Interactive Vizualisation of Complex Real-World Light Sources

Xavier Granier⁽¹⁻²⁾ – Michael Goesele⁽³⁾ Wolgang Heidrich⁽²⁾ – Hans-Peter Seidel⁽³⁾

(1) piparla IPARLA/INRIA – LaBRI (Bordeaux)

(2) **Wiversity of British Columbia**

MPI Informatik

(3)

Real Light-Sources Acquisition Needed for realistic rendering and simulation Recent Approach Optically prefiltered light field Integration to global illumination solution

Real Light-Sources Acquisition

Needed for realistic rendering and simulation

Recent Approach

Optically prefiltered light field
Integration to global illumination solution

Goal : Interactive visualization of this models

Real Light-Sources Acquisition Needed for realistic rendering and simulation Recent Approach Optically prefiltered light field Integration to global illumination solution Goal: Interactive visualization of this models Approximations Shift Invariant / Direct Lighting Hardware Implementation

Light Source Models (1/2)

Goniometric diagrams Point light source Only far field Directional information only

Multiple goniometric diagrams

Light Source Models (2/2)

Image based approaches

Near Field [*Ashdown93-97,...*] and Light-Field Light represented as an array of images Reconstruction by interportation between coefficients Aliasing and filtering problem [*Levoy96,...*] Can not capture high variations

Light-Field / Reconstruction

Our Approach : Filtering

Configuration

General Approach

$$L(u, v, s, t) = \sum_{ijkl} L_{ijkl} \Psi_{ijkl}(u, v, s, t)$$
Base 4D

$$\Psi_{ijkl}(u, v, s, t) = \frac{R^2}{\cos^2 \varphi} \Phi_{ij}(u, v) \Phi_{kl}(s, t)$$

Use dual basis as a filter

 $\left\langle \overline{\mathbf{\Phi}_{mn}^{'}} \left| \mathbf{\Phi}_{ij} \right\rangle = \mathbf{\delta}_{m}^{i} \mathbf{\delta}_{n}^{j} \right\rangle$

Projection

$$E_{ijkl} = L_{ijkl}$$

Quadratic Basis

Faster rendering Texture based Shift Invariant Remove geometric term in the reconstruction function Direct lighting Use each measure as a texture One lighting evaluation for each measure

Shift-Invariant Approximation

Constant geometric term (error $\leq 8\%$)

$$E_{ijkl} = \left(\frac{\cos^2 \varphi}{R^2}\right)_{ijkl} \int_{uvst} L(u, v, s, t) \Phi'_{ij}(u, v) \Phi'_{kl}(s, t)$$
$$E'_{ijkl} = \int_{uvst} L(u, v, s, t) \Phi'_{ij}(u, v) \Phi'_{kl}(s, t)$$
New reconstruction function

$$\Psi^{a}_{ijkl}(u, v, s, t) = \Phi_{ij}(u, v) \Phi_{kl}(s, t)$$

$$L(u, v, s, t) = \sum_{ij} \Phi_{ij}(u, v) \sum_{ijkl} \langle s, t \rangle \phi_{kl}(s, t)$$

Lighting Approximation

Constant value over a basis support for :

Geometric term Visibility BRDF $I(x, o) = \sum_{ij} \Gamma_{ij}(x, o, i) V_{ij}(x) G_{ij}(x) \overline{T_{ij}}(x)$ Average energy through a basis Similar to a mip-map

Texturing + Multi-Pass

Hardware Implementation (1/2)

For each measure $V_{ii}(x)$ Shadow map (ie Visibility) $\Gamma_{ii}(x, o, i)G_{ii}(x)\overline{T_{ii}}(x)$ Lighting 2N rendering passes Requirement Floating-point textures Floating-point buffer for the sum

Hardware Implementation (2/2)

16

Combine 3 lighting computation in 1 pass Reduce to 3N/4 rendering passes Using current hardware programmability Reducing data transfert Save 3 depth maps as a 8bit RGB texture Save current solution as a 8bit RGBA texture sRGBE format Similar to RGBE Store negative values Adapted to hardware limitations

Data Flow & Rendering Path

Similar to RGBE Compression Exponent on the absolute values $e_b = \log_2 \left(max \left(|R_f|, |G_f|, |B_f| \right) \right) + 2$ Scale the coefficient to [0,1] $[R, G, B] = 2^{-e_b} [R_f, G_f, B_f] + 0.5$

 $\begin{bmatrix} R, G, B \end{bmatrix} = 2 \quad \left[R_f, G_f, B_f \right] + 0.5$ Scale the exponent to [0,1]

 $E = \frac{e + 126}{255}$

Decompression

$$[R_f, G_f, B_f] = 2^{255 \cdot E - 126} ([R, G, B] - 0.5)$$

Tests Configurations

- 2 tests scenes (different polygon complexity) 500/ 8,000 polygons
- 3 Light sources

5x5 / 7x7 / 9x7 images (300x300 pixels)

