−→

((
M0,n+3 \ Ak

)
×

(
M0,m+3 \ Al

)
; BA′

n,m

)
.Using the Künneth formula, we have maps of mixed Tate motives(24) Hn

(
M0,n+3 \ Ak; BAk

n

)
⊗ Hm

(
M0,m+3 \ Al; B

Al

m

)
−→

Hn+m
(
(M0,n+3 \ Ak) × (M0,m+3 \ Al); B

A′

n,m

)
−→

Hn+m
(
M0,n+m+3 \ A0; B

A0
n+m

)whi
h are both 
ompatible with the respe
tive frames [ωk] ⊗ [ωl]; [Φn] ⊗ [Φm] ,
[ωk ∧ ωl]; [Φn × Φm] and [δ∗(ωk ∧ ωl)]; [Φn+m].We now need to show that

[
Hn+m

(
M0,n+m+3 \ A0; B

A0
n+m

)
; [δ∗(ωk ∧ ωl)], [Φn+m]

]
=

∑

σ∈st(k,l)

[
Hn+m

(
M0,n+m+3 \ Aσ; BAσ

n+m

)
; [ωσ]; [Φn+m]

]
.As Aσ is in
luded in A0, using lemma 3.6 it enough to prove the previous equalitywith A0 instead of Aσ in the RHS. The two following lemma tell us that it is enoughto work with Xn+m (
f. se
tion 4.2) instead of M0,n+m+3 \ A0.Lemma 4.24. Let r > 2 be an integer and let δ̃r : M0,r+3 → (P1)r be the mapgiven on the open set by

(0, z1, . . . , zr, 1,∞) 7−→ (0, z1, z2,∞) × (0, z2, z3,∞) × · · ·

× (0, zr−1, zr,∞) × (0, zr, 1,∞).Let Ar be the union of the 
odimension 1 irredu
ible 
omponents of ∂M0,r+3 thatare send by δ̃r into (P1)r \ Ar.



MOTIVIC DOUBLE SHUFFLE 25Then, Ar ⊂ A0 and there exist a sequen
e of �ags F1, . . . ,FN , of elements of
D1

r (Lemma 4.8) satisfying 
ondition of Corollary 4.3 su
h that
Xr = BlFN ,...,F1 Ar αr−→ M0,r+3 \ Ar = BlFr,...,F1 Ar δ̃r−→ Ar(25)Proof. The map δ̃r is given in the 
ubi
al 
oordinates on M0,r+3 by xi = ui wherethe xi denotes the standard a�ne 
oordinates on (P1)r and send 
omponents of Brinto hyperplanes xi = 0 or xi = 1.The indu
ed map M0,r+3 \ Ar → Ar is the blow-up along the strata

{xi = xi+1 = . . . = xj = 1}(26)whi
h are all elements of D1
r .The beginning F1, . . . ,Fr of the sequen
e of �ags is given by

F1 = {{x1 = x2 = · · · = xn = 1}, {x1 = x2 = · · · = xn−1 = 1}, . . . , {x1 = 1}}

F2 = {{x2 = x3 = · · · = xn = 1}, {x2 = x3 = · · · = xn−1 = 1}, . . . , {x2 = 1}}

· · ·

Fi = {{xi = xi+1 = · · · = xn = 1}, {xi = xi+1 = · · · = xn−1 = 1}, . . . , {xi = 1}}

· · ·

Fr = {{xr = 1}}That part of the sequen
e satis�es 
ondition (2) of Corollary 4.3. Then the easiestway to 
omplete the sequen
e is to take �ags with just one element beginning withthe rank 1 strata of D1
r (the only stratum of rank 0 is {x1 = x2 = . . . = xn = 1}),then the rank 2 strata and so on.Now that the sequen
e of �ags exists, Corollary 4.3 ensures that the morphismsin (25) holds.Indeed, the usual map M0,r+3 → (P1)r whi
h maps (0, z1, . . . , zr, 1,∞) to

