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MOTIVIC DOUBLE SHUFFLE

ISMAEL SOUDERES?
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INTRODUCTION

For a p-tuple k = (k1,...,kp) of positive integers and ki > 2, the multiple zeta
value ((k) is defined as

W= >

ni>..>n,>0 1 Tp

These values satisfy two families of algebraic (quadratic) relations known as double
shuffle relations, or shuffle and stuffle described below.

In [GMO04] A.B. Goncharov and Y. Manin defined a motivic version of multiple
zeta values using certain framed mixed Tate motives attached to moduli spaces
of genus 0 curves. In this context, the real multiple zeta values appear naturally
as periods of those motives attached to the moduli spaces of curves. They do not
prove the double shuffle relations directly, referring instead to previous work by A.B.
Goncharov in which, using a different definition of motivic multiple polylogarithms
based on (P!)" rather than moduli spaces, the motivic double shuffle relations are
shown via results on variations of mixed Hodge structure.

The goal of this article is to give an elementary proof of the double shuffle
relations directly for the Goncharov and Manin motivic multiple zeta values. The
shuffle relation (Proposition 3.8) is straightforward, but for the stuffle (Proposition
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2 ISMAEL SOUDERES!!

4.23) we use a modification of a method first introduced by P. Cartier for the
purpose of proving stuffle for the real multiple zeta values via integrals and blow-
up sequences. In this article, we will work over the base field Q.

1. INTEGRAL REPRESENTATION OF THE DOUBLE SHUFFLE RELATTIONS

1.1. Series representation of the stuffle relations. The stuffle product of a
p-tuple k = (k1,...,kp) and a g-tuple 1 = (l,...,1;) is defined recursively by the
formula:

(1) kxl= (k* (lla---qu—l)) -lq + ((kl,...,k,‘p_l) *1) 'k/’p
+ ((1{31, .. .,kp_l) * (ll, .. .,lq_l)) . (kp + lq)

and k() = () xk = k. Here the + is a formal sum, A-a means that we concatenate
a at the end of the tuple A and - is linear in A.

Let k and 1 be two such tuples of integers. We will write st(k,1) for the set of
the individual terms of the formal sum k % 1 whose coefficients are all equal to 1,
such a generic term is then denoted by o € st(k,1).

In order to multiply two multiple zeta values (k) and {(1), we split the summa-
tion domain of the product (k)((1)

{0<nm <...<np} x{0<my <...<mg}

into all the domains that preserve the order of the n; as well as the order of the m;
and into the boundary domains where some n; are equal to some m;. We obtain
the following well-known proposition, giving the quadratic relations (2) between
multiple zeta values known as the stuffle relations:

Proposition 1.1. Letk = (k1,...,kp) and1= (I1,...,1;) as above with k1, I > 2.
Then we have:
(2)

1 1
(k)¢ = > o R > e > ).
ni>..>np>0 M1 T Tp mi>..>mg>0 My =" Myg oest(k,1)

1.2. Integral representation of the shuffle relations. To the tuple k, with
n =ky +--- + kp, we associate the n-tuple:

k=(0,...,0 ,1,..., 0,...,0 ,1)=(cp,...,1)
—— ——
ki—1 times k,—1 times

and the differential form, introduced by Kontsevich

dty A dt, .
t17€1 tn*En

Then, setting A, = {0 < t; < ... < t, < 1}, direct integration yields:

C) = /A e

The shuffle product of an n-tuple (eq,...,e,) = e1-€ and an m-tuple (f1,..., fin) =

f1 - f is defined recursively by:
@) (er-oyen) M (fr,oon, frn) =er- @ (fi-f)) + fi-((ex ) mr f)

and e 111 () = () 11 € = €. Here, as above, the + is a formal sum, b- B means that
we concatenate b at the beginning of the tuple B and - is linear in B.

Let k and 1 be two tuples of integers as above. We will write sh(E, 1) for the
set of the individual terms of the formal sum k 111 [ whose coefficients are all equal
to 1. Such a generic term is then denoted by o € sh(k,l) and can be identify

(3) wk =wg = (=1)P
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with a unique permutation & of {1,...n 4+ m} such that 5(1) < ... < 5(n) and
g(n+1)<...<d(n+m). The permutation & will simply be denoted by o when
the context will be clear enough.

We will put an index o on any object which naturally depends on a shuffle.
The following proposition yields the quadratic relations (5) known as the shuffle
relations.

Proposition 1.2. Letk = (k1,...,kp) and 1= (l1,...,l;) with k1, I > 2. Then:
(5) / Wk/ wr = /
oesh(k,l) Antm
Proof. Let n=Fki + ...+ ky, and m = l; + ... + [;. Then we have:
Lo o= (a5 (i)
wr wy = L2 .
Ay, A A, 1-—- tl tn A 1- tn—i—l tn-i—m

/ dti  dty dtag: dtagm

A 1- tl tn 1- tn+1 thrm .

Theset A={0<t; <...<t, <1} x{0<tpt1 <...<tptm <1} can be, up to
codimension 1 sets, split into a union of simplices

A, with A, = {0 < lo(1) <lo@) < ... <lo(mnim) < 1},
oesh([1,n],[n+1,m])
where [a, b] denotes the ordered sequence of integers from a to b.

The integral over A is the sum of the integrals over the individual simplices. But
the integral over one of these simplices is, up to the numbering of the variables,

exactly one term of the sum Z We- O
oesh(k,D) Antm

1.3. The stuffle relations in terms of integrals. We explain here ideas al-

ready written in articles of Goncharov [Gon02] and in Francis Brown’s Ph.D. thesis

[Bro06], showing how to express the stuffle relations (2) in terms of integrals.

Example. We have ¢(2) = [, ‘ff; 1‘#; The change of variables ty = x; and t; =
T1T2 glves.

dr, z1dzs dzidxs
- [ dnmin [ dndn
[0,1]2 X1 — T1T2 [071]2 1-— 12
This change of variables is nothing but the blow-up of the point (0,0) in the pro-
jective plane, given in n dimensions by a sequence of blow-ups:
(6) tn:l'l, tn—l = T1T2,y «-., t1 = 21...Xp,.

We will write d"x for dxi ---dx, where n is the number of variables under the
integral. Using the change of variables (6) for n = 4 we write the Kontsevich forms
as follows:

d*z r1xod*x
()= / T ((2.2)= / s
0,14 1 — T1222324 [0,1]4 (1 —z129)(1 — x122T324)

and

d*z.

(@)@ = / ! !

[0,1]4 (1 - :L'1:C2> (1 — 5631'4)
For any variables o and 8 we have the equality:

(7) 1 « 16} 1

+
This identity will be the key of this section.

T-a)1-5) (-a(-af) A-pI-Pa) 1-ap
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Setting o = z122 and 8 = x3x4 and applying (7), we recover the stuffle relation:

c2x@ = |

+
[011]4 ((1 — ZL'1£C2)(1 — $1£E21'3£C4) (1 — 563564)(1 — 1'31'4:611‘2)

1
+7> d
1-— T1X2T3X4

€(2)¢(2) = €(2,2) +¢(2,2) + ((4).

General case. We will show that the Cartier decomposition (9) below makes it
possible to express all the stuffle relations in terms of integrals as in the example
above.

Let k = (k1,...,kp) and 1 = (I1,...,1,) two tuples of integers with k1, I > 2.
As above, if o is a term of the formal sum k %1, we will write o € st(k,1). We will
put an index o on any object which naturally depends on a stuffle.

Let k = (k1,...,kp) be as above and n = ky + - - - + k,. We define fi, . x, to be
the function of n variables defined on [0, 1] given by:

T1T2 T34

1 X1 Tk
1
Trrkpy (X150 T0) =
1 p( ’ ’ ”) 1_-T1"'$k11_-T1"'$k1xk1+1"'xk1+k2
xl...xk_l_,’_kZ zl"'xk1+...+kp71
1*551"'1'k1+k2+k3 17:E1..'xkl+"'+kp

Proposition 1.3. For all p-tuples of integers (ki,...,kp) with k1 > 2, we have
(withn =ky +---+kp):

(8) C(kl,...,kp) = / fkhm,kp(:zjl,...,xn)d"a:.
[0,1]™

Proof. Let wy be the Kontsevich form associated to a p-tuple (ki,...,kp) with
n==k +---+kp, so that C(kl,...,kp) :fA Wk -

Applying the variable change (6) to wyk, we see that for each term dt—ii, there
arises from the - a term Ilw; —— which cancels with dhicy — T @noit1dnoivy
This gives the result. O

To derive the stuffle relations in general using integrals and the functions fx, ... x,,
we will use the following notation.