Results

ne iteration $\frac{122}{5}$ Ap (35) ms 55 (0.7) ms Magkite 9×7 (2.4) (1.4) (9.5) (0.7) (9.7)

GeForce FX 5800 Ultra

Analysis

Effects reproduced Soft shadows / Near field Blocky appearance No interpolation for floating point textures No mipmap for floating point textures Classical depth map error Influence on the frame rate Main : size of the datas Geometric complexity : 20 x more polygons => 2 x slower

Conclusion

Visualization of Complex Light Sources Based on our light-source representation Approximations Shift Invariant Texture-based lighting Multi-pass Combine 3 passes in 1 Efficient data representation Up to 3.2 fps

Futur Work

Better quality Better shadow algorithms Summed-area tables (mipmap) Better frame rate Integration into acquisition setup **UBC** Active Measurement facility (ACME) [Pai 2001]

Thanks to

UBC's Institute of Applied Mathematics This work was funded by PIMS Post-doctoral Fellowship program BC Advanced Systems Institute DFG Schwerpunktprogramm V3D2 All the people from the IMAGER/UBC lab !!!

Light Source Acquisition

Goals: capture near field of a light source sampling with correct pre-filtering enable efficient rendering

Near Field vs. Far Field

far field assumption only light direction all light is emitted from a single point intensity approximation valid for distances > 5x-20x emitting diameter

Near Field vs. Far Field

near field data origin and direction of light (4D data) soft shadows distance effects change of light pattern slide projector in focus/out of focus

synthetic slide projector data set focused at 3m acquired at 90 cm

Sampling Issues

How to sample a light source? point sampling miss a lot of rays potential of aliasing see also [Levoy and Hanrahan 1996]

Sampling Issues

camera and lens system aperture 2 time sample spacing [Halle 1994] get all rays multiple times sampling behavior not well defined

Light Source Models

"light source light fields" can capture near and far field near field photometry [Ashdown 1993, 1995] canned light sources [Heidrich et al. 1998] capturing incident light field [Unger et al. 2003]

Our Contributions

Acquisition: optical filtering before sampling projection of light field into 4D function basis low pass filtering in spatial domain avoids aliasing

Rendering: importance sampling of light field constant time particle emission

Sampling Issues

box filtering everything exactly once reduces aliasing non-ideal basis (piecewise constant)

Projection Into a 4D Basis

35

Projection into 4D Basis

sampling plane S coarse sampling e.g. piecewise quadratic basis functions

$$\begin{array}{cccc}
1 - 2x^2 & |x| \le 1/2 \\
\varPhi \, \phi_{i, \, bellq} = & \{2(|x| - 1)^2 & 1/2 < |x| \le 1 \\
0 & else & -1
\end{array}$$

Projection into a 4D Basis

measurement plane M dense sampling piecewise constant basis

tensor product construction of 4D basis

$$\begin{split} \varPhi \Phi_{ijkl}(u, v, s, t) \\ = \varPhi \Phi_{ij}(u, v) \cdot \Phi_{kl}(s, t) \\ = \varPhi \Phi_{i, bellq}(u) \cdot \Phi_{j, bellq}(v) \cdot \Phi_{k, const}(s) \cdot \Phi_{l, const}(t) \end{split}$$

Dual Basis as a Filter

Sampling Issues

advanced filtering

use grayscale printed slide arbitrary filter kernel adapted to reconstruction algorithm negative coefficients possible

Measurement Setup A

40

replace camera lens system with filter pinhole camera with filter as "pinhole"

CCD chip as measurement plane

move light source or camera

Measurement Setup A

Measurement Setup B

filter projects light source on projection screen

take pictures using standard photographic techniques

Measurement Setup B

Acquired Data

"directional information sorted by spatial origin"

Rendering with Global Illumination

particle emission (particle tracing, photon map)

treat intensities in light field as importance function

Rendering with Global Illumination

constant-time particle emission independent of data set size inverted cumulative density function complex due to basis functions 2 step approach used for redistribution of random or quasi-random 4D samples (e.g. Halton sequence, jittered sampling)

Hardware Accelerated Rendering

Results

measured bike light data set (9x7 images)

Measured bike light data set (9x7 imagas)

measured bike light data set (9x7 images)

Conclusion

light source acquisition algorithm for near field and far field correct pre-filtering implemented efficient rendering

Future Work

sampling issues choice of basis function sampling density

> replace printed filters with LCD panel filters instantly exchangeable hierarchical acquisition (wavelets)

Future Work

different sampling surfaces automated setup UBC Active Measurement facility (ACME) [Pai 2001]

Thanks to ...

Ian Ashdown Oliver Ashoff Gerhard Heisler Michael Laise John Lloyd Axel Koeppel and the anonymous SIGGRAPH reviewers

Thanks to ...

REVES/INRIA Sophia-Antipolis (GIS Global Illumination platform) UBC's Institute of Applied Mathematics This work was funded by PIMS Post-doctoral Fellowship program BC Advanced Systems Institute DFG Schwerpunktprogramm V3D2

Questions?

