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Maximal digital straight segments and convergence of discrete geometric estimators

Discrete geometric estimators approach geometric quantities on digitized shapes without any knowledge of the continuous shape. A classical yet difficult problem is to show that an estimator asymptotically converges toward the true geometric quantity as the resolution increases. We study here the convergence of local estimators based on Digital Straight Segment (DSS) recognition. It is closely linked to the asymptotic growth of maximal DSS, for which we show bounds both about their number and sizes. These results not only give better insights about digitized curves but indicate that curvature estimators based on local DSS recognition are not likely to converge. We indeed invalidate an hypothesis which was essential in the only known convergence theorem of a discrete curvature estimator. The proof involves results from arithmetic properties of digital lines, digital convexity, combinatorics, continued fractions and random polytopes.

Introduction

Estimating geometric features of shapes or curves solely on their digitization is a classical problem in image analysis and pattern recognition. Some of the geometric features are global: area, perimeter, moments. Others are local: tangents, normals, curvature. Algorithms that performs this task on digitized objects are called discrete geometric estimators. An interesting property these estimators should have is to converge towards the continuous geometric measure as the digitization resolution increases. However, few estimators have been proved to be convergent. In all works, shapes are generally supposed to have a smooth boundary (at least twice differentiable) and either to be convex or to have a finite number of inflexion points. The shape perimeter estimation has for instance been tackled in [START_REF] Kovalevsky | Theoretical and experimental analysis of the accuracy of perimeter estimates[END_REF]. It proved the convergence of a perimeter estimator based on curve segmentation by maximal DSS. The speed of convergence of several length estimators has also been studied in [START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF]. Klette and Žunić [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF] survey results about the convergence (and the speed of convergence) of several global geometric estimators. They show that discrete moments converge toward continuous moments.

As far as we know, there is only one work that deals with the convergence of local geometric estimators [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF]. The symmetric tangent estimator appears to be convergent subject to an hypothesis on the growth of DSS as the resolution increases (see Hypothesis 41). The same hypothesis entails that a curvature estimator is convergent: it is based on DSS recognition and circumscribed circle computation (see Definition 9).

In this paper, we relate the number and the lengths of DSS to the number and lengths of edges of convex hulls of digitized shapes. Using arguments related to digital convex polygons and a theorem induced by random polytopes theory [START_REF] Balog | On the convex hull of the integer points in a disc[END_REF], we estimate the asymptotic behaviour of both quantities. We theoretically show that maximal DSS do not follow the hypothesis used in [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF]. Experiments confirm our result. The convergence theorem is thus not applicable to digital curves. As a consequence, the existence of convergent digital curvature estimators remains an open problem. The paper is organized as follows. First, we recall some standard notions of digital geometry and combinatoric representation of digital lines, i.e. patterns. The relations between maximal segments and edges of convex digital polygons are then studied to get bounds on maximal segments lengths and number. Finally, the asymptotic behaviour of maximal segments is deduced from the asymptotic behaviour of convex digital polygons. The growth of some DSS is thus proved to be too slow to ensure the convergence of curvature estimation. This theoretical result is further confirmed by experiments.

Maximal digital straight segments

We restrict our study to the geometry of 4-connected digital curves. A digital object is a set of pixels and its boundary in R 2 is a collection of vertices and edges. The boundary forms a 4-connected curve in the sense used in the present paper. Our work may easily be adapted to 8-connected curves. In the paper, all the reasoning are made in the first octant, but extends naturally to the whole digital plane. The digital curve is denoted by C. Its points (C k ) are assumed to be indexed. A set of successive points of C ordered increasingly from index i to j will be conveniently denoted by [C i C j ] when no ambiguities are raised. 

[C i C j ] is a DSS" is denoted by S(i, j).
The first index j, i ≤ j, such that S(i, j) and ¬S(i, j + 1) is called the front of i. The map associating any i to its front is denoted by F . Symmetrically, the first index i such that S(i, j) and ¬S(i -1, j) is called the back of j and the corresponding mapping is denoted by B.

Maximal segments form the longest possible DSS in the curve. They are essential when analyzing digital curves: they provide tangent estimations [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: application to the curvature[END_REF][START_REF] Lachaud | Analysis and comparative evaluation of discrete tangent estimators[END_REF], they are used for polygonizing the curve into the minimum number of segments [START_REF] Feschet | On the Min DSS Problem of Closed Discrete Curves[END_REF]. Definition 3. Any set of points [C i C j ] is called a maximal segment iff any of the following equivalent characterizations holds: (1) S(i, j) and ¬S(i, j + 1) and

¬S(i -1, j), (2) B(j) = i and F (i) = j, (3) ∃k, i = B(k) and j = F (B(k)), (4) ∃k ′ , i = B(F (k ′ )) and j = F (k ′ ).
From characterizations (3) and (4) of Definition 3, any DSS [C i C j ] and hence any point belongs to at least two maximal segments (possibly identical) [C B(j) C F (B(j)) ] and [C B(F (i)) C F (i) ].