Notation. Let k be a sequence (k1,...,kp), n = k1 +---+k,. We have n variables

T1yee-y3 Ty
e For any sequence a = (a1, ...,a,), we will write [Ja=a;1---a,.
e The sequence (z1,...,x,) will be written x. We set x(k,1) = (z1,...,Tk,)
and

X(k7 Z) = (xk1+"'+ki—1+15 B zk1+"'+ki)a
so the x is the concatenation of sequences x(k, 1) - - - x(k, p).
e The sequence (x1,..., Tk ++k;) = x(k,1)---x(k,7) will be denoted by
x(k,<1i). If k = (ko, kp), x0 = x(k, < p — 1) will be the sequence

(501, s 7xk1+“'+kp—1)'
o Iflis a g-tuple with I, +-- -1, = m and o € st(k,1), y, will be the sequence
in the variables x1, ..., 2y, 2}, ..., 2}, in which each group of variables
X(k, ’L) = (.’I/'k1+...+ki71+1, N "/I’.k1+“‘+ki)

(resp. x'(1,5) = (21, 4pty s 1100 Ty popr,)
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is in the position of k; (resp. [;) in 0. Components of o of the form k; +;
give rise to subsequences like

($k1+"'+ki71+1a R :Elir"'Jrkia"Egl—i-w—i-lj,l—i-lv SR 1721+m+lj) = (X(ka Z),X/(l,]))

e Following these notations, products 1 -« kg, Thytooth; 141" Thyt-this
X1 Xy 44k Will be written respectively [T x(k, 1), [T x(k, ), [Tx(k, <
i). Asx(k,<p—1) =x¢ and x(k, < p) = x, products [[x(k, < p—1) and
[Tx(k, < p) will be written []xo and ] x.

We remark that for each o € st(k,1), [To =[[x]]x'.

Remark 1.4. Let (k1,...,ky) = (ko, kp) be a sequence of integers. Then:

Hx(kagpil)
1-TIx(k,<p) o

fkl »»»»» kp (X) = fkl ----- kpfl(x(k7 Sp— 1))

Proposition 1.5. Let k = (k1,...,kp) and 1 = (I1,...,1l;) be two sequences of
weight n and m. Then:

(9) fkl ,,,,, kp(x(kvl)a"'ax(kvp>) 'fll ,,,,, lq(x/(lvl)a"'vx/(LQ)) = Z fo(yd)'

oest(k,l)

Proof. We proceed by induction on the depth of the sequence. The recursion for-
mula for the stuffle is given in (1).
If p=¢q=1: As we have

1 1 1 1
T 1-[Ix(k,<1) 1-[Ix¥Q,<1) 1-J[x 1-][x’

fr(x(k, 1)) fin (x'(1,1))

using the formula (7) with o = [[x and 8 = [[ x’ leads to

(10)
) _ [[x I
fn(X(k,l))fm(X (1’1)) - (1 o HX)(l *HXHX/) + (1 7HX/)(1 7HX/HX)
1
* 1-TIx[]x"

Inductive step: Let (ki,...,kp) = (ko,kp) and (I1,...,1;) = (lo,lq) be two
sequences. By Remark 1.4, the following equality holds

fico 1y (%0, %k, P)) fio 1, (%0, X' (1,9)) = fko(xo)%flo (XO/)lr_Ii)li[OX/'

Applying the formula (7) with o = [[x and 8 = [[x/, one sees that the RHS of
the previous equation is equal to

I1x
(1 =TIx)(1 = IIx]x)

fico (%0) 1o (%0") - (IT %0 - [1x'0) (

+

[1x N 1 )
A-TIx)(1-Tx'TIx)  (1-IIxI0x)/
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Expanding and using the Remark 1.4 we obtain:

(11) fk07kp (XOﬂ X(kvp))flo,lq (XOIﬂ X/(l; Q)) =

ot (00 0) - TS ()i, () 7L
o)LL

Hence, the product of functions f, . .k, and f, . ;. satisfies a recursion formula
identical to the formula (1) that defines the stuffle product. Using induction, the
proposition follows. O

Corollary 1.6 (integral representation of the stuffle). Integrating the statement of
the previous proposition over the cube and permuting the variables in each term of
the RHS, we obtain:

_ mn m,. __ n+m,.. __
cocm= [ pare | paes [0S pares 3 go)

[0 oest(k,1) oest(k,1)

Proof. We only need to check that all integrals are convergent. As all the functions
are positive on the integration domain, all changes of variable are allowed and
we can deduce the convergence of each term from the convergence of the iterated
integral representation for the multiple zeta values.

Another argument is to remark that the orders of the poles of our functions along
a codimension k subvariety is at most k. Then, for each integral, a succession of
blow-up ensures that the integral converge. O

2. MODULT SPACES OF CURVES; DOUBLE SHUFFLE AND FORGETFUL MAPS

2.1. Shuffle and moduli spaces of curves. Let k and 1 be as in the previous
section, let n = k1+---+k, and m = [;+- - -+{,. Following the article of Goncharov
and Manin [GMO04], we will identify a point of My ;13, the moduli space of curves
of genus 0 with j + 3 marked points, with a sequence (0, z1,...,2;,1,00), the z;
being pairwise distinct and distinct from 0, 1 and oo, and write ®; for the open
cell in My ;4+3(R) which is mapped onto A;, the standard simplex, by the map:
Mo jr3 — (PY), (0, 21,...,24,1,00) = (21,...,2;). Then we have:

C(kl,...,kp):[b Wk-

n

Proposition 2.1. Let 3 be the map defined by

Mo, ntrm+3 AN Motz X Mo,m+a
0,21,y Zntm, 1,00) +—  (0,21,...,2n,1,00) X (0, Znt1,- -, Zntm, 1, 00).
Then, letting t; be the coordinate such that t;(0,z1,. .., Zntm, 1,00) = z;, we have
B (wie Aw) = dty /\.../\dt_”/\M/\.../\M.
11—t tn " 1—tns1 trsm
Furthermore, if for o € sh([1,n], [n + 1,n + m]) we write ®F . for the open cell

of Mo ntm+3(R) in which the points are in the same order as their indices are in
o, we have

BY®, x B,,) = 11 T, .
cesh([1,n],[n+1,n+m])
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Proof. The first part is obvious.
In order to show that 3=1(®, x ®,,) = [[®9,,, we have to remember that a

n+m

cell in Mg p+m+3(R) is given by a cyclic order on the marked points. Let X =
(0, %1, -, Zn+m,1,00) be a point in Mg ptm+3(R) such that 8(X) € &, x Dy,.
The values of the z; have to be such that

(12) 0<zm<...<zp<1l(<o0) and 0< zpt1 <...< Zpim <1 (< 0).

However there is no order condition relating, say z; to z,41.
So, points on Mo ,4m+3(R) which are in 371(®,, x ®,,,) are such that the z; are

compatible with (12). That is there are in H D7 .- O
oesh([1,n],[n+1,n+m])

The open embedding 3 being such that @, x &, \ (B(87H(Pn X 1)) is of
codimension 1, we have the following proposition

Proposition 2.2. The shuffle relation ((k)C(1) = >, cquac1) C(0) is a consequence
of the following change of variables:

/ wk N\ wp :/ ﬁ*(wk/\wl).
D, XD,y B=HPn X P,)

Proof. Using the previous proposition, the right hand side of this equality is equal

to
> / 1dt1t /\---A—Cff"*m.
cesh([1,n],[n+1,n+m]) 7L gt n+m

m

Then we permute the variables and change their names in order to have an integral
over ¥, ,, for each term. This is the same computation we did for the integral
over R™*™ in proposition 1.2.
dt dtnym dis(1) dto(ntm)
As the form ;% A+ A i (resp. o NN T ) does not have any

pole on the boundary of ®7  (resp. ®,4y), all the integrals are convergent. [

2.2. Stuffle and moduli spaces of curves. In Section 1.3, in order to have an
integral representation of the stuffle product, we introduced, using the integral over
a simplex and a change of variables, a cubical representation of the MZVs (integral
over a cube). We use here a similar change of variable to introduce an other
system of local coordinates on My 43, the Deligne-Mumford compactification of
the moduli space of curves. We will, following [Bro06], speak of cubical coordinates.
Those cubical coordinates, u;, are defined on an open of Mg 43 by u1 = t, and
U; = tr—it1/tr—iy2 for i < r where the t; are the usual (simplicial) coordinates on
Mo r+3. This cubical system is well adapted to express the stuffle relations on the
moduli spaces of curves.

Proposition 2.3. Let § be the map defined by

5
Monymys —— Mongs X Mom+s

(0,21, -y Zngm, 1,00) — (0, Zimg 1, - - oy Zmgns 1,00) X (0,21, -« s Zm,y Zim1, 00).

