
HAL Id: hal-00308202
https://hal.science/hal-00308202

Submitted on 15 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coding cells of digital spaces: a framework to write
generic digital topology algorithms

Jacques-Olivier Lachaud

To cite this version:
Jacques-Olivier Lachaud. Coding cells of digital spaces: a framework to write generic digital topology
algorithms. Proc. Int. Work. Combinatorial Image Analysis (IWCIA2003), 2003, Palermo, Italy.
pp.337-348, �10.1016/S1571-0653(04)00497-4�. �hal-00308202�

https://hal.science/hal-00308202
https://hal.archives-ouvertes.fr

Coding cells of digital spaces: a framework to

write generic digital topology algorithms

Jacques-Olivier Lachaud a

aLaBRI, Univ. Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

Abstract

This paper proposes a concise coding of the cells of n-dimensional finite regular grids.
It induces a simple, generic and efficient framework for implementing classical dig-
ital topology data structures and algorithms. Discrete subsets of multidimensional
images (e.g. regions, digital surfaces, cubical cell complexes) have then a common
and compact representation. Moreover, algorithms have a straightforward and effi-
cient implementation, which is independent from the dimension or sizes of digital
images. We illustrate that point with generic hypersurface boundary extraction al-
gorithms by scanning or tracking. This framework has been implemented and basic
operations as well as the presented applications have been benchmarked.

1 Introduction

Many applications in the image analysis field need to represent and manipulate
discrete subsets of digital spaces. As the image data become larger, the data
structures required to represent these sets should be as compact as possible.
Moreover, algorithms designed on these structures should be not only efficient
theoretically, but also efficient in practice. Algorithms defined formally should
have a straightforward implementation. Last but not least, 3D and 4D image
datasets are now more and more common. It becomes necessary to have a
unified framework for programming applications dealing with n-dimensional
data. By this way, algorithms are both generically defined and implemented.

There exist several approaches to define the topology of multidimensional reg-
ular digital spaces: (1) adjacency graphs as pioneered by Rosenfeld, (2) ori-
ented graphs as proposed by Herman [5], (3) cellular complexes as proposed
by Kovalevsky [11], or equivalently Khalimsky’s spaces [7] and interpixel rep-
resentations. This paper deals mostly with the third approach, although our
framework can express either approaches (the two first approaches manipulate
a restricted set of the elements defined in the spaces of the third approach).

Preprint submitted to Elsevier 15 June 2009

The cellular decomposition of the Euclidean n-dimensional space Rn into a
regular grid forms a cellular complex Cn. This structure has been introduced
in digital topology by Kovalevsky [11] for 2D and 3D applications. It has been
shown that the topology induced on Cn is equivalent to a digital topology Kn,
sometimes called Khalimsky topology [7,8]. Many authors have explored the
theoretical properties of the space Cn (or equivalently Kn) [7,8,11] applications
[2,3,9,10,14]. These works show that the definition of consistent high level data
structure over images relies on a low-level representation which is the regular
cellular decomposition of the image support. It is thus critical to represent
efficiently arbitrary cells of Cn, small subsets of Cn and specific subsets of
Cn (e.g. complexes, digital surfaces). However, the litterature does not reflect
this observation. Indeed, spels are often coded with an array of coordinates,
surfels as pairs of adjacent spels or a spel with a direction, other cells are
generally implicitly represented. Consequently, storing elements or subsets of
Cn is cumbersome; algorithms are frequently rewritten at the implementation
stage to avoid any reference to non elementary kinds of cells.

In this paper, we choose another approach, which is first to show how to repre-
sent an arbitrary cell of Cn with a binary cell code and secondly to design data
structures over this representation. Because of the regularity of Cn, each cell
code holds all the information on the cell: the cell topology (dimension, open
or closed along a coordinate, adjacent and incident cells) and geometry (co-
ordinates in Zn, centroid, normal and tangent vectors) can be computed from
the code without any other information. The proposed framework is suited
both to formal representation and proofs and to straightforward implementa-
tion in a programming language. The paper is organized as follows: (i) coding
of cells and implementation of low-level digital topology definitions, (ii) defi-
nition of data structures for subsets of Cn (e.g., digital surfaces, complexes),
(iii) application to digital boundaries extraction in multidimensional images.
We emphasize that all operations and algorithms have the same definitions
and implementation whatever the dimension of the space. All experiments
and benchmarks presented in this paper were made on a PC with a Celeron
500Mhz processor, 128Mb of memory, 128Kb of cache (which is a basic work-
station). The proposed framework was implemented in C++. Due to limited
space, the reader is referred to [12] for more details.