Patterns and DSS

We here recall a few properties about patterns composing DSS and their close relations with continued fractions. They constitute a powerful tool to describe discrete lines with rational slopes [START_REF] Berstel | Sturmian words, lyndon words and trees[END_REF][START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Since we are in the first octant, the slopes are between 0 and 1. Definition 4. Given a standard line (a, b, µ), we call pattern of characteristics (a, b) the succession of Freeman moves between any two consecutive upper leaning points. The Freeman moves defined between any two consecutive lower leaning points is the previous word read from back to front and is called the reversed pattern.

A pattern (a, b) embedded anywhere in the digital plane is obviously a DSS (a, b, µ) for some µ. Since a DSS contains at least either two upper or two lower leaning points, a DSS (a, b, µ) contains at least one pattern or one reversed pattern of characteristics (a, b). Definition 5. We call simple continued fraction and we write:

z = a/b = [0, u 1 . . . , u i , . . . , u n ] with z = 0 + 1 u 1 + 1 . . . + 1 u n-1 + 1 u n
We call k-th convergent the simple continued fraction formed of the k + 1 first partial quotients:

z k = p k q k = [0, u 1 , . . . , u k ].
There exists a recursive transformation for computing the pattern of a standard line from the simple continued fraction of its slope [START_REF] Berstel | Sturmian words, lyndon words and trees[END_REF]. We call E the mapping from the set of positive rationnal number smaller than one onto Freeman-code's words defined as follows. First terms are stated as E(z 0 ) = 0 and E(z 1 ) = 0 u1 1 and others are expressed recursively:

E(z 2i+1 ) = E(z 2i ) u2i+1 E(z 2i-1 ) (1) E(z 2i ) = E(z 2i-2 )E(z 2i-1 ) u2i (2) 
In the following, the complexity of a pattern is the depth of its decomposition in simple continued fraction. We recall a few more relations:

p k q k-1 -p k-1 q k = (-1) k+1 (3) 
(p k , q k ) = u k (p k-1 , q k-1 ) + (p k-2 , q k-2 ) (4) 
We now focus on computing vector relations between leaning points (upper and lower) inside a pattern. In the following we consider a DSS (a, b, 0) in the first octant starting at the origin and ending at its second lower leaning point (whose coordinate along the x-axis is positive). We define a/b = z n = [0, u 1 , . . . , u n ] for some n. Points will be called U 1 ,L 1 , U 2 and L 2 as shown in Fig. 1. We can state

U 1 L 1 = U 2 L 2 and U 1 U 2 = L 1 L 2 = (b, a). We recall that the Freeman moves of [U 1 L 1 ] are the same as those of [U 2 L 2 ]
. Furthermore Freeman moves between U 1 and U 2 form the pattern (a, b) and those between L 1 and L 2 form the reversed pattern (a, b).

Proposition 1. A pattern with an odd complexity (say

n = 2i + 1) is such that U 1 L 1 = (u 2i+1 -1)(q 2i , p 2i )+(q 2i-1 , p 2i-1 )+(1, -1) and L 1 U 2 = (q 2i -1, p 2i +1). Moreover the DSS [U 1 L 1 ] has E(z 2i ) u2i+1-1

as a left factor, and the DSS

[L 1 U 2 ] has E(z 2i-1 ) u2i as a right factor.
Proof. From Eq. ( 3) we have: p 2i+1 q 2i -p 2i q 2i+1 = (-1) 2i+1+1 = 1, which can be rewritten as: aq 2i -bp 2i = 1. (q 2i , p 2i ) are clearly the Bézout coefficients of (a, b). One can check that point (b + 1 -q 2i , a -1 -p 2i ) is L 1 : its remainder is a+b-1 and its x-coordinate while positive is smaller than b. We immediately get