Writing the expression of wx and wy in the cubical coordinates, one finds wy =
fxlug, .. up)d™u and wy = filtungt, ..., Unem)d™u where the fx are as in section
1.8. Then, using those coordinates we have

(W Awt) = iy (W - wn) fir oty (Ungts - - o Ungm ) AT ™

and
§HD, x D) = Py
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Proof. To prove the second statement, let X = (0, z21,...,2n+m,1,00) such that
§(X) € &, X P,,. Then the values of the z;’s have to verify
(13)

0<2z1<...<2m < Zm41 (<o) and 0< zpmi1 < ... < Zngm < 1 (< 00).
These conditions show that 0 < 21 < ... < z;p < 241 < ... < 1 < o0, SO
X eD,ipm.

To prove the first statement, we claim that J is expressed in cubical coordinates

by
(Uty ey Upgm) — (U1, Un) X (Ungdy e vy Untm)-
It is obvious to see that for the left hand factor the coordinates are not changed.
For the right hand factor we have to rewrite the expression of the right side in terms
of the standard representatives on Mg ,,,43. We have
(05 21y Bmy Zm+1, OO) = (0; Zl/szrl; BRI Zm/Zerlv 1; OO) = (Ovtlv sy b, 17 OO)

in simplicial coordinates. This point is given in cubical coordinates on Mg 43 by

(tm,tmfl/tm,...,tl/tg) = (Zm/Zerl,. ..,21/2’2) = (un+1,. ..,uner).
(]

As a consequence of this discussion and the results of Section 1.3, we have the
following proposition.

Proposition 2.4. Using the Cartier decomposition (9), the stuffle product can be
viewed as the change of variables:

/ wk N\ wy :/ 5*(wk /\wl).
Y I~ H(Pp X Pn)

Remark 2.5. We should point out here the fact that the Cartier decomposition
"does not lie in the moduli spaces of curves", in the sense that forms appear in the
decomposition which are not holomorphic on the moduli space. For example, in
the Cartier decomposition of fa 1(u1,ug, u3) fa,1(ua, us, ug), we see the term

uugugusdug dusdusdusdusdug

(1 — U1U2U4U5)(1 — U1U2U3U4U5u6)
which is not a holomorphic differential form on Mg ¢. However, it is a well-defined
convergent form on the standard cell where it is integrated. Changing the num-
bering of the variables (which stabilises the standard cell) gives the equality with
¢(4,2). This example represents the situation in the general case: when simply
dealing with integrals, the non-holomorphic forms are not a problem. However, in
the context of framed motives they are.

3. MOTIVIC SHUFFLE FOR THE "CONVERGENT'" WORDS

3.1. Framed mixed Tate motives and motivic multiple zeta values. This
section is a short introduction to the motivic tools we will use to prove the motivic
double shuffle. The motivic context is a cohomological version of Voevodsky’s
category D Mg [Voe00]. Goncharov developed in [Gon99], [Gon05] and [Gon01] an
additional structure on mixed Tate motives, introduced in [BGSV90], in order to
select a specific period of a mixed Tate motive.

An n-framed mixed Tate motive is a mixed Tate motive M equipped with two
non-zero morphisms:

v:Q(—n) — Gry, M f:Q(O)H(GrgVM)v:GrgVMV.

On the set of all n-framed mixed motives, we consider the coarsest equivalence re-
lation for which (M, v, f) ~ (M’,v', f') if there is a linear map M — M’ respecting
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the frames. Let A, be the set of equivalence classes and A, be the direct sum of
the A,,. We write [M;v; f] for an equivalence class

Theorem 3.1 ([Gon05]). Ae has a natural structure of graded commutative Hopf
algebra over Q.

Ao is canonically isomorphic to the dual of Hopf algebra of all endomorphisms
of the fibre functor of the Tannakian category of mized Tate motives.

In our context, the morphism v of a frame should be linked with some differential
form and the morphism f is a homological counterpart of v, that is a real simplex.

We give here two technical lemmas that will be used in the next sections. We
write [M, v, f] for the equivalence class of (M, v, f) in A,. We will speak of framed
mixed Tate motives in both cases.

We recall that the adition of two framed mixed Tate motives [M,v, f] and
[M', 0, f'] is

(M, v, flo M0, f] = [M& M, (v,0), f+ f].

Lemma 3.2. Let M be a mized Tate motive. v, v1, va : Q(—n) — Gry M and
fy f1, f2: Q(0) — Gy MV. We have:

[M;v; f1 + fa] = [M;v; f1] + [M;v; fo]
and
[M;v1 +wa; f] = [M;v1; f] + [M;v; f]

Proof. Tt follow directly from the definition in [Gon05]. For the first case, it is
straightforward to check that the diagonal map ¢ : M — M & M is compatible
with the frames. For the second equality, the map from M & M to M which
sends (m1,ma) to my +ms gives the map between the underlying vector space and
respects the frames. O

Lemma 3.3. Let M and M’ be two mized Tate motives. Let M be framed by
v:Q(—n) — Cry and f : Q(0) — Cry/ M. Suppose there exists v' : Q(—n) —
Gry M’ and ¢ : M’ — M compatible with v and v'. Then f induces a map
f Q) — Grg/ M’ and if f' is non zero, then o gives an equality of framed
mized Tate motives [M;v; f] = [M;v'; f']

We recall a classical result, used in [GMO04] and described more explicitly in
[Gon02] that allows us to build mixed Tate motives from natural geometric situa-
tions. In [Gon02], A.B. Goncharov defined a Tate variety as a smooth projective
variety M such that the motive of M is a direct sum of copies of the Tate motive
Q(m) (for certain m). We say that a divisor D on M provides a Tate stratification
on M if all strata of D, including Dy = M, are Tate varieties.

Let M be a smooth variety and X and Y be two normal crossing divisors on
M. Let YX be Y \ (Y N X), which is a normal crossing divisor on M \ X.

Lemma 3.4. Let M be a smooth variety of dimension n over Q and X UY be a
normal crossing divisor on M providing a Tate stratification of M. If X and Y
share no common irreducible components then there exists a mized Tate motive:

H*(M\ X;Y™)

such that its different realisations are given by the respective relative cohomology
groups.

We have the following version given in [GMO04].
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Corollary 3.5. Let X and Y be two normal crossing divisors on OMog ny3 and
suppose they do not share any irreducible components. Then, any choice of non-
zero elements

wx] € Gryy, (H"(Monis \ X));  [®y] € Grg/ (H"(Monss;Y))"
defines a framed mized Tate motive given by
[H"(Mo,nts \ X: YY) [wx]; [@v]] -

The following lemma shows that we have some flexibility in choosing X and Y
for the framed mixed Tate motive [H" (M \ X;Y¥); wx]; [®y]].

Lemma 3.6. With the notations of Lemma 3.4, let X' be a normal crossing divisor
containing X which still does not share any irreducible component with Y, X' UY
being a normal crossing divisor. Then:

[H" (MO X575 fox]: [0v]] = [H (M X5 lwxs[@v])]

Suppose now that Y’ is a normal crossing divisor containing Y which does not share
any irreducible component with X', X' UY" being a normal crossing divisor. Then:

(MO X5 ) foxs [@y]] = [HP MO X757 ) fwxs [@v]]

We are now in a position to introduce Goncharov’s and Manin’s definition of
motivic multiple zeta values.

Definition 3.7. In particular, let k be a p-tuple with k; > 2 and let Ax be the
divisor of singularities of wy. Let B,, be the Zariski closure of the boundary of ®,,.
The motivic multiple zeta value is defined in [GMO04] by:

[H" (Monra \ Ak Bi*); [wid; [@n]]

3.2. Motivic Shuffle. The map (§ defined in Proposition 2.1 will be the key to
check that the motivic multiple zeta values satisfy the shuffle relations.This map
extends continuously to the Deligne-Mumford compactification of the moduli spaces
of curves:

_—— B8
Montmys ——— Monysz X Mo mos.

Let wyx and w; be as in section 2.1, and write Ax and A; for their respective singu-
larity divisors. Let B, and B,, denote the Zariski closures of the boundary of ®,,
and @, respectively. For o € sh([1,n], [n 4+ 1,n 4+ m]), let w, denote the differen-
tial form which corresponds to the shuffled MZV and let A, denote its divisor of
singularities. Let B, denote the Zariski closure of the boundary of ®,,,,, and
B, that of ®7, . The shuffle relations between motivic multiple zeta values are
given in the following proposition.