2 Coding cells of digital spaces Cn

2.1 Cellular decomposition Cn; binary coding of unoriented cells

We denote by Cn the set of parts of the n-dimensional Euclidean space Rn

such that c ∈ Cn is equivalent to c = I1 × . . .× In where Ii is a subset of R of

2

the form {zi} or]zi, zi + 1[with zi ∈ Z. The complex Cn is a partition of Rn.
We call k-cell an element c ∈ Cn such that c has k Ii of the form]zi, zi + 1[
(and therefore (n−k) Ii of the form {zi}). The dimension of c is k. The closure
Cl(c) of a cell c is the set of cells c′ of Cn which have the following form: (i) on
coordinate where c is a point {zi}, the cell c′ must also be the same point, (ii)
on coordinate where c is an open segment]zi, zi +1[, c′ can be either the same
open segment or the point {zi} or the point {zi + 1}. The open star Op(c)
of a cell c is the set of cells c′ of Cn such that c′ ∈ Op(c) ⇔ c ∈ Cl(c′). The
bounding relation < between two cells c and c′ is then defined as c < c′ iff
c ∈ Cl(c′) \ c′. With these definitions, the set Cn equipped with the dimension
mapping and the bounding relation is a cellular complex. A cubical cell complex
K is then defined as any set of cells in a finite image. The dimension of K is
the maximum of the dimensions of its cells. Open stars and closure of cells in
a complex K are defined naturally.

It is clear that the elements of C
n represent low-level elements of n-dimensional

digital images: the spels (pixels in 2D and voxels in 3D) are the n-cells, the
(unoriented) surfels (a pair of adjacent spels) are the n−1-cells, the vertices of
the spels and of the surfels, or pointels, are the 0-cells. An object is then a set of
n-cells, a digital surface is a set of n−1-cells (oriented or not, see Section 2.2),
a curve is a set of connected 1-cells. Therefore, all classical subsets of digital
spaces have a natural definition as specific subsets of Cn. From now on, we
will assume that we are working in a finite n-dimensional image forming a
parallelepiped in Z

n. We denote by M i the inclusive upper bound for the i-th
coordinate of any spel. All coordinates have 0 as lower bound.

As shown by Kong et al. [8], the topology of C
n is equivalent to the topology

of the Khalimsky digital space Kn, which is the cartesian product of n con-
nected ordered topological spaces (COTS). A COTS can be seen as a set of
ordered discrete points, like Z, whose topology alternates closed points and
open points. If we define even points of Z as closed and odd points of Z as
open, each point of Kn is then identified by its n integer coordinates, whose
parities define its topological properties.

Consequently, any k-cell c of Cn has exactly one corresponding point in Kn

with coordinates (x0
K , . . . , xn−1

K). We propose to code c as one binary word

code(c) = α xn−1 . . . xi . . . x0 , called the unsigned code of c, as follows:

• The i-th coordinate xi
K is coded by its binary decomposition after a right-

shift (xi = xi
K div 2). We say that xi is the i-th digital coordinate of c.

• All coordinates are packed as one binary word (from xn−1 to x0). Every
coordinate is allocated a fixed number of bits Ni given by Ni = log2(M

i)+1.
• The parity of all coordinates are also packed as an n-bits word α with

α =
∑

i(x
i
K mod 2)2i. α is called the topology of c.

3

Spels have a topology word composed of 1’s, whereas pointels have a topology
word made of 0’s. Surfels have one 0 and n−1 1’s in their topology word. The
coordinate where a surfel c has a 0 in its topology word is called the coordinate
orthogonal to the surfel c and is denoted by ⊥(c). This coding implies that any
cell of finite digital images can be coded as an integer number with fixed size.
Any register of a processor may thus store a cell if the image is not too big. 1

We define the adjacency between cells independently of the cell topology.

Definition 1 Two cells p and q with topo(p) = topo(q) are l-adjacent if their
respective coordinates pi and qi differ by at most 1 and if the infinite norm of
the vector (pn−1 − qn−1, . . . , p0 − q0) is no more than l.