(z1, . . . , zr) sends Φr to the standard simplex ∆r = {0 < t1 < . . . < tr < 1} andmaps Br to the algebrai
 boundary of ∆r. A �rst sequen
e of blow-up along the sub-varieties {0 = t1 = . . . ti} 
orresponds to the 
hange of variable from the simpli
ialto the 
ubi
al 
oordinates (6). In order to re
over Br, the blow-up along the propertransform of the subvarieties {ti = ti+1 = . . . = tj} and {ti = ti+1 = . . . = tr = 1}has still to be performed. The expression of these subvarieties in the 
ubi
al 
oor-dinates is {xi = xi+1 = . . . = xj = 1}. The fa
t that it seems that we are blowingup less strata in order to re
over M0,r+3 from (P1)r using δ̃r (25) 
omes from thefa
t that we are only looking at M0,r+3 \ Ar. �From the previous lemma we dedu
eCorollary 4.25. (1) Let a = (a1, . . . , ab) be a b-tuple of integer with a1 > 2with a1 + · · · + ab = n + m. Using the previous 
onvention we have thefollowing equality of framed mixed Tate motives
ζfr.M(a, id ) =

[
Hn+m

(
M0,n+m+3 \ A0; B

A0
n+m

)
; [ωa], [Φn+m]

]
.(2) Let k and l be as in proposition 4.23, then there exists two distinguished�ag (F , i1, . . . , ip) and (F ′, j1, . . . , jq) with i1, j1 > 2 and Iip

, Ijq
being apartition of [[1, n]] su
h that the following equality of framed mixed Tatemotives holds

ζfr.M(F , i1, . . . ip|F
′, j1, . . . jq) =

[
Hn+m

(
M0,n+m+3 \ A0, B

A0
n+m

)
; [ωk ∧ ωl], [Φn+m]

]
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onsequen
e, for all σ ∈ st(k, l), the framed mixed Tate motives
[
Hn+m

(
M0,n+m+3 \ A0, B

A0
n+m

)
; [ωσ], [Φn+m]

]is equal to it 
ounterpart in Xn+m, ζfr.M(σ).Proof. In 1. and 2., the map on the underlying ve
tor spa
e is given by α∗
n+m (
f.(25)). As Ĉn+m is map to Φn+m, knowing the behaviour of α∗

n+m with respe
t tothe form ωa and ωk ∧ ωl is enough to dedu
e that α∗
n+m respe
t the frames.(1) As the the map α∗

n+m as no e�e
t on the 
ubi
al 
oordinates, ui on
M0,n+m+3 \ A0, we have α∗

n+m(ωa) = ωid
a , and so the equality of framedmixed Tate motives.(2) Writing down in 
ubi
al 
oordinates the expression

ωk = fk(u1, . . . , un)dnu and ωl = fk(un+1, . . . , un+m)dmuleads to the de�nition of two distinguished �ag
(F , i1, . . . , ip) and (F ′, j1, . . . , jq),as in remark 4.14 with s = id . The fa
t that α∗

n+m respe
ts the frames
ome from the equality
ωF ′

i1,...,ip
∧ ωF ′

j1,...,jq
= α∗

n+m(ωk ∧ ωl).

�The only thing that remain to be 
he
ked to 
omplete the proof of proposition4.23 is using the notation of the previous lemma
ζfr.M(F , i1, . . . ip|F

′, j1, . . . jq) =
∑

σ∈st(k,l)

ζfr.M(σ, id ).Using the 
omputation of se
tion 1.3, in parti
ular the proposition 1.5, we havethat for ea
h σ ∈ st(k, l) there exists a permutation sσ su
h that
[ωF ′

i1,...,ip
∧ ωF ′

j1,...,jq
] =

∑

σ∈st(k,l)

[ωσ,sσ
].As the divisor A

F ,i1,...,ip

F ′,j1,··· ,jq
of ωF ′

i1,...,ip
∧ωF ′

j1,...,jq
and the divisors Aσ,sσ

are in Ân+m,lemma 3.6 and an analogue of lemma 3.3 show that
ζfr.M(F , i1, . . . ip|F

′, j1, . . . jq) =
∑

σ∈st(k,l)

ζfr.M(σ, sσ).(27)Permuting the variables give a well de�ned morphism Xn+m → Xn+m thatpreserve Ĉn+m and its algebrai
 boundary B̂n+m. It leads, on ea
h term of theRHS of 27, to an equality
ζfr.M(σ, sσ) = ζfr.M(σ, id ),and hen
e to

ζfr.M(F , i1, . . . ip|F
′, j1, . . . jq) =

∑

σ∈st(k,l)

ζfr.M(σ, id ).and the proposition 4.23
�
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