U 1 L 1 = (b + 1 -q 2i , a -1 -p 2i ). Using Eq. (4) yields: U 1 L 1 = ((u 2i+1 -1)q 2i + q 2i-1 +1, (u 2i+1 -1)p 2i +p 2i-1 -1). From L 1 U 2 = -U 1 L 1 +U 1 U 2 , we further get Y X L1 L2 U2 E(z2i+1) E(z2i) E(z2i) E(z2i) E(z2i-1) p2i p2i-1 q2i q2i-1 U1 O z2i+1 = [0, 2, 3, 3]
Fig. 1. A DSS(a, b, 0) with an odd complexity slope, taken between origin and its second lower leaning point.

that L 1 U 2 = (q 2i -1, p 2i +1). From Eq. (1) E(z 2i ) u2i+1-1 is a left factor of [U 1 U 2 ] but also of [U 1 L 1 ]. Writing E(z 2i+1 ) as E(z 2i ) u2i+1-1 E(z 2i-2 )E(z 2i-1 ) u2i+1 , and expanding L 1 U 2 as (u 2i q 2i-1 + q 2i-2 -1, u 2i p 2i-1 + p 2i-2 + 1) with Eq. (4), we see that E(z 2i-1 ) u2i is a right factor of [L 1 U 2 ]. ⊓ ⊔ Proposition 2.
A pattern with an even complexity (say n = 2i) is such that

U 1 L 1 = (q 2i-1 +1, p 2i-1 -1) and L 1 U 2 = (u 2i -1)(q 2i-1 , p 2i-1 )+(q 2i-2 , p 2i-2 )+ (-1, 1). Moreover the DSS [U 1 L 1 ] has E(z 2i-2 ) u2i-1
as a left factor, and the DSS [L 1 U 2 ] has E(z 2i-1 ) u2i-1 as a right factor.

Properties of maximal segments for convex curves

In this section, we study relations between maximal segments and digital edges of convex shape digitization. The dilation of S by a real factor r is denoted by r • S. Let D m be the digitization of step 1/m, i.e. if S is a real shape:

D m (S) = (m • S) ∩ Z 2 .
The length estimator based on the city-block distance is written as L 1 .

Convex digital polygon (CDP)

Definition 6. A convex digital polygon (CDP) Γ is a subset of the digital plane equal to the digitization of its convex hull, i.e. Γ = D 1 (conv(Γ )). Its vertices (V i ) i=1..e form the minimal subset for which

Γ = D 1 (conv(V 1 , . . . , V e )).
The points on the boundary of Γ form a 4-connected contour. The number of vertices (or edges) of Γ is denoted by n e (Γ ) and its perimeter by Per(Γ ).

A CDP is also called a lattice convex polygon [START_REF] Voss | Discrete Images, Objects, and Functions in Z n[END_REF]. An edge is the Euclidean segment joining two consecutive vertices, and a digital edge is the discrete segment joining two consecutive vertices. It is clear that we have as many edges as digital edges and as vertices. From characterizations of discrete convexity [START_REF] Chul | Digital convexity, straightness, and convex polygons[END_REF], we clearly see that:

Proposition 3. Each digital edge of a CDP is either a pattern or a succession of the same pattern whose slope is the one of the edge. In other words, both vertices are upper leaning points of the digital edge.

We now recall one theorem concerning the asymptotic number of vertices of CDP that are digitization of continuous shapes. It comes from asymptotic properties of random polytopes. where the constants c 1 (S) and c 2 (S) depend on extremal bounds of the curvatures along S. Hence for a disc c 1 and c 2 are absolute constants.

Links between maximal segments and edges of CDP

Maximal segments are DSS: between any two upper (resp. lower) leaning points lays at least a lower (resp. upper) leaning point. The slope of a maximal segment is then defined by two consecutive upper and/or lower leaning points. Digital edges are patterns and their vertices are upper leaning points (from Prop. 3). Thus, vertices may be upper leaning points but never lower leaning points of maximal segments. We have Lemma 1. A maximal segment cannot be strictly contained into a digital edge.

We now introduce a special class of digital edge. Definition 7. We call supporting edge, a digital edge whose two vertices define leftmost and rightmost upper leaning points of a maximal segment.

Relations between maximal DSS and digital edges are given by the following lemmas: Lemma 2. A supporting edge defines only one maximal segment: it is the only one containing the edge and it has the same slope. If a maximal segment contains two or more upper leaning points then there is a supporting edge linking its leftmost and rightmost upper leaning points with the same slope. If a maximal segment contains three or more lower leaning points then it has a supporting edge.

Lemma 3. If a maximal segment is defined by only two consecutive lower leaning points then it has one upper leaning point which is some vertex of the CDP by convexity.