Proposition 3.8. We have an equality of framed motives:

[H" (Mo,nts \ Ak; Ba*) 5 [wi; [@a]]- [H™ (Mo,ms \ At Bi) s [wils (@] =

Z |:Hn+m (M07n+m+3 \ Aa; B;?J(;m) ) [wa]; [¢n+m]i| .
cesh([1,n],[n+1,n+m])
Proof. To prove this equality, we need to display a map between the underlying
vector spaces which respects the frames.
We set A’ the boundary of (Mg nis \ Ax) X (Mo,m+3 \ A1), it is equal to the
divisor of singularities of wyx A w; on Mg py3 X Mo mys.
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Let Ag = 37 '(A) and let By be the Zariski closure of the boundary of ®; =
B~ (®,, x ®p,). Let By, be the Zariski closure of the boundary of ®,, x ®,,. The
map [ gives a map:

(Mo \ Ao BE) = (Mozmrs \ Ak) x (Momrs \ A B(Bo)™ )

((Mo,n+3 \ Ak) x (Mo,m+3 \ A1); Bf,/m) :

We introduce the the right-hand inclusion o because By does not map onto B,, ,,
via 3. The map « induces a map on the mixed Tate motives:

H ((MO,n+3 \ Ak) X (Mo, m+3 \ A1); ﬁ(Bo)A/) <
HEm ((Mo,n+3 \ Ak) X (Mo,m+3 \ A1); B;:‘,/'m)

The frames on the RHS of (14) is given by [®,, x ®,,] and [wk A wi]. Applying
lemma 3.3 to (14), [®, x ®,,] induces a map ® from Q(0) to the —2(n +m) graded
part of the LHS of (14). In fact, since « is the identity map, we have [®] = [®,, x®,,,],
so [®, x ®,,] and [wik A w)] give a frames on the LHS of (14) which is compatible
with the map a*.

The map ( induces a map on the mixed Tate motives:

(14)

(15) H™ ((Mo,n+3 \ Ak) X (Momas \ Al);ﬂ(Bo)A,) Z,
H" ™™ (Mo ntms \ Ao; BE)

On the RHS of (15) the frames given by [wg] where wg is f*(wk A wp) and [®g] =
[371(®,, x ®,,)] which is compatible with the map 3*.
Now we can prove the proposition. The Kiinneth formula gives us a map:

H" (Mo,nts \ Ax; B&) @ H™ (Mo,mys \ A Biy) ———

H ((Mo,n+3 \ Ak) X (Mom+3 \ A1); Bf,/m-)

By theorem 3.1, this map also respects the frames, so the associated framed mixed
Tate motives are equal. By (14),

[H (Moses \ Ai) x (Mognra \ A1) Bl ) < lone @ nls [@ x @]
is equal to
[H77 (Mosrs \ Ai) X (Mognra \ A1) BB ) s lwre @ w1l [ x @]
which, using (15), is equal to
[H " (Momtmra \ Aos Bik): ol (o]
It remains to show that:
(16)  [H™" (Mogrmra \ Aoi B fwl: [@0]] =

Z {Hn+m(M0,n+m+3 \ Ag; B;?im); [w0]§ [q)n-i-m] .

o

In the LHS of (16), By being included in By, = |J, B,, we can replace By by
Bgy, using lemma 3.6.
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As [®g] = > [®7. ], lemma 3.2 shows that the LHS of 16 is equal to

> [ (Mommmrs \ Ao BA): lwols [971,]]
Using the fact that B, C Bg, and the identity map, lemma 3.6 shows that this
framed motive is equal to

D [ (Mongmers \ Aos B2©); [wol; [974.m)]
(e
As the divisor of singularities A of wy is included in Ag, using lemma 3.6 we can
replace Ay by A in this framed motive. Then permuting the points gives an equality
of framed motives on each term of the sum,

[H* ™ (Mo, ngmts \ Ao; B2); [wol; [@4m]] -
with
[ (Mompmts \ Ao Bitg,)i [0 (@]
Thus, we obtain the desired formula:

[H" (Mo,nts \ Ak Bi*) 5 [wi; [@n]] - [H™ (Mo.mts \ A Bt s [wil; [@m]] =

> [ (Momemra \ Ao B ) i [0ols (@]
oesh((1,...,n),(n+1,...,n+m))

4. THE STUFFLE CASE

The goal of this section is to be able to translate all the calculations done in
Section 1.3 into a motivic context. In order to achieve this goal, we need to define,
for all n greater than 2, a variety X,, — A" resulting of successive blow-ups of
A" together with a differential form Qj ky for any tuple of integer (ki,...,kp)
(with k1 + - -k, = n) and any permutation s of [1,n]. After defining another but
equivalent motivic counterpart of the multiple zeta values, we will show, using a
natural map from X,,4,, to an open subset of Mg 443, that the stuffle product
is defined at a motivic level.

4.1. Blow up preliminaries.

Lemma 4.1 (Flag Blowup Lemma,; [Uly02].). Let Vit C Vi C -+ VI C Wy be a flag
of smooth subvarieties in a smooth algebraic variety Wy. For k= 1,...,r, define
inductively Wy as the blow-up of Wi_1 along Vk’il, then ka as the exceptional
divisor in Wy, and Vi, k < i, as the proper transform of Vi, in Wy. Then the
preimage of V{ in the resulting variety W, is a normal crossing divisor V}U---UV'"

If Z is a flag of subvarieties Vi of a smooth algebraic variety W, as in the
previous lemma, the resulting space Wy will be denoted by Blg Wj.

Theorem 4.2 ([Hu03]). Let Xy be an open subset of a nonsingular algebraic variety
X. Assume that X \ Xo can be decomposed as a finite union U;c;D; of closed
irreducible subvarieties such that

(1) For alli €I, D; is smooth;

(2) for alli,j € I, D; and D; meet cleanly, that is the scheme-theoretic in-
tersection is smooth and the intersection of the tangeant space Tx(D;) N
Tx(D;) is the tangeant space of the intersection Tx (D; N D;);

(8) foralli,j eI, D;ND; =10 ;or a disjoint union of Dy.
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The set D = {D;}icr is then a poset. Let k be the rank of D. Then there is a
sequence of well-defined blow-ups

BIDXHBlpgkleH"'HBIDSOX*)X

where Blpg<o X — X is the blowup of X along D; of rank 0, and, inductively,
Blp<r X — Blpg,r—1 X is the blowup of Blp<,_1 X along the proper transforms of
Dj of rank r, such that
(1) Blp X is smooth;
(2) Blp X\ Xo = U,
(3) For any integer k, D;; N---N E; is non-empty if and only if, up to num-

D; is a divisor with normal crossings;

bering, D;, C --- C D;, form a chain in the poset D. Consequently, D;
and D; meet if and only if D; and D; are comparable.

The fact that blow-ups are local constructions yields directly to the following

Corollary 4.3 (Flags blow-up sequence). Let X and D be as in the previous the-
orem. Let F1,...,. %y be flags of subvarieties of D such that
(1) S,..., P is a partition of D,
(2) If D is in some F;, then for all D' € D with D' < D there exists some
J < i such that D' € ;.
If ﬁ; denotes the flag of the proper transform of elements of ﬁ;_l n
Bly (- (Bly, X)),

then
Blp X :Blg:—l (- (Blg, X))

We will denote such sequence of blow-up by

As we want to apply these results in order to have a motivic description of the
stuffle product in terms of blow-ups, we need some precisions about what sort of
motives arise from the construction of Theorem 4.2. Following the notation of the
article [Hu03], in particular using the proof of theorems 1.4, 1.7 and Corollary 1.6,
we have the following proposition:

Proposition 4.4. Suppose that X and D = UD; as in proposition 4.2 are such
that X and all the D; are Tate varieties. Let E™+! be the set of exceptional divisors
of Blp< X — X. Then all possible intersection of strata of D"*' U E™H! are Tate
Varieties and so is Blp<r X

Proof. Mainly following the proof of theorem 1.7 in [Hu03], we use an induction on
r.

If r = 0 then Blp<o X — X is the blow up along the disjoint subvarities D; of
rank 0.

All the exceptional divisors in £! are of the form P(Nx D;) (with D; of rank 0)
and as the D; are Tate, so are the exceptional divisors.

The Blow-up formula

d—1
(17) hXz) = 9H(X) EBh(Z)(—z’)[—%]

tell us that the blow-up of a Tate variety X along some Tate variety Z o f codimesion
d is a Tate variety. Then Blp<o X is Tate. More over let D} be an element of D!, it
is the proper transform of an element D; in D of rank bigger than 1. And theorem
1.4 in [HuO3]| tells us that D} = Blp,cp,irank(p;)=0 Dj and therefore is a Tate
variety
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We now need to show that all intersection of strata of D' N EL is Tate. As the
centre of the Blow up were disjoint, elements in £' do not intersect.

