Development and validation of an X-ray tomograph for two-phase flow.
Résumé
This paper describes the development and validation of a high spatial resolution X-ray tomograph designed for the investigation of air-water two-phase flow. The device hardware mainly comprises a 60 keV X-ray source, a detector, and an accurate mechanical bench. Our study concentrated on accurate quantification with emphasis on the reconstruction procedure. As is well known, absorption gradients induce reconstruction artifacts when using standard algorithms based on uniform regularization. In the particular case of two-phase flow in a pipe, this leads to poor measurement accuracy in the vicinity of the walls. To overcome such effects, improved algorithms were developed during this study that involve spatially adaptive regularization methods. Preliminary calibration performed on static phantoms clearly exhibited the benefits of the advanced reconstruction algorithms. A validation procedure was carried out on an air-water bubble column, equipped with an optical probe, which could be translated in order to explore the 80 mm x 80 mm square cross section. Comparisons of local void fraction measurements were performed pixel by pixel. They demonstrate the accuracy improvement induced by the advanced reconstruction algorithms.