Proposition 4. Let [V k V k+1 ] be a supporting edge of slope a b made of f patterns (a, b) and let M S be the maximal segment associated with it (Lemma 2). Their lengths are linked by the inequalities:

L 1 (V k V k+1 ) ≤ L 1 (M S) ≤ f + 2 f L 1 (V k V k+1 )-2 and 1 3 L 1 (M S) ≤ L 1 (V k V k+1 ) ≤ L 1 (M S) ≤ 3L 1 (V k V k+1
Proof. Vertices V k and V k+1 are leftmost and rightmost upper leaning points of M S. The points V k -(b, a), V k+1 + (b, a) while clearly upper leaning points of the standard line going through [V k V k+1 ] cannot belong to the CDP. Hence M S cannot extend further of its supporting edge of more than |a| + |b| -1 points on both sides. Consequently

L 1 (M S) ≤ L 1 (V k V k+1 ) + 2(|a| + |b| -1). Using L 1 (V k V k+1 ) = f (|a| + |b|) brings: L 1 (V k V k+1 ) ≤ L 1 (M S)) ≤ f +2 f L 1 (V k V k+1 ) -2. Worst cases bring L 1 (V k V k+1 ) ≤ L 1 (M S) ≤ 3L 1 (V k V k+1 ) ⊓ ⊔ Proposition 5.
Let M S k ′ be a maximal segment in the configuration of Lemma 3, and so let V k be the vertex that is its upper leaning point. The length of the maximal segment is upper bounded by:

L 1 (M S k ′ ) ≤ 4 L 1 (V k-1 V k ) + L 1 (V k V k+1 )
Proof. We call L 1 , L 2 the leftmost and rightmost lower leaning points and U 2 ≡ V k the upper leaning point (see Fig. 1). Suppose that M S k ′ has a slope with an odd complexity (say 2i + 1). Proposition 1 implies

L 1 (L 1 U 2 ) = q 2i + p 2i . There is clearly a right part of [L 1 U 2 ] (i.e. [L 1 V k ]) that is contained in [V k-1 V k ]
and touches V k . The pattern E(z 2i-1 ) u2i is a right factor of [L 1 U 2 ] (Proposition 1 again). It is indeed a right factor of [V k-1 V k ] too, since it cannot extends further than V k-1 to the left without defining a longer digital edge. We get

[V k-1 V k ] ⊇ E(z 2i-1 ) u2i and immediately L 1 (V k-1 V k ) ≥ u 2i L 1 (E(z 2i-1 )) = u 2i (q 2i-1 + p 2i-1
). From Eq. (4), we have: q 2i + p 2i = u 2i (q 2i-1 + p 2i-1 ) + q 2i-2 + p 2i-2 and q 2i-2 + p 2i-2 ≤ q 2i-1 + p 2i-1 . We obtain immediately L 1 (L 1 U 2 ) = q 2i + p 2i ≤ (u 2i + 1)(q 2i-1 + p 2i-1 ). By comparing this length to the length of the digital edge

[V k-1 V k ], we get L 1 (L 1 U 2 ) ≤ u2i+1 u2i L 1 (V k-1 V k ). Proposition 1 and similar arguments on [V k V k+1 ] brings L 1 (U 2 L 2 ) ≤ u2i+1 u2i+1-1 L 1 (V k-1 V k ). Worst cases are then L 1 (L 1 U 2 ) ≤ 2L 1 (V k-1 V k ) and L 1 (U 2 L 2 ) ≤ 2L 1 (V k V k+1 ).
The case where M S k ′ has a slope with an even complexity (say 2i) uses Prop. 2 and is treated similarly.

Since M S has only one upper leaning point, it cannot be extended further than L 1 (U 2 L 2 ) on the left and L 1 (L 1 U 2 ) on the right (Lemma 2 ). We thus get

L 1 (M S k ′ ) ≤ 4(L 1 (V k-1 V k ) + L 1 (V k V k+1 )). ⊓ ⊔
A proof of the following theorem based on pattern analysis is given in Appendix B for limited space reasons. A similar result related to linear integer programming is in [START_REF] Shevchenko | On the number of extreme points in linear programming[END_REF]. It may also be obtained by viewing standard lines as intersection of two knapsack polytopes [START_REF] Hayes | The vertices of the knapsack polytope[END_REF]. Theorem 2. Let E be a supporting edge whose slope has a complexity n, n ≥ 2, then the maximal segment containing E includes at most n other edges on each side of E.