The 1-adjacency thus defines the 4-adjacency (resp. 6-adjacency) on pixels in
2D (resp. on voxels in 3D) and the 2-adjacency defines the 8-adjacency (resp.
18-adjacency) on pixels in 2D (resp. on voxels in 3D). We define the incidence
relation as below. The proposition that follows shows that all the topological
structure of Cn can be obtained from the incidence relation.

Definition 2 Let c = α xn−1 . . . xi . . . x0 be a cell and i any coordinate.

Let β = α xor 2i. If the i-th bit of α is set to 1, the cell c has two
low 1-incident cells along coordinate i coded by β xn−1 . . . xi . . . x0 and

β xn−1 . . . xi + 1 . . . x0 . Otherwise, if the i-th bit of α is set to 0, the cell c

has two up 1-incident cells along coordinate i coded by β xn−1 . . . xi − 1 . . . x0

and β xn−1 . . . xi . . . x0 . A cell p is low incident (resp. up incident) to a cell
q if there is a sequence of cells c0 = p, c1, . . . , ck = q such that ∀j, cj is low
1-incident (resp. up 1-incident) to cj+1.

Proposition 3 The set of cells low incident to a cell c is equal to Cl(c) \ c.
The set of cells up incident to c is equal to Op(c) \ c.

Figure 1 summarizes the number of elementary operations necessary to execute
basic cell operations. Their implementation is fully generic. We have bench-
marked these operations and the results show that cell codes compete with
statically defined structures (e.g. fixed size arrays) and are much faster than
dynamically allocated structures, classically used for generic programming.

2.2 Oriented cells, boundary operators, bels, boundary of an object

In some applications, it is convenient to orient the cells (as positive or neg-
ative). For instance, digital surfaces as proposed by Herman and Udupa are

1 32 bits are sufficient to code every cell of a 1024× 1024× 512 3D image, which is
more than enough for current biomedical applications.

4

nb ops topo, set is is
required code coord == coord adj. l-adj.? inc. l-inc.?

bits ops 0 1 0 2 0 ≤ 2n 1 ≤ 3

shifts n 1 0 1 0 0 0 ≤ 6

integer ops n 0 1 0 1 ≤ 2n ≤ 1 ≤ l + 4

lut access n 1 0 2 1 ≤ n ≤ 2 ≤ l + 2

cond. tests 0 0 0 0 1 ≤ 2n 1 ≤ 3l + 1

Fig. 1. Number of elementary operations needed to perform the following tasks: (i)
coding a vector of n Khalimsky coordinates as a cell, (ii) getting the topology or
one coordinate of a cell, (iii) comparing if two cells are identical, (iv) setting the
coordinate of a cell, (v) computing a 1-adjacent cell, (vi) checking if two cells are
l-adjacent, (vii) computing a 1-incident cell, (viii) checking if two cells are l-incident.

composed of oriented pairs of voxels: one voxel is in the interior of the surface,
the other in the exterior. Orienting a surfel means in this case to define where
are the interior and exterior voxels 1-up-incident to the surfel. Digital surface
tracking algorithms rely on this orientation for a consistent output. Classi-
cal combinatorial topology associates an orientation to each cell of a cellular
complex. Oriented cells are then useful to implement boundary operators over
complexes and to compute topological invariants.

We therefore define the signed code of a cell c with orientation bit s (0 is
positive, 1 is negative) by adding the bit s between the topology α of c and its

digital coordinates xi as follows: α s xn−1 . . . xi . . . x0 . The opposite cell −c

of c is the same cell as c but with opposite sign. Boundary operators, which
can be seen informally as an oriented version of incidence, are essential in
combinatorial topology : for instance, they define the topology of polyhedral
complexes. We have now to “orient” the incidence relation.

Definition 4 Let c = ik . . . ij . . . i0 s xn−1 . . . xij . . . x0 be any cell with
topology bits set to 1 on the coordinates ik, . . . , ij , . . . , i0, n − 1 ≥ ik >

. . . > ij > · · · > i0 ≥ 0 and the others bits set to 0. The symbol îj
means that the bit ij is set to 0. Let τ = (−1)(k−j). The set ∆ijc com-

posed of the two oppositely signed cells τ ik . . . îj . . . i0 s xn−1 . . . xij . . . x0 and

−τ ik . . . îj . . . i0 s xn−1 . . . xij + 1 . . . x0 , is called the lower boundary of the
cell c along coordinate ij. The lower boundary ∆c of c is then the set of cells
∪l=0,...,k∆ilc.