Let D} and Dj be two elements of D' being the proper transform of D; and D;
in D. If D; N D; = () then the same hold for their proper transform and there is
nothing to prove, else D; N D; = UD;. If the maximal rank of the D; is 0 then the
lemma 2.1 in [Hu03] ensures that the proper transform have an empty intersection.
If the maximal rank of the D; is bigger than 1 the fact that D; and D; meet
cleanly ensures that the proper transform of the intersection is the intersection of
the proper transform, that is

D; N D} = Blp,cp,np,:rank(pi)=0 Di N D;

And the intersection is Tate. Moreover from theorem 1.4 ([Hu03]) we have D} N
Dj = UD]. This allow to consider only intersection of the form E*N D} with E' in
& and D} in D!. Such an intersection is non empty if and only if E! comes from
an element D; of rank 0 in D with D; C D;. Then E' N D} is P(Np,D,) and is a
Tate variety.

Assume the statement is true for Blp<-—1 X, £&" and D". By corollary 1.6
in [Hu03], the blow-up Blp<, X — Blp<-—1 X is

Bl’DQU (B1D<r X) i BlngT—l X.

The centre of the blow-up are the element in D" of rank r which by assumption
are Tate, as Blp<-—1 X, then Blp<- X and the new exceptional divisors are Tate.
The other exceptional divisor are proper transform of element in £” and are of the
form

E;hLl = BlE{ﬁDlT;Tank(Dl):r E:

with E7 in £” and D] in D" coming from some D; in D. As by induction hypothesis
both E} and E} N Dj are Tate, E; 1 s a Tate variety. The same argument prove
that all element in D"+! are Tate. As previously the intersection of two element in
D"+ is either empty or the proper transform of the intersection of two element in
D" ; again this proper transform is Tate.

Theorem 1.4 tells us that the intersection DZ-TJrl N D;'H of two elements of D" !
is either empty either the union of some elements DZTJrl in D"t1. Then, to prove
that all possible intersections of strata of 771U D ! ig Tate it is enough to prove
that the intersection of some D[ ™! with any intersection B ™' n ... E;t!is Tate.

If two of the £} ! are exceptional divisor of Blpr | (Blp<- X) — Blp<,—1 X then
the intersection is empty because the correspondfng strata D] and D} have an
empty intersection (they have been separated at a previous stage).

Hence at most one of £ +1 {5 an exceptional divisor coming from the last blow-up
and we can suppose that the strata D] ™', E;™' ... E;*] are coming from strata
at the previous stage D], ET,..., E}_;.

e Suppose that E,ZH is the proper transform of an exceptional divisor E} in
E". The subvariety Y = DI N E] N --- E} is Tate by induction hypothesis
and its proper transform is

BlD]TﬂY;Tank(Dj )=r Y

which is a Tate variety (D} NY is either empty or Tate and Y is Tate). On
the other side the proper transform of Y is the intersection D/ ™' n E{T'n
---N E; ™! which is therefore Tate.
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e Suppose that Ej is the exceptional divisor coming from the blow-up of
Blp<r—1 X along D}. Let Y be the intersection Dy N ET N---Ey_;. Then
D7 NY is either empty or a Tate variety In the first case the intersection

DIt A EfT N n E;t! is empty. In the later case we have
DIt nET N nET =P(NyY N DY)
which is Tate.
(I

4.2. The space X,, and some of its properties. Let n be an integer greater
than 2 and for ¢ € [1,n] and let x4, ..., x, be the natural coordinates on A™. We
define the divisors A7, BY, B}, A,, By, DL, D% and D, as follow:

e For all subset non empty I of [1,n], A; is the divisor defined by
1-— H T; = 0;

for all i € [1,n], BY is the divisor defined by z; = 0;

for all i € [1,n], B} = Ay is the divisor defined by 1 — z; = 0;
B, is the union (|J, BY) U(U; B});

A,, is the union UIC[[L"]];‘I‘22 Ar;

Dy, is the union U;cpy 120 A7 5

DY is the union J, BY;

e D, is the union D% JD}.

Remark 4.5. The divisor B, is the Zariski closure of the boundary of the real cube
Cp, =1[0,1]™ in A"(R).

As the divisor D,, is not normal crossing, we would like to find a suitable suc-
cession of blow-up that will allow us to have a normal crossing divisor D,, over D,,.
In order to achieve that we first need the following remark and lemma.

Remark 4.6. Let I be a non-empty subset of [1,n] and x = (z1,...,2,) a point in
Ay, then the normal vector of A; at the point x is

1
Ar _ il )
(18) n, = Z - dz;.
iel
Therefore, if T and J are two distinct non-empty subsets of [1,n], the intersection
of Ar and Aj; is transverse.

Lemma 4.7. Let I1,...,I;; (k > 3) be distinct non-empty subsets of [1,n] and let
x be a point in

A, N---NAp.
A k

I, - . A Arq,
o is in Vect(nm[1 P *=1Y then

Suppose that n
ApN---NA,_ , =AnLN---NApL.

Proof. By assumption, there exists rational numbers a1, ..., a such that

Ak =gt 4
n‘m —alnll ak_ln‘m

Ip—1

Considering the expression (18), if §; is the characteristic function of I, we find
that for all 7 in [1, n]

51k (Z) = 0415[1 (’L) + -+ Oék7151k71(i).
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Now let y = (y1,...,yn) be a point in Ap, N---NAy,_, we have

[Tw= I "= TI e I1 e =1

i€l i€1,n] i€[1,n] i€[1,n]
(]

Lemma 4.8. Let D} be the poset (for the inclusion) formed by all the irreducible
components of all possible intersections of divisors A;. Then the poset D) satisfy
the condition (1), (2) and (3) of theorem 4.2.

Proof. The intersection condition (3) follows from the definition of D}. From the
former lemma, we deduce that the dimension of the normal space at a point of an in-
tersection is the codimension of this intersection. Hence the irreducible components
of the intersections are smooth.

Let S; and S5 be two elements of D}l. To show that S; and So meet cleanly,
it is enough to show that the normal bundle of the intersection is spanned by the
normal bundles of S; and S5, that is

Npn (Sl n SQ) = NAn(S1) + NATL(SQ).

As S and S5 are intersection of some Ay, it is enough show that the normal bundle
of A7, N---N Aj, is spanned by the normal vector of the A;; and that is ensured
by lemma 4.7 and remark 4.6. O

Applying the construction of theorem 4.2 with D = D} and X = A" leads to a
variety X,, 23 A", which result from successive blow-up of all the strata of D} such

that the preimage D} of D}, is a normal crossing divisor. We will write D} to mean
the preimage of D}.

Lemma 4.9. Let I/DE be the proper transform in X, of the divisor D. Then
D, = DL DY is a normal crossing divisor.

Proof. Let I be a non-empty subset of [1,n], E? (resp. BY) be the intersection in
X, (resp. A™) of divisors {x; = O} for 7 in I. And let 3}, .. 3’; be strata of 7/)7‘
such that the intersection of the S is non-empty. We want to show that there is a
neighbourhood V' of B0 N N n-- ﬂSk such that V N D,, is normal crossing. By
theorem 4.2, the S are coming from strata of D , 81 C -+ C Sg. As the intersection
of the S s with B0 is non-empty, the intersection of B with S; is non- empty There

exists I, ..., [; non-empty subsets of [1,n] such that S1=A,N---NAp,.
As BN S1 is non-empty, we have

[ﬂ([lu...U[l)_

Then, in A", we have a neighbourhood V; of BY () S; isomorphic to a product
A4 x AUl with d = n — |1):

Al x Alll
U U
D(11 Uie] BO

where B0 is the hyperplane correspondlng to {xz; = 0} inside Al

Lifting this ne1ghbourhood to Vo in X,, it becomes 1s0m0rph1c to X4 X A'I | with
D1 C X Then, for any S; there is a stratum Sd of Dcll such that VoS, ~ Sd Al
As the Sd’s give a normal crossmg divisor in X4 by Theorem 4.2, VO gives the

neighbourhood of B? N N NN Sy, such that V N D, is a normal crossing divisor
in X,,.
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O
Definition 4.10. Let En denote the preimage of B,, and /Aln be the divisor IA)n \En

Remark 4.11. The divisors ﬁn and En do not share any irreducible components
and are both normal crossing divisors.

Let én be the preimage of C,, = [0,1]" in X,, and é_n its closure. Then En is

the Zariski closure of the boundary of én and there is a non-zero class

(19) (C,] € Grl¥ H" (X, By).
If I is a subset of [1,n], we define £ and G to be the functions
GI : (:Cl,...,l'n) U Hie['ri
Fr:(z1,...,20) — 1 = [L;c; @i

Definition 4.12. A flag F of [1,n] is a collection of non-empty distinct subsets I;
of [1,n] such that I; € ... C I,. The length of the flag F is the integer r and we
may say that F is an r-flag of [1,n]. A flag on length n will be a maximal flag. A
distinguished r-flag (F, 1, ...1,) will be a flag F of length r together with element
ih <...<ipof [1,7].