Corollary 1. The shortest pattern of a supporting edge for which its maximal segment may contain 2n + 1 digital edge is z n = [0, 2, . . . , 2]. If the DCP is enclosed in a m × m grid, then the maximal number n of digital edges included in one maximal segment is upper bounded as:

n ≤ log 4m √ 2 /log (1 + √ 2) -1.
Proof. The number L = [0, 2, . . . , 2, . . .] is a quadratic number equal to -1

+ √ 2. Its recursive characterization is U n = 2U n-1 + U n-2 with U 0 = 0 and U 1 = 1. Solving it leads to U n = √ 2 4 (1 + √ 2) n -(1 - √ 2) n . Hence asymptotically, U n ≈ √ 2 4 (1 + √ 2)
n and lim n→∞ Un Un+1 = L. The shortest edge of slope complexity n is clearly an n-th convergent of L. To fit into an m × m grid, the complexity n is such that U n+1 ≤ m. We thus obtain that n ≤ log 4m √ 2 /log (1 + √ 2) -1.

⊓ ⊔

Proposition 6. There exists at most two maximal segments per vertices in the configuration of Lemma 3 with different parities of complexity.

Proof. We first prove that is at most one maximal segment with only one upper leaning point on a vertice of a DCP with an even complexity. Let us suppose that M S 1 and M S 2 are two maximal segments sharing a vertice of the CDP (say U 2 ) with their slopes

Asymptotic number and size of maximal segments

We assume in this section that the digital convex polygon Γ is enclosed in a m × m grid. We wish to compute a lower bound for the number of edges related to at least one maximal segment. We show in Theorem 3 that this number is significant and increases at least as fast as the number of edges of the DCP divided by log m. From this lower bound, we are able to find an upper bound for the length of the smallest maximal segment of a DCP (Theorem 4). We first label each vertex of the DCP as follows: (i) a 2-vertex is an upper leaning point of a supporting edge, (ii) a 1-vertex is an upper leaning point of some maximal segment but is not a 2-vertex, (iii) 0-vertices are all the remaining vertices. The number of i-vertices is denoted by n i . Given an orientation on the digital contour, the number of edges going from an i-vertex to a j-vertex is denoted by n ij .

Theorem 3. The number of supporting edges and of 1-vertices of Γ are related to its number of edges with

n e (Γ ) Ω(log m) ≤ n 1 + 2n 22 . (5) 
An immediate corollary is that there are at least n e (Γ )/Ω(log m) maximal segments.

Proof. From Theorem 2 and its Corollary 1, we know that a DSS hence a maximal segment cannot include more than Ω(log m) edges. Hence there cannot be more than Ω(log m) 0-vertices for one 1-vertex or for one 2-vertex. We get n 00 ≤ (n 1 + n 2 )Ω(log m). We develop the number of edges )Ω(log m) and compared with n e (Γ ), we get the expected result.

⊓ ⊔

We now relate the DCP perimeter to the length of maximal segments.

Theorem 4. The length of the smallest maximal segment of the DCP Γ is upper bounded:

min l L 1 (M S l ) ≤ Ω(log m) Per(Γ ) n e (Γ ) . (6) 
Proof. We have P er(Γ ) = ne L 1 (E i ). We now may expand the sum on supporting edges (22-edges), on edges touching a 1-vertex, and on others. Edges touching 1-vertices may be counted twice, therefore we divide by 2 their contribution to the total length.

ne L 1 (E i ) ≥ n22 L 1 (E 22 j ) + 1 2 n1 L 1 (E ?1 k-1 ) + L 1 (E 1? k ) (7) 
For the first term, each supporting edge indexed by j (a 22-edge) has an associated maximal segment, say indexed by j ′ . From Proposition 4, we know that L 1 (E 22 j ) ≥ 1 3 L 1 (M S j ′ ). For the second term, each 1-vertex indexed by k is an upper leaning point of some maximal segment indexed by k ′ . Proposition 5 holds and L 1 (E ?1 k-1 ) + L 1 (E 1? k ) ≥ 1 4 L 1 (M S k ′ ). Putting everything together in Eq. ( 7), we get:

ne L 1 (E i ) ≥ 1 3 n22 L 1 (M S j ′ )+ 1 8 n1 L 1 (M S k ′ ) ≥ ( 1 3 n 22 + 1 8 n 1 ) min l L 1 (M S l ) ≥ 1 8 (n 1 +2n 22 ) min l L 1 (M S l )
Inserting the lower bound of Theorem 3 into the last inequality concludes. ⊓ ⊔