The lower boundary of c thus corresponds to the set of cells 1-low-incident to c

with specific orientations. The upper boundary ∇ of a cell is defined symmetri-
cally (the upper boundary is taken on topology bits set to 0). It can be shown
that this definition of boundary operators induces that any cubical cell com-
plex is a polyhedral complex. Although this is outside the scope of this paper,

5

boundary operators along with chains are used to define the (co)homology
groups of complexes, which are well known topological invariants. This topo-
logical tool is readily applicable to cubical cell complexes.

In the remainder of the paper, the set O is an object of the image I with
an empty intersection with the border of I. Assume that all spels of O are
oriented positively. We merge the sets ∆p with p ∈ O with the rule that two
identical cells except for their orientation cancel each other. The resulting set
of oriented surfels is called the boundary of O, denoted by ∂O. It is a digital
surface, whose elements are called bels of O. The following result states that
the boundary of O is indeed the digital surface separating the spels of O from
the spels of the complement of O.

Proposition 5 Let c be a bel of ∂O. Then ∇c contains two spels: one posi-
tively oriented and belonging to O, the other negatively oriented and not be-
longing to O. Any path of 1-adjacent spels from an element of O to an element
not in O crosses ∂O.

One way to compute the digital surface bordering a set of spels O is by apply-
ing the lower boundary operator on each element of O and removing oppositely
oriented identical cells. The time complexity of this algorithm is thus linear
with the number of spels of O.

2.3 Followers of surfel, bel adjacency, digital surface tracking

The bel adjacency defines the connectedness relations between bels bounding
an object. It has two nice consequences: (i) the boundary of an object can be
extracted by tracking the bels throughout their bel adjacencies [1,4]; (ii) sets of
surfels can be considered as classical Euclidean surfaces, where one can move
on the surface in different orthogonal directions (2 in 3D). The second reason
is essential for defining the geometry of digital surfaces [12]. We present here
a definition of bel adjacencies that is essentially equivalent to the definition
of [6], but easier to implement in our framework. We start by defining which
surfels are potentially adjacent to a given bel with the notion of follower. We
then define two kinds of bel adjacency for each pair of coordinates.

Definition 6 We say that an r-cell q is a direct follower of an r-cell p, p 6=
±q, if ∆p and ∆q have a common r−1-cell, called the direct link from p to q,
such that this cell is positively oriented in ∆p and negatively oriented in ∆q.
The cell p is then an indirect follower of q.

It is easy to check that any surfel has 3 direct followers and 3 indirect followers
along all coordinates except the one orthogonal to the surfel. We order the
followers consistently for digital surface tracking (see Figure 2).

6

b

∈ ∆x + p (1)

∈ ∆x − q (3)

+b′ ∈ ∆xb

∈ ∇x + b′ (2)

-q

+p

Fig. 2. Direct followers of a surfel b along coordinate x.

Definition 7 Let b be an oriented n − 1-cell, such that ∇b = {+p,−q}. Let
j be a coordinate with j 6=⊥ (p). The three direct followers of p along j are
ordered as follows: (1) the first direct follower belongs to ∆j +p, (2) the second
direct follower belongs to ∇j +b′ with +b′ direct link in ∆jb, (3) the third direct
follower belongs to ∆j − q.

Intuitively, when tracking a digital surface, you have 3 different possibilities
for a move along a given coordinate. This is true for arbitrary dimension. The
following definition shows which one to choose at each step . It is in agreement
with the definitions of bel adjacencies proposed by Udupa [15].

Definition 8 Let b be a bel of ∂O, such that ∇b = {+p,−q} (thus p ∈ O

and q 6∈ O). For any coordinate j 6=⊥ (b), the bel b has one interior direct
adjacent bel (resp. exterior direct adjacent bel) which is the first (resp. last)
of the three ordered direct followers of b along coordinate j that is a bel of O.
The bel adjacency is the symmetric closure of the direct bel adjacency.

In 3D, the interior (resp. exterior) bel adjacency along all coordinates induces
the classical (6,18) bel-adjacency (resp. (18,6) bel-adjacency). Interior and
exterior bel adjacencies can be mixed for different coordinate pairs. This might
be useful in an application where the image data are not isotropic (e.g., some
CT scan images, confocal microscopy). Computing the bel adjacent to a given
one is very fast since it required [12]: ≤ 11 binary or integer operations, ≤ 3
shifts, ≤ 14 lut accesses, ≤ 9 conditional tests, and 1 or 2 “is in set” operations.
The next section will show that the “is in set” operation can be done in four
elementary operations.