Definition 4.13. Let (F,iy,...i,) be a distinguished r-flag of [1,n]. Let Q7
denote the differential form of Qf, (A™\ D,,) defined by

log
Qf i, = /\ dlog(g;)
j=1

where
[ Frifje{in,... i}
91 = { G1,otherwise
Let k = (k1,...,kp) be a tuple of positive integers with &y > 2 such that &k +
-+ +k, = n and s be a permutation of [1,n]. We define a differential form
Qs € QL (A™\ D,,) by

log
Qk,s = fk17~~~7k3n (.Ts(l), ce ,$S(n)) dzy A - ANdaxy,.

Remark 4.14. Let k and s be as in the previous definition. We associate to the pair
(k, s) the maximal distinguished flag (Fy,i1,...,4p) defined by I; = {s(1),...,s(i)}
and i; = ky +--- + k; for j running from 1 to p. Then we can see that there exists
an integer 75 such that

Qe = (1) Q7"

B1,.0p

Definition 4.15. We shall write wilp and wy s for the pull back on X, \ D, of,

respectively, the forms Qp, . ; and Q.

Proposition 4.16. If (F,i1,...,i,) is a mazimal flag of [1,n] such that iy > 2
and i, = n then:

o The divisor of singularities Afl of O . s Ap, U~ UAy, .

(AT ip

e The divisor of singularities /Alfi

HRR lies in A,,.Thus, the divisor

of singularities of wi s lies in Xn
Moreover, if (F,i1, ... ip) and (F',iY, ..., iy) are two distinguished flags of length
ip and ig with |ir| > 2, |i1] > 2 and L, I being a partition of [1,n], then the

o lies in Ay,

vvvvvv

.. . e f
divisor of singularities of w;,



18 ISMAEL SOUDERES!!

Let (F,i1 € ... C4p) be a flag as in the previous proposition.
It is straightforward to see that Afl L is Ar, U---UAp . The following
iy Tip
lemma from Goncharov can easily be modify to fit into our situation.

Lemma 4.17 ([Gon02|[lemma 3.8]). LetY be a normal crossing divisor in a smooth
variety X and w € Q}’Og(X \Y). Let p: X — X be the blow-up of an irreducible
variety Z. Suppose that the generic point of Z is different from the generic points

of strata of Y. Then p*w does not have a singularity at the special divisor of X.
That is:

Lemma 4.18. Let Y be a normal crossing divisor in A" and w € Qp, (A"\Y'). Let
P 2 Xn — A" be the map of our previous construction. Suppose that the generic
points of the strata of B, that are blow-up in the construction of X, are different
from the generic points of strata of Y. Then p)w does not have singularities at the

corresponding exceptional divisors in B,.

It is enough to check that the divisor of singularities of Q7 ;_ is a a normal
crossing divisor and that none of its strata is a blown up strata of B,.

The divisor of singularities of Qilp is Ay, U---UAy,  and to show it is a
normal crossing divisor it is enough to show that the normal vectors of the A[ij
at any intersection of some of them are linearly independent. The normal vector
of Ay, is Eielij 1/z;dx; and as we have Iy C I C ... C I, they are linearly
independent.

We now have to show that none of the strata of B,, that are blown up in the
construction of X, are exactly some strata of Ay, U--- Ay, . Let S be such a strata of
B,, of codimension k. The strata S is defined by the equations z,, =1,...,z,, = 1.
If I's denotes the set {ry,..., 7} then, for any subset I of [1,n], S is included in A,
if and only I is included in Ig. As I; C I;; for ¢ <4/, if S is included in a strata S,
of Ay, 1,, that strata is of the form AL.1 n---N AAij with j < k because |I1] < 2.

As a consequence, S 4 is of codimension at most £ — 1 and S can not be a strata of
F

il,...,ip'

We use the same argument in the case of two distinguished flags as in the lemma
and the proposition 4.16 is proved.

Proposition 4.19. The divisor A,, does not intersect the boundary of Cy, in Xn(R).

Proof. Let S be an irreducible codimension 1 stratum of B, containing an inter-

section of some /Aln strata with the boundary of én As, the divisor A,, intersect
the boundary of the real cube C,, only on strata of B,, that are of codimension at
least 2, S have to be such that p,(9) is a stratum of B,, of codimension at least 2.

Using the symmetry, with respect to the standard coordinates on A", we can

suppose that p,,(S) is defined in those coordinates by zy = xp41 = ... = Tp.
Starting from A" and blowing up first the point 1 = 22 = ... = x, = 1, then
the edge xo = x3 = ... = z, = 1 and after that the plane x3 =24, =... =z, =1

and so on, we obtain a variety p, : X,, — A™. There are natural local coordinates
(s1,...,8n)) on X,, such that the coordinates on A™ defined by y; = 1 — x; satisfy:

Y1 = 81, Yo = 8182, ey Y; = S182 -S4, ey Yn = S182°**Sn.
In the y;-coordinates the stratum z; = z;11 = ... =2z, =1isy; =yj41 = ... =
yn = 0 and its preimage in )~(n is given by s; = 0.
For any permutation s of [1,n] we could apply the same construction, that is
blowing the point Ts(1) = Ts(2) = -+ = Tg(n) = 1 then the edge Ts(2) = Ty(3) =
... = Tg(ny = 1 and so on, and have a variety p;, : X; — A"™. The preimage of D,
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in )?fl will be denoted by Efl, Ef’l will denote the preimage of B,, and gfl is Efl\éfl
To prove that ﬁn does not intersect the boundary of CA‘n in X,,(R) it is enough to
show that for any permutation s /Tfl does not intersect, in X; (R), the boundary of
the preimage of C),. It is then enought to show that the proper transforms of the
divisors A; do not intersect the boundary of sz (R) because it will then be the same
for the irreducible components of their intersections as for the proper transforms of
those components by the remaining blow-up used to reach X,,. By symmetry, it is
enough to show it when s is the identity map and then in the case of )N(n. Let 5n
be the preimage of C, in )~(n .

Let Ar be a codimension 1 stratum of A,,, I being the set {4y, ..., i, } and suppose
that 39 < ... < 1i,. We want to show that the closure A; of the preimage of A7\ B,
in )~(n does not intersect the boundary of én The k-th symmetric function will be
denoted by oy, with the following convention

oo =1, O'k(Xl,...,Xl):Oifl>k

The stratum Ay is defined in the z;-coordinates by 1 — x;, - --x;, = 0 and in the y;
coordinates by

p+1

(20) 0= Z(il)k_lo-k(yimyil "'7yip)'

k=1

Before giving an explicit expression of A; with the s; coordinates, we define the
set Jo as {1,...,40} and the sets Jy,...,J, by

Jk2{10+1,’io+2,...,ik}

for all k in [1,p]
For any subset J of [1,n], IT’s will denote the product [, ; s; and we have the
following relations

yi, = 17°s and Vk € [1,p], wi, = II70sIl’*s

The RHS of the equation (20) can be written, using the change of variables
Y; = 81---8; as

p+1
(21) Z(—l)k_lak(ﬂ‘j"s, 7°sIT”ts, . .., I170sIT7rs).
k=1

For any indeterminate \ one have, for any k,
o (MAX 1, AXy, . AX) = M (op1(Xy ., Xp) 4+ ou( X, ..o, X)),

Then the expression (21) is equal to

'os [1 + o1 (T1'1s, ..., T17s)
p—1
+ Z ((—1)k(HJ°s)k (Uk(HJls, oL TPs) o (T ,HJPS)))
k=1

+ (=1)Po,(T1"1s, ..., I1'7s)
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The expression of A 1 in the s;-coordinates is then

(22) 0=1+0—1(HJ15 o, I177s)

+ Z FI70s)F (op (T7s, ..., TT7%8) + opy1 (177, . . ., TT778)))

+ (=1)Po,(IT"1s, ..., TTrs)

The closure of C,, is given, in the s; coordinates, by s; € [0,1] and for any ¢ € [1,n]
s1-+-8; € [0,1]. It is enough to look the intersection of AI with codimension 1
strata of the boundary of Ch.

Suppose that s;, = 0 for some iy € Jy then the RHS of (22) become

1+ o1 (I171s, ..., II77s)

which is strictly positive if for any 7, s; > 0. So the divisor Zl does not intersect
any component of the form s;, = 0 for ig in Jp.