Asymptotic properties of shapes digitized at increasing resolutions

We may now turn to the main interest of the paper: studying the asymptotic properties of discrete geometric estimators on digitized shapes. We therefore consider a plane convex body S which is contained the square [0, 1] × [0, 1] (w.l.o.g.). Furthermore, we assume that its boundary γ = ∂S is C 3 with everywhere strictly positive curvature. This assumption is not very restrictive since people are mostly interested in regular shapes. Furthermore, the results of this section remains valid if the shape can be divided into a finite number of convex and concave parts; each one is then treated separately. The digitization of S with step 1/m defines a digital convex polygon Γ (m) inscribed in a m × m grid. We first examine the asymptotic behavior of the maximal segments of Γ (m), both theoretically and experimentally. We then study the asymptotic convergence of a discrete curvature estimator.

Asymptotic behavior of maximal segments

The next theorem summarizes the asymptotic size of the smallest maximal segment wrt the grid size m.

Theorem 5. The length of the smallest maximal segment of Γ (m) has the following asymptotic upper bound:

min i L 1 (M S i (Γ (m))) ≤ Ω(m 1/3 log m) (8) 
Proof. Theorem 4 gives for the DCP Γ (m) the inequality min i L 1 (M S i (Γ (m))) ≤ Ω(log m) Per(Γ (m)) ne(Γ (m)) . Since Γ (m) is convex included in the subset m×m of the digital plane, its perimeter Per(Γ (m)) is upper bounded by 4m. On the other hand, Theorem 1 indicates that its number of edges n e (Γ (m)) is lower bounded by c 1 (S)m 2/3 . Putting everything together gives min

i L 1 (M S i (Γ (m))) ≤ Ω(log m) 4m c1(S)m 2/3
which is once reduced what we wanted to show.

⊓ ⊔

Although there are points on a shape boundary around which maximal segments grow as fast as O(m 1/2 ) (the critical points in [START_REF] Lachaud | On the convergence of some local geometric estimators on digitized curves[END_REF]), some of them do not grow as fast. A closer look at the proofs of Theorem 4 shows that a significant part of the maximal segments (at least Ω(1/(log m))) has an average length that grows no faster than Ω(m 1/3 log m). This fact is confirmed with experiments. Fig. 2, left, plots the size of maximal segments for a disk digitized with increasing resolution. The average size is closer to m 1/3 than to √ m.

Asymptotic convergence of discrete geometric estimators

A useful property that a discrete geometric estimator may have is to converge toward the geometric quantity of the continuous shape boundary when the digitization grid gets finer [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF][START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF][START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF]. It may be expressed as follows, Mean absolute error Deviation of mean absolute error Fig. 2. For both curves, the digitized shape is a disk of radius 1 and the abscissa is the digitization resolution. Left: plot in log-space of the L 1 -size of maximal segments. Right: plot of the mean and standard deviation of the absolute error of curvature estimation, |κ -1| (expected curvature is 1).

We now recall the definition of a discrete curvature estimator based on DSS recognition [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF]. Definition 9. Let P be any point on a discrete contour, Q = B(P ) and R = F (P ) are the extremities of the longest DSS starting from P (called half-tangents). Then the curvature estimator by circumcircle κ(P ) is the inverse of the radius of the circle circumscribed to P , Q and R, rescaled by the resolution m.

Experiments show that this estimator rather correctly estimates the curvature of discrete circles on average (≈ 10% error). It is indeed better than any other curvature estimators proposed in the litterature. Theorem B.4 of [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF] demonstrates the asymptotic convergence of this curvature estimator, subject to the hypothesis:

Hypothesis 41 Half-tangents on digitized boundaries grow at a rate of Ω( √ m)

with the resolution m.

However, with our study of maximal segments, we can state that Claim. Hypothesis 41 is not verified for digitizations of C 3 -curves with strictly positive curvature. We cannot conclude on the asymptotic convergence of the curvature estimator by circumcircle.

Proof. It is enough to note that half-tangents, being DSS, are included in maximal segments and may not be longer. Furthermore, since maximal segments cover the whole digital contour, some half-tangents will be included in the smallest maximal segments. Since the smallest maximal segments are no longer than Ω(m 1/3 log m) (Theorem 5), the length of some half-tangents has the same upper bound, which is smaller than Ω( √ m).

⊓ ⊔

The asymptotic convergence of a curvature estimator is thus still an open problem. Furthermore, precise experimental evaluation of this estimator indicates that it is most certainly not asymptotically convergent, although it is actually on average one of the most stable discrete curvature estimator (see Fig. 2, right). Former experimental evaluations of this estimator were averaging the curvature estimates on all contour points. The convergence of the average of all curvatures does not induce the convergence of the curvature at one point.