The following theorem, which comes from the fact that cubical cell complexes
are polyhedral complexes, is interesting to speed up digital surface tracking
algorithm: as its corollary, tracking only direct adjacent bels is sufficient to
extract the whole digital surface component that contains the seed bel. It is
more complex to show that bel components correspond to interior and exterior
components of spels (see [13,15] where this is proven for some bel adjacency
relations).

Theorem 9 The transitive closure of the direct bel adjacency from a bel b of
∂O coincides with the transitive closure of the bel adjacency from b.

7

Table 1
This table shows some properties of classical set data structures. The symbol +
indicates that it is only amortized time complexity.

set structure STL class is in set ? other set ops memory (bytes)

dynamic array vector O(m) O(m)+ ≈ 4m

linked list list O(m) O(m) ≈ 24m

RB-tree set O(log m)+ O(log m)+ ≈ 32m

hashtable hash set O(1)+ O(1)+ ≈ 4m′ + 20m

3 Data structures built over cells

Since any kind of cell is coded as an integer number, data structures coding
sets of cells are easily derived from standard data types. Table 1 displays
the traditional set data structures, their implementation in C++ as template
classes, the time complexities of some operations, and the memory cost. 2

These data structures are adapted to sets of cells of reasonnable size. Very
small sets should be defined as vectors. lists may be used to represent
medium size contours. Other medium size sets should be represented with
sets or hash sets. If the hash set seems rather efficient for most operations
(at least from an asymptotic point of view), it is memory costly: 28 Mbytes are
necessary to represent a digital surface with 1, 000, 000 bels (and m′ = 2m).
Moreover the memory is very fragmented and the cache is thus not efficient.
As it is shown later on digital hypersurface tracking algorithms, amortized
constant time does not mean very fast.

We present another data structure to represent a set of cells, which exploits
the properties of the cell coding. The size of the data structure is dependent
only on the size of the image. The time complexity of all operations is then
independent from the number of cells represented. This data structure, called
the CharSet, is a characteristic function that assigns one bit to each cell of
the space. Since we will often manipulate sets of cells that contains specific
kinds of cells (e.g.. a digital surface is made of surfels), we present two ways
to define this structure.

Definition 10 A MinCharSet is an array tbl of s bits, where s is one plus the
difference between the highest possible cell code MAX and the smallest possible
cell code min. Selecting the bit characteristic of the presence of a given cell c

is done with tbl[(c-min)>>5]&(1<<(c&0x1f)) for 32-bits words.

Definition 11 A LUTCharSet is an array tbl of s bits and a look-up ta-
ble lut, where s and lut are dependent on the set of cells (see Table 2).

2 A cell is stored in a 32-bits word. We suppose that 12 bytes are necessary to store
information about one dynamically allocated memory area (e.g. holds for Linux)

8

Table 2
This table defines the way LUTCharSets store various specific sets of cells.

set of cells topologies α lut(α)
size s

(bits)
2563 image
size (Mb)

set of
spels

1 . . . 1
0 0 . . . 0

∑

Ni bits
2
∑

Ni 2

unoriented
digital
surface

011 . . . 1

101 . . . 1

. . .

1 . . . 110

0 0 . . . 0

1 0 . . . 0

. . .

n − 1 0 . . . 0
∑

Ni bits

n2
∑

Ni 6

set of
oriented
r-cells

0 . . . 0011 . . . 1

0 . . . 0101 . . . 1

. . .

1 . . . 1100 . . . 0

0 0 . . . 0

1 0 . . . 0

. . .
(

n
r

)

− 1 0 . . . 0

1 +
∑

Ni bits

2
(

n
r

)

2
∑

Ni 12 (r = 1, 2)

Selecting the bit characteristic of the presence of a given cell c is done
with tbl[(lut[topo(c)]+sign_coords(c))>>5]&(1<<(c&0x1f)) for 32-bits
words.

The LUTCharSet is more compact than the MINCharSet for some sets of cells
(and the higher the dimension the more it is) but the access to the character-
istic bit of a cell is a bit slower It is now clear why the bit defining the sign
of an oriented cell is inserted between the topology and the coordinates of the
cell: with this coding, both CharSets use exactly twice more memory for sets
of signed cells compared with sets of unsigned cells.