Then, we can suppose that s; # 0 for all i € Jy in order to study the intersection
of A; with the boundary of C,, and the RHS of (22) can be written

1 - Jo o117 - Jo o177
e 1- [ (@1 =1Psi’ss) | + ] (1 - m7sIss) .
j=1 j=1
Suppose that a point = (s1,...,8,) with s; > 0 for all ¢ in Jy, lies in the closure

of C. That is, for all 7 in [1,n] the product sysg---s; is between 0 and 1 which
means all the product I17°sTT7is are between 0 and 1 for j in [1,p] and then one
find the following inequalities

L 1

1 .
0 < HJUS 1- H (1 o HJOSHJ]S) < HJOS’

p
0< ] (1 —1PsTlss) < 1.
j=1

Both term can not be equal to 0 together, thus AI does not intersect the boundary

of C~‘n the s; being strictly positive for ¢ in Jy and the proposition is proved.
O

4.3. An alternative definition for motivic MZV. Both propositions 4.16 and
4.19 lead to the following theorem and to an alternative definition for motivic
multiple zeta values.

Theorem 4.20. Let k = (k1,...,kp) be a tuple of integers with k1 > 2 and ki +

..+k, = n and let s be a permutation of [1,n]. Let Ef( be the divisor of singularities
of the differential form wy.. Then there exist a mized Tate motive

H™ (X, \ AS; Bie).
The differential form w;, and the preimage Ch of the real n-dimensional cube in X,
give two non zero elements

~ ~AS ~ ~ ~AS Vv
wi] € Gy B (X, \ A Ba%)  and (] € (Grf B (X, \ A3 BiY))
The periods of the n-framed mized Tate motive

¢ M) = [H (X \ A Bil%): ) [C]
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is equal to ((ki,...,kn).

Moreover, let (F,i1,...,ip) and (F',iy,...,i;) are two distinguished flags of
length iy, and iy, with |i| > 2, [i{] > 2 and I;, I{q being a partition of [1,n] and
AFIF

i1l |8 el
n-framed mized Tate motive

;- There exists an
il

.. . .- F F!

be the divisor of singularities of w; ;A wir

gﬂf’

M . . Y] . ~F|F
CImM(F iy, i FLiy, . yil) = HY (X, \ A

., Y
117~~~alp|117~~~a7/q,

Foo AWl ] and [C).

D1,e.0y0 1750

the frames being given by [w

Proof. We want to apply theorem 3.6 in [Gon02] to our particular case. As D, isa
normal crossing divisor and as proposition 4.19 ensures that /Aln does not intersect
[an],using Proposition 4.16, the only thing that remained to show is that we have
a Tate stratification of X,, which is ensured by Lemma 4.22.

The computation of the period follows from the fact that integrating over (?n is

the same as integrating over the real cube. O

The following lemma is the key to prove Lemma 4.22.

Lemma 4.21. Let I,...,I. be r subsets of [1,n] and X the intersection Ar, N
---NA;. CA". Then, X and its irreducible componnents are Tate varieties.

Proof. We can assume that the equations defining the Aj, are independent. If
|[[1U---UI.| = a < nthen X is isomorphic to (A7 N---NA7 ) x A"7% C A® x A"
where the A’ are defined by the same equations, 1 — HjGL; x; = 0, that define Ay,
but view in A® instead of A™.

Thus, using the Kiinneth formula, it is enough to prove the lemma when I; U
- UT,. =[1,n]. We will now construct two finite morphisms

r—1
Gy x [[latre =1y L x Logp.
k=1

Let k be an algebraically closed field. The system of equations

Ei . 1-— H ZL'j = 0
Jjel;
can be reduce in the following way.

The variable x,, is by assumption in some I;, and we can assume without loss of
generality that ¢ = 1, so F; can be written

1 W
xnziznxfj 0<|ﬁ§-1)|<1andﬁ§-1)62.
Hth :CJ

Substituting x, by this product into the other equations, we obtain Ej, ..., E.,
r — 1 independent equations of the form [] j<n z;’. At least one variable appears
in those equations and we can suppose that it is x,,—1 in E5. We have then

j<n

a®

e | o\? € Z and d,,_, € N".

There exists (4,_, such that Cj::ll =1 and

B
tar=Ca || 77 AP eq

j<n—1
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Substituting x,_; into the remaining equations we obtain new equations of the
form [] j<n—1 :z:fj, now with the ¢ in Q. We can then apply the same operation to
another variable, let’s say

a®

d'n—Z_ 3
wg = 11 =

j<n—2

6(5—3) €Q and Cin_g S Q*

If d;,—2 is not in N*| raising the equation to some power and taking the inverse, we
can rewrite the previous equation as
3
dn—2 __ O‘g(' )
LTp_o = T

j<n-—2

a§3) € Q and d,,_o € N*.

We obtain an expression for x,_o (as with x,,_1) which is a root of unity, (4, _,,
times the product of powers (possibly negative) of roots of the z; for j < n — 2.
We can substitute this expression into the remaining equations. Continuing the
process, we find r variables, z,,xn—1,Zn—2,...,Tn_r11, and r — 1 roots of unity,
Cdp_1>+-+1Gdp_rys» that allow us to write the system of equations Fy,..., E, as a
triangular system :

s
In = H Zj
j<n

s
o1 =Ca,, J] 2

j<n—1

B
LTn—i = Cdn,i H .’L'jj

j<n—i

ﬁ(’“)

— J

Tp—r4+1 = Cdn—'r+l I I €L
j<n—r+1

such that for all i € {0,...,r—1} Cj::: = 1. Finally, solving this triangular system,
we find integers p;; and pj, and positive integers ¢;; and ¢}, for all i in {0, ... ,r—1},
all kin {1,...,7—1} and all j in {1,...,n — r} such that :

n—r

/ / .. ..

Vvie{0,...,r—1} Tn—i = Cd, _; I I g‘g;’i/:““ I I xf”/q”.
k>i j=1

Now, setting
vie{l,...,n—r} a; = lem;(gsj)

Vke{l,...,r—1} bkzlcmi(qgj)

we define
G x M et = 1) : X
()‘1) .. 'a)‘n—T) X (Cn—la v 7Cn—T+1) f (fla v afn)
with

Vi S {17 N T} fi(Alv <. '7)\7177“5(7’1717 <. '7Cnf’l“+1) = A?Z
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and

VZ S {0, N 1} fnfi(>\1; .. .,)\n,hcnfl, . ,Cn,TJrl) =

Cpmbk/qm )\Pw a; /qw
n [ n—

k>1i

We also define the morphism g : X — GJ.7" to be the projection onto the
first n — r factor (X is embedded in A™). The morphism g is finite. Moreover the
composition g o f raise each \; to some power and is therefore finite. As we can
solve the system over any algebraically closed field, the morphism f is surjective
and therefore finite, because g and g o f are.

Moreover, there is a one to one map between the set of the irreducible components
of X the set of those of [];_;{z%*+* = 1} and the irreducible components of X
are disjoint

In the Hodge-De Rham realisation, we then have the following composition

H (G5 % [ (oo = 11,Q) = H'(X,Q) = H'(G5,7,Q)
(gof)"

As f and g are finite, both f* and ¢g* are injective. The morphism of mixed Hodge
structures, f*, is strict [Del71], therfore H*(X,Q) is a direct sum of Hodge-Tate
structures Q(m) (for different m) because the cohomology of G%~" x H;: {xdn—rak =

1} is. The irreducible components of X being disjoint, each is a Tate variety
Finally, using the fact that the Hodge-De Rham realisation is fully faithful, we
can conclude that the motive of X is a direct sum of Tate motives, in other words
X is a Tate variety. (I

Lemma 4.22. The divisor D,, = Eg U B}z provides X,, with a Tate stratification.

Proof. We first need to show that all the strata of lA)}l and X,, are Tate but using
the proposition 4.4, it is enough to show that all the strata of D} are Tate (A"
being Tate). A stratum Aj, N---N Ay, of D} is a Tate variety by Lemma 4.21. So
X,, and all the strata of D! are Tate.

Note that the previous discussion tells us that for any & > 2, X; and all the
strata of 151 are Tate varieties.

Let S be the intersection of certain codimension 1 strata of BO it is the proper
transform of the corresponding intersection, say S = Njes{z; = 0} for some J C
[1,n], in BY. That is, S is isomorphic to

(23) Blsnp:peps S-

The intersection S is isomorphic to A for d = n — |.J| and hence is Tate and if I is
a subset of [1,n] then SN A is either empty (INJ # 0) or, if INJ = (), isomorphic
to the subvariety of A% given by {1 —[],.; z; = 0} (up to renumbering). Thus, the
proper transform S is isomorphic to X4 which is Tate by the discussion above.
Now, if S; is some irreducible codimension 1 stratum of [A)}l that have a non-
empty intersection with S then, as S; is the exceptional divisor of some of the blow-
ups in the construction of X,,, this intersection SN S is the exceptional divisor in
the blow-up sequence (23) that leads to S. Asa L consequence, the intersection S ﬁS
is isomorphic to some irreducible stratum of Dd in X4 and we can conclude that
any possible intersection of strata in IA)}L with S is isomorphic to an intersection of
strata in Bcll inside Xy ~ S and so is Tate by the above discussion. O
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4.4. Motivic Stuffle. Let k = (k1,...,kp) and 1 = (I1,...,{;) be respectively a
p-tuple and a g-tuple of integers with k1,01 > 2, > k; = n and > l; = m. In
this section, as in section 1.1 and 1.3, if o is a term of the formal sum k * 1 with
all coefficients being equal to 1, we will write o € st(k,1). The map ¢ defined at
proposition 2.3 extends to:

Mo ntm+3 2, Mo i3 X Mo m3.