Conclusion

We show in this paper the relations between edges of convex hulls and maximal segments in terms of number and sizes. We provide an asymptotical analysis of the worst cases of both measures. A consequence of the study is the refutation of an hypothesis related to the asymptotic growth of maximal segments and which was essential in proving the convergence of a curvature estimator based on DSS and circumcircles [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF]. Our work also applied to digital tangents since their convergence relies on the same hypothesis. The existence of a convergent discrete estimator of curvature based on DSS is thus still a challenging problem and we are currently investigating it.

2. 1

 1 Standard line, digital straight segment, maximal segments Definition 1. (Réveillès [14]) The set of points (x, y) of the digital plane verifying µ ≤ ax -by < µ + |a| + |b|, with a, b and µ integer numbers, is called the standard line with slope a/b and shift µ. The standard lines are the 4-connected discrete lines. The quantity ax -by is called the remainder of the line. The points whose remainder is µ (resp. µ + |a| + |b| -1) are called upper (resp. lower) leaning points. The principal upper and lower leaning points are defined as those with extremal x values. Finite connected portions of digital lines define digital straight segment. Since we work with restricted parts of C, we always suppose that indices are totally ordered on this part. Definition 2. A set of successive points [C i C j ] of C is a digital straight segment (DSS) iff there exists a standard line D(a, b, µ) containing them. The predicate "

Theorem 1 . 2 3

 12 (Adapted from Balog, Bárány [1]) If S is a plane convex body with C 3 boundary and positive curvature then D m (S) is a CDP and c 1 (S)m ≤ n e (D m (S)) ≤ c 2 (S)m 2 3

Definition 8 .

 8 Let F be any geometric descriptor on the shape S with boundary γ and digitizations Γ (m). The discrete geometric estimator E asymptotically converges toward the descriptor F for γ iff |E(Γ (m)) -F(γ)| ≤ ǫ(m) with lim m→+∞

  with each possible label: n e (Γ ) = n 22 + n 02 + n 12 + n 20 + n 21 + n 00 + n 01 + n 10 + n 11 . Since, n 02 + n 12 ≤ n 22 , n 20 + n 21 ≤ n 22 and n 01 + n 10 + n 11 ≤ 3n 1 , we get n e (Γ ) ≤ 3n 22 + n 00 + 3n 1 . Noting that a 2-vertex cannot be isolated by definition of supporting edges (Definition 7) gives n 2 ≤ 2n 22 . Once inserted in n 00 ≤ (n 1 + n 2

A Proof of Proposition 2

Proposition 2: A pattern with an even complexity (say n = 2i) is such that U 1 L 1 = (q 2i-1 +1, p 2i-1 -1) and L 1 U 2 = (u 2i -1)(q 2i-1 , p 2i-1 )+(q 2i-2 , p 2i-2 )+ (-1, 1). Moreover the DSS [U 1 , L 1 ] has E(z 2i-2 ) u2i-1 as a left factor, and the DSS [L 1 , U 2 ] has E(z 2i-1 ) u2i-1 as a right factor.

Proof. From Eq. (3) we have: p 2i q 2i-1 -p 2i-1 q 2i = (-1) 2i+1 = -1, which can be rewritten as: a(-q 2i-1 ) -b(-p 2i-1 ) = 1 and eventually a(q 2i -q 2i-1 ) -b(p 2ip 2i-1 ) = 1. We clearly obtain the Bézout coefficients. From its remainder we get the relatives coordinates of L 1 , as: 

Proof. Since R and L are strict factors of P n , their Freeman moves are compatible with those of E(z n ), giving same slope when R,P n and L are put together. Thus [RP n L] is a DSS of slope z n . From digital straightness we clearly have digital convexity (see [START_REF] Chul | Digital convexity, straightness, and convex polygons[END_REF]). Upper leaning points of this DSS are located at extremities of P n . We simply choose among strict factors R and L those that are patterns so that they fit descriptions given in Eq. ( 1) and Eq. ( 2). We may now describe them given the parity of n.