Knowing if a cell belongs to a CharSet or any other atomic set operation
(add/remove an element) are O(1) operations. All global set operations (like
union, intersection, difference, complement) between CharSets are imple-
mented as standard bit operations between arrays of binary words. Their time
complexities are linear in the size of the array. Moreover, the implementation
of set operations for any set of cells (arbitrary dimension, set of spels, oriented
digital surface, set of r-cells, etc) is done only once as bit operations between
arrays of binary words. To give an idea of the efficiency of this representation,
inverting a set of spels defined in a 5123 image takes 0.40s (134, 217, 728 spels,
3ns per spel), difference between two sets of spels in the same image takes
0.80s. Furthermore, an unoriented digital surface in a 2563 image can hold up
to 50, 331, 648 surfels for a 8Mb memory cost (or 6Mb for LUTCharSet). To
conclude this section, unsigned sets are twice less costly to store. They should
be used when possible. For instance, digital surfaces that are boundaries of a
set of spels are always orientable surface. Digital surface tracking can thus be
done with unoriented digital surfaces.

9

// Track (B) algorithm.
// ∂O must be closed.
CharSet
Space::track(CharSet O, Cell b,

BelAdj A)
{CharSet S = emptySurfelSet();

queue<Cell> L; // queue of bels
L.push(b); // starting bel
while (! L.empty()) {

Cell p = L.pop(); // current bel
// On all coord where p open
for (int j = 0; j < dim(); ++j)
if (j != orthDir(p)) {
// Track direct followers
Cell q = A.directAdj(O,p,j);
if (! S.isInSet(q)) {

S.add(q);
L.push(q);

}
}

}
return S;

}

// Track (C) algorithm.
// ∂O must be closed.
CharSet
Space::track(CharSet O, Cell b,

BelAdj A)
{CharSet S = emptySurfelSet();

queue<Cell> L; // queue of bels
list<Cell> T; // ”tail” of bdry
L.push(b); // starting bel
T.multipleInsert(b, dim() - 1);
while (! L.empty()) {

Cell p = L.pop(); // current bel
for (int j = 0; j < dim(); ++j)
if (j != orthDir(p)) {

Cell q = A.directAdj(O, p, j);
if (T.find(q)) // already

T.remove(q); // extracted
else {

S.add(q); L.push(q);
T.multipleInsert(q,dim()-2);

} } }
return S; // T is empty at loop end

}

Fig. 3. Two digital hypersurface tracking algorithm: the Track (B) algorithm re-
quires an efficient “is in set” operation, the Track (C) algorithm stores the list of
cells that will be hit again by the tracking. For the set T in (b), we have tried both
list and multiset. The former was much faster than the later in our experiments.

4 Digital boundary extraction by scanning and tracking

We have implemented several digital hyper-surface extraction algorithms which
build the digital surface that is the boundary of a given object O. Scanning
algorithms examine every spel neighborhood to detect the presence of a bel.
They only require the set O as input. Digital surface tracking algorithms re-
quire an initial bel b and a bel adjacency A to extract the component of the
boundary of O that contains b. As described in Section 2.3, defining the bel
adjacency A is deciding for each pair of coordinates whether A is interior or
exterior along this plane. Figure 3 shows how to write generic digital surface
tracking algorithms with our framework. The implementation in C++ is very
close to the formal specification of the algorithm (see [6]).

In the experiments, the object O was a digital volumic ball. Table 3 lists the
running times necessary to extract ∂O for balls of various radii and dimen-
sions. The Scan (A) algorithm scans the whole image to find boundaries. The

10

Table 3
Running times for several boundary extraction algorithms (see text).

Space
size

Rad. Nb spels Nb surf.
Scan
(A)

Scan
(B)

Track
(A)

Track
(B)

Track
(C)

40962 2000 12566345 16004 2.07s 2.00s < 0.01s < 0.01s 0.01s

1283 30 113081 16926 0.38s 0.03s 0.01s 0.01s 0.06s

1283 60 904089 67734 0.39s 0.34s 0.07s 0.05s 0.57s

2563 120 7236577 271350 3.15s 2.70s 0.36s 0.32s 5.24s

5123 240 57902533 1085502 25.1s 21.2s 1.88s 1.85s 50.6s

644 30 4000425 904648 4.26s 4.00s 1.91s 1.37s 4748s

Scan (B) algorithm scans the parallelepipedic subspace containing the ball.
The Track (A) algorithm extracts open or closed boundaries from a starting
bel (it follows both direct and indirect bel adjacencies). Track (B) and (C)
algorithms extract only closed boundaries from a starting bel (they follow
only direct bel adjacencies). All these algorithms are written generically and
make no assumption on the dimension of the image. The benchmarks show
that scanning algorithms depend on the size of the scanned subspace and that
tracking algorithms depend on the number of surfels in ∂O. Running times
are excellent since each bel is tracked in ≈ 1.7µs in 3D (and ≈ 1.5µs in 4D).
Note that Track (B) algorithm is much faster than Track (C) algorithm. This
is because CharSets are efficient for the query “is a cell in a given set ?”.