Let Ax (resp. Aj) be the divisor of singularities of the meromorphic differential
form wy on Mo 43 (resp. wy on Mo nq3) given in simplicial coordinates by wy
(resp. wy) (cf. 3) and in the cubical coordinates by f, .., (resp. fi, . .i,). For
all o in st(k,1), let A, be the divisor of singularities of the form w,. As in section
3.2, let ®,,, ®,,, and P,,1,,, denote respectively the standard cells in Mg n4+3(R),
Mo m+3(R) and Mg nym+3(R) and B, By, and B4, be the Zariski closure of
the boundary of respectively ®,,, ®,, and ®y, 4y,

Proposition 4.23. We have an equality of framed motives:

[H" (Monts \ Ai; Bi*) s [wil; [@a]] - [H™ (Momts \ A Bt ; [wil; [@m]] =

Z |:Hn+m (M07n+m+3 \ Aa; B;?im) ) [wa]; [¢n+m]i| .
oest(k,l)

Proof. Let Ag be the Zariski closure of OMg ntm+3 \ Bntm, Bn,m be the Zariski
closure of the boundary of ®, x ®,, and A’ be the boundary of (M01n+3 \ Ak) X
(M01m+3 \ Al). As the map 6 maps By, onto By, ,,,, we have an induced map

J: (Mo,n+m+3 \ Ao; Bfim) — ((Mo,n+3 \ Ak) x (Mo mts \ A1) ;Bf,,m) :
Using the Kiinneth formula, we have maps of mixed Tate motives
(24) H" (Mo,n+s \ Ak; B*) @ H™ (Mom+s \ Ay Biy') —

Hw ™ ((Mo,n+3 \ Ax) X (Mo,m43 \ A1); B;?,/m) —

H ™ (Mo,n+m+3 \ Ao; Bﬁim)

which are both compatible with the respective frames [wx]| ® [wi]; [Pn] ® [®r]
[wk A wil; [@, X Dp,] and [6* (wk A w1)]; [Prgm]-
We now need to show that

[H ™ (Mo monra \ A0 B ) 510" (@i Aw)l, (@] | =
Z {Hner (Mo,n+m+3 \ A Bﬁim) ; [Wa]; [q)ner] .
oest(k,1)

As A, is included in Ag, using lemma 3.6 it enough to prove the previous equality
with Ag instead of A, in the RHS. The two following lemma tell us that it is enough
to work with X, ., (cf. section 4.2) instead of Mg nim+3 \ Ao-

Lemma 4.24. Let v > 2 be an integer and let 5y Mo ryz — (PYH™ be the map
given on the open set by

(0,2’1,...,2’7«,1,00) — (0521;22700) X (0722723500) X
x (0, zp—1, 2r,00) X (0, 2, 1, 00).

Let A, be the union of the codimension 1 irreducible components of OM 43 that
are send by 5, into (P1)"\ A",



MOTIVIC DOUBLE SHUFFLE 25

Then, A, C Ay and there exist a sequence of flags F1,...,Fn, of elements of
D! (Lemma 4.8) satisfying condition of Corollary 4.3 such that

(25) X, = Blg,

..........

Proof. The map S5, is given in the cubical coordinates on Mg ;43 by z; = u; where
the x; denotes the standard affine coordinates on (P!)” and send components of B,
into hyperplanes x; = 0 or z; = 1.

The induced map Mg 43\ A, — A" is the blow-up along the strata

(26) {.’L‘iZ,CCH_l:...:QEj:l}

which are all elements of D}.
The beginning Fi, ..., F, of the sequence of flags is given by

fli{{l'l:SC2:"':ZL'n:1},{1‘1:1'2:"'156»”,1:1},...,{:61:1}}
fQZ{{ZEQZSCg:"':1'”:1},{1'2:1'3 "':SCn,l:l},...,{JEQ:l}}

fi:{{xi:zzﬁrl:"':znzl};{zi:ziJrl:"':znflzl}v"';{zizl}}

Fr={{zr=1}}
That part of the sequence satisfies condition (2) of Corollary 4.3. Then the easiest
way to complete the sequence is to take flags with just one element beginning with
the rank 1 strata of D} (the only stratum of rank 0 is {z; =12 = ... =z, = 1}),
then the rank 2 strata and so on.

Now that the sequence of flags exists, Corollary 4.3 ensures that the morphisms
in (25) holds.

Indeed, the usual map Mg ,+3 — (P!)" which maps (0,z1,...,2-,1,00) to
(#1,...,2r) sends @, to the standard simplex A, = {0 < t; < ... < ¢, < 1} and
maps B, to the algebraic boundary of A,.. A first sequence of blow-up along the sub-
varieties {0 =t; = ...t;} corresponds to the change of variable from the simplicial
to the cubical coordinates (6). In order to recover B,., the blow-up along the proper
transform of the subvarieties {t; =t;;1 = ... =¢;} and {t; =tip1 = ... = ¢, =1}
has still to be performed. The expression of these subvarieties in the cubical coor-
dinates is {z; = x;41 = ... = x; = 1}. The fact that it seems that we are blowing
up less strata in order to recover Mg 13 from (P1)" using 5, (25) comes from the
fact that we are only looking at Mg .43 \ A, O

From the previous lemma we deduce

Corollary 4.25. (1) Let a = (as,...,ap) be a b-tuple of integer with a1 > 2
with a1 + --- 4+ ap, = n+ m. Using the previous convention we have the
following equality of framed mized Tate motives

I M(a,id) = {me (_Mo,n+m+3 \AO;B:}gm)  [wal, [®nim]]

(2) Let k and 1 be as in proposition 4.23, then there exists two distinguished
flag (F,iv, ... ip) and (F',j1,...,5q) with i1,51 > 2 and I;,, I;, being a
partition of [1,n] such that the following equality of framed mized Tate
motives holds

I M(Fin, i) F g1y g) =

{H"er (Mo,n+m+3 \ Ao, Bﬁ‘im) s lwk Aw]s [@rgm]
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As a consequence, for all o € st(k,1), the framed mized Tate motives
[H"er (Mo,n+m+3 \ Ao, Bﬁ‘im) ; [wl, [q’n+m]}

is equal to it counterpart in X,y m, ("M (o).

Proof. In 1. and 2., the map on the underlying vector space is given by a

(cf.
(25)). As Chym is map to @, 4., knowing the behaviour of ay ., with respect to
the form w, and wy A w is enough to deduce that oy i, Tespect the frames.

(1) As the the map o,

Mo niyme3 \ Ao, we have o, (wa) = wid and so the equality of framed
mixed Tate motives.
(2) Writing down in cubical coordinates the expression

n+m

as no effect on the cublcal coordinates, u; on

wk = fx(ul, ..., up)d™u and  wy = fi(tngi, ..o, Unpm)d ™ u
leads to the definition of two distinguished flag
(.F,’L'l,...,’ip) and (fl,jl,...,jq),

as in remark 4.14 with s = id. The fact that o, ,
come from the equality

m respects the frames

F’ F’ %
Wiy iy NGy = O (Wi A @)

O

The only thing that remain to be checked to complete the proof of proposition
4.23 is using the notation of the previous lemma

CIrM(Finy il F g, dg) = Y T M (o4id).
oest(k,l)

Using the computation of section 1.3, in particular the proposition 1.5, we have
that for each o € st(k,1) there exists a permutation s, such that

]_—/ f/
(Wi, iy AW el = Z [Wa,s,]-
oest(k,l)
F ity F! F! . . N
As the divisor A% ;"7 of wi | Awj ;o and the divisors A, s, are in Apim,
lemma 3.6 and an analogue of lemma 3.3 show that
(27) TM(F i i F i) = Y M (ovse).
oest(k,l)

Permutlng the variables give a well defined morphism X,,+,, — X4, that

preserve C’n+m and its algebraic boundary Bn+m It leads, on each term of the
RHS of 27, to an equality

(1" M(0,55) = (17 M(0,id),
and hence to

I M(F iy, il F g = Y T M(o4id).
oest(k,l)

and the proposition 4.23
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