Consider the case where n is odd (say n = 2i + 1), from Eq. ( 1) we get: R = E(z 2i ) u2i+1-r E(z 2i-1 ) and L = E(z 2i ) u2i+1-l with r > 0 and l > 0. If R and L are longer patterns, they are not anymore strict factors of P 2i+1 . We see that R is a pattern of complexity 2i + 1 and that L is a succession of the pattern E(z 2i ), with a complexity of 2i. The slope of R equals z

. From Eq. ( 4) we get that p2i+1 q2i+1 =

, and is positive (see Eq. ( 3)). Thus the slope of R is greater than that of P 2i+1 . Same reasoning applied to z 2i+1 -z 2i brings that the slope of P 2i+1 is greater than that of L. Factor obtained by substracting R from P 2i+1 equals E(z 2i ) r and substracting L from P 2i+1 gives E(z 2i ) l E(z 2i-1 ).

Consider now that n is even (say n = 2i), from Eq. ( 2) we get: R = E(z 2i-1 ) u2i-r and L = E(z 2i-2 )E(z 2i-1 ) u2i-l . If R and L are longer patterns, they are not anymore strict factors of P 2i . Clearly, R has a complexity of 2i -1 and that of L equals 2i. The slope of L equals z

From Eq. ( 4) we get that p2i q2i =

, and is positive (see Eq. ( 3)). Thus the slope of P n is greater than that of L. Same reasoning applied to z 2i-1 -z 2i brings that the slope of R is greater than that of P n . Factor obtained by substracting R from P 2i equals E(z 2i-2 )E(z 2i-1 ) r and substracting L from P 2i gives E(z 2i-1 ) l .

It is now clear that slopes are strictly decreasing from R to P n and from P n to L whatever the parity of n.

⊓ ⊔ Theorem 6. Let E be a supporting edge whose slope has a complexity n, n ≥ 2, then the maximal segment containing E includes at most n other edges on each side of E.

Proof. We construct 2n digital edges around E:

These edges are such that [R n . . . R i . . . R 1 EL 1 . . . L j . . . L n ] is a DSS of slope z n = a/b and has no other upper leaning points but those located on E. E may contain several times the pattern E(z n ). It is clear that R n . . . R i . . . R 1 (resp. L 1 . . . L j . . . L n ) has to be a right (resp. left) strict factor of E(z n ). Moreover R i is a right strict factor of E(z n ) R 1 . . . R i-1 and L i is a left strict factor of E(z n ) L 1 . . . L i-1 . From Proposition 3 any of the digital edges (R i ) 1≤i≤n and (L i ) 1≤i≤n is a pattern or a succession of the same pattern. From Eq. ( 1) and Eq. ( 2) two successive digital edges with same complexity (say n) cannot form a right or left strict factor of a pattern with same complexity. Thus complexities of (R i ) 1≤i≤n and (L i ) 1≤i≤n are decreasing when i increases. Moreover to fullfil convexity properties, slopes of edges are decreasing from R n to L n .

We now build (R i ) 1≤i≤n when n is odd (say n = 2i + 1). From Lemma 4, R 1 has a complexity that equals 2i + 1 and R 2 is a right strict factor of a pattern whose complexity equals 2i. Applying Lemma 4 brings R 2 with a complexity of 2i -1. Applying the same reasoning recursively brings other edges as shown on Table 1. Lemma 4 also implies decreasing slopes and give upper bounds in complexity of factors.

Constructions for the three other cases are given in Tables 1 and2 and follow the same reasoning. To satisfy full decomposition each (u k ) 1≤n has to be equal or greater than 2. If this condition is not meet for some k, than steps associated with it (e.g. any factors containing u k -r j or u k -l j as powers of some pattern) are skipped. This concludes the proof.

⊓ ⊔ Table 1. Constructions of (R i ) 1≤i≤n and (L i ) 1≤i≤n given n odd .

Constructions of (Ri)

Constructions of (R i ) 1≤i≤n and (L i ) 1≤i≤n given n even.

Constructions of (Ri) 1≤i≤n when n = 2i Factor Freeman moves Complexity R1 E(z2i-1)

E(z2i-4) u 2i-3 -r 4 E(z2i-5) 2i -3 . . . . . . . . .

Constructions of (Li) 1≤i≤n when n = 2i Factor Freeman moves Complexity L1 E(z2i-2)E(z2i-1) u 2i -l 1 2i L2 E(z2i-2) u 2i-1 -l 2 2i -2 L3 E(z2i-4)E(z2i-3) u 2i-2 -l 3 2i -2 L4 E(z2i-4) u 2i-3 -l 4 2i -4 . . . . . . . . .

L2j

E(z2i-2j ) u 2i+1-2j -l 2j 2i -2j L2j+1 E(z2i-2-2j )E(z2i-1-2j ) u 2i-2j -l 2j+1 2i -2j . . . . . . . . . L2i 0 u 1 -l 2i 0