5 Conclusion

We have presented a binary coding of every cell of the digital space Cn. This
coding contains all the topological and geometric information on the cell. It
allows the design and implementation of generic low-level algorithms that deals
with subsets of C

n. Compact and efficient data structures can be built with this
coding. We illustrated the potential of this framework with a classical digital
topology application: boundary extraction. Arbitrary dimensional algorithms
are readily implemented in this framework and benchmarks have proved that
the resulting code is surprisingly efficient in practice. Other digital topology
and geometry applications may be found in [12].

References

[1] E. Artzy, G. Frieder, and G.T. Herman. The theory, design, implementation
and evaluation of a three-dimensional surface detection algorithm. Computer
Graphics and Image Processing, 15:1–24, 1981.

11

[2] Y. Bertrand, G. Damiand, and C. Fiorio. Topological encoding of 3d segmented
images. In G. Borgefors, I. Nyström, and G. Sanniti di Baja, editors, Proc. of
9th Discrete Geometry for Computer Imagery (DGCI’2000), Uppsala, Sweden,
volume 1953 of Lecture Notes in Computer Science, pages 311–324. Springer-
Verlag, 2000.

[3] J. P. Braquelaire and J. P. Domenger. Representation of segmented image with
discrete geometric maps. Image and Vision Computing, 17:715–735, 1999.

[4] D. Gordon and J. K. Udupa. Fast surface tracking in three-dimensional binary
images. Computer Vision, Graphics, and Image Processing, 45(2):196–241,
February 1989.

[5] G. T. Herman. Discrete Multidimensional Jordan Surfaces. Computer Vision,
Graphics, and Image Processing, 54(6):507–515, November 1992.

[6] G. T. Herman. Geometry of digital spaces. Birkhäuser, Boston, 1998.

[7] E. Khalimsky, R. Kopperman, and P. R. Meyer. Computer graphics and
connected topologies on finite ordered sets. Topology and its Applications, 36:1–
17, 1990.

[8] T. Y. Kong, R. D. Kopperman, and P. R. Meyer. A topological approach to
digital topology. Am. Math. Monthly, 98:901–917, 1991.

[9] V. Kovalevsky. A new means for investigating 3-manifolds. In G. Borgefors,
I. Nyström, and G. Sanniti di Baja, editors, Proc. of 9th Discrete Geometry
for Computer Imagery (DGCI’2000), Uppsala, Sweden, volume 1953 of Lecture
Notes in Computer Science, pages 57–68. Springer-Verlag, 2000.

[10] V. Kovalevsky. Algorithms and data structures for computer topology. In
G. Bertrand, A. Imiya, and R. Klette, editors, Digital and image geometry,
volume 2243 of Lecture Notes in Computer Science, pages 38–58. Springer-
Verlag, 2001.

[11] V. A. Kovalevsky. Finite Topology as Applied to Image Analysis. Computer
Vision, Graphics, and Image Processing, 46(2):141–161, May 1989.

[12] J.-O. Lachaud. Coding cells of multidimensional digital spaces to write generic
digital topology and geometry algorithms. Research Report 1283-02, LaBRI,
University Bordeaux 1, Talence, France, 2002.

[13] J.-O. Lachaud and A. Montanvert. Continuous analogs of digital boundaries: A
topological approach to iso-surfaces. Graphical Models and Image Processing,
62:129–164, 2000.

[14] I. Metz. Finding neighbours in d-dimensional binary digital images represented
by bintrees. In Proc. of 4th Discrete Geometry for Computer Imagery
(DGCI’94), Grenoble, France, pages 107–116, 1994.

[15] J.K. Udupa. Multidimensional Digital Boundaries. CVGIP: Graphical Models
and Image Processing, 56(4):311–323, July 1994.

12

