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ABSTRACT

In this article, we present an enhanced algorithm, of low com-
plexity, for the tracking of partials in the context of sinusoidal
modeling. By considering the past evolution of each partial in the
time/frequency and time/amplitude planes to predict its future evo-
lutions, this algorithm allows a better discrimination between sinu-
soidal and noisy components and an easier cancellation of sudden
changes in the evolutions of the partials.

1. INTRODUCTION

The sinusoidal model presented in Section 2 provides a high-quality
representation of pseudo-stationary sounds. Therefore, this model
is widely used for many musical audio processing purposes such
as musical source separation, transcription or coding. One of the
most challenging parts of the analysis chain presented in Figure 1
is known as partial tracking.

Given a discrete time/frequency representation, a partial tracker
should be able to extract continuous informations by linking fre-
quency components of successive frames. To achieve such a task,
most tracking methods [1, 2, 3] use heuristics such as the dis-
tance in frequency, amplitude, and phase between two succes-
sive frequency components. While such heuristics are success-
ful with monophonic sounds, they generally fail when extended to
polyphonic sounds because of spectral degradations “blurring” the
time/frequency representation. In such cases, a model for the evo-
lutions of the partials is clearly needed. Each partial should have
an evolution which is slow time-varying and predictable, and for
specific purposes the model can be more rigorous [4]. In Section
3 we present a tracking method that exploits these constraints. It
is based on the well-known linear prediction model presented in
Section 4, but this time applied to the spectral parameters of the
sounds. Its implementation is detailed in Section 5. Discussion
about the problem of the validation and comparison of the differ-
ent tracking methods, as well as results, follow in Section 6.

2. SINUSOIDAL MODELING

Additive synthesis is the original spectrum modeling technique. It
is rooted in Fourier’s theorem, which states that any periodic func-
tion can be modeled as a sum of sinusoids at various amplitudes
and harmonic frequencies. For stationary pseudo-periodic sounds,
these amplitudes and frequencies continuously evolve slowly with
time, controlling a set of pseudo-sinusoidal oscillators commonly
called partials. The audio signal s can be calculated from the ad-
ditive parameters using Equations 1 and 2, where P is the number
of partials and the functions fp, ap, and φp are the instantaneous
frequency, amplitude, and phase of the p-th partial, respectively.
The P pairs ( fp,ap) are the parameters of the additive model and
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Fig. 1. Sinusoidal analysis procedure.

represent points in the frequency/amplitude plane at time t. This
representation is used in many analysis/synthesis programs such
as Lemur [5], SMS [3], or InSpect [6].

s(t) =
P

∑
p=1

ap(t) cos(φp(t)) (1)

φp(t) = φp(0)+2π
Z t

0
fp(u) du (2)

2.1. Analysis Procedure

Sinusoidal analysis is generally made of three steps as shown in
Figure 1. Instantaneous parameters of partials are estimated by
picking some local maxima commonly called peaks from a short-
term time/frequency analysis. Partials are then formed by tracking
peaks over time, from frame to frame.

In our system, spectral estimation is done using a short-time
Fourier transform. The instantaneous frequency, amplitude, and
phase of the peaks are estimated using the derivative method [7].
For various reasons, some peaks can be missing or erroneous. The
peak-picking process can remove some erroneous ones [8], but is
unable to recover missing spectral information. In order to form
partials of reasonable length, the partial-tracking step should be
able to interpolate missing peaks.

2.2. Constraints on the Evolutions of Partial Parameters

We assume that the partials have a minimum length and that their
evolutions in frequency and amplitude are predictable, since re-
peated “birth”/“death” and sudden changes in the evolutions of the
partials will generate noisy “clicks” at the resynthesis stage and
offer a poor representation of the spectral contents.

3. ALGORITHM OVERVIEW

The first partial tracking algorithm was introduced in [1] by Mc-
Aulay and Quatieri in the field of the sinusoidal modeling of the
voice. The algorithm is based on the assumption that the partials
composing a voiced signal have stationary frequencies. Given a set
of partials ending at frame k, it is proposed to consider frequency
differences below a given threshold ∆ f between the last inserted
peak of each partial and the peaks of frames k + ni +1. The ni
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Fig. 2. Prediction capability of constant (x), linear (+) and LP
(*) predictors on a synthetic vibrato. Peaks are represented with
circles (o). The already-tracked partial using the MAQ algorithm
and the proposed method are plotted, respectively, with dotted and
solid lines.

parameter is the number of interpolated peaks allowed to be used
at once. If no peak satisfying this constraint can be found the par-
tial is “dead” and removed from the tracking process. If a peak
remains unlinked at frame k + 1, a partial is “born”. Considering
ni = 0 gives the original McAulay and Quatieri (MAQ) algorithm.

To select the next peak, the frequency and amplitude evolu-
tions of the partials are considered as constant (see Figure 2). Yet,
the frequencies and amplitudes of the partials are not stationary,
but their evolutions are often predictable. A better approxima-
tion has been proposed in [2] by considering the continuity of the
slope. However, without a model for the evolutions of the partials
it seems impossible to overcome spectral artifacts. It is proposed in
[4] to model the evolutions of the partials of instrumental sounds of
the brass family by means of Kalman filtering using pre-extracted
statistical informations. In order to gain generality, we showed
in [9] that linear prediction (LP) can be used to model and predict
the frequency and amplitude evolutions with parameters computed
from the past evolutions of the partials. Therefore, we propose to
use both the predicted frequency and amplitude to select peak can-
didates in the next frames and to interpolate missing peaks.

Using linear prediction has two advantages that can be seen in
Figure 2. The predicted frequency is closest to the one of the next
peak to be linked, so that the algorithm is more precise (we now
choose the right peak at frame 18). Since the prediction error is
lower than with using a constant predictor, the algorithm can be
much more selective by using a lower ∆ f . We can then discard the
peak at frame 21 and use an interpolated one instead.

4. LINEAR PREDICTION

In the linear prediction (LP) model, also known as the autoregres-
sive (AR) model, the current sample x(n) is approximated by a
linear combination of k past samples of the input signal. We are
then looking for a vector a of k coefficients, k being the order of
the LP model. Provided that the a vector is estimated, the predicted
value x̂ is computed simply by FIR filtering of the k past samples
with the coefficients using Equation 3:

x̂(n) =
k

∑
i=1

ai x(n− i) (3)

The challenge with linear prediction modeling is to choose the
model order k, the number of samples and type of method to esti-
mate coefficients that suit specific needs.

For frequency and amplitude evolutions, since we want to be
able to model exponentially increasing or decreasing evolutions
(portamento) and sinusoidal evolutions (vibrato), the order of the
LP model should not be below 2. Experimental testing showed
that a model order in the [2,8] range is suitable.

The number of samples used has to be large enough to be able
to extract the signal periodicity, and short enough not to be too
constrained by the past evolution. The short-term analysis module
uses a sliding time/frequency transform with a hop size of 512
samples on sound signals sampled at CD quality (44.1 kHz). This
means that the frequency and amplitude trajectories are sampled at
≈ 86 Hz. Since we want to handle natural vibrato with a frequency
about 4 Hz, we need at least 20 samples to get the period of the
vibrato. Experimental testing showed that for most cases a number
of samples in the [4,32] range is suitable.

On one hand spectral data suffer from imprecision, so the me-
thod has to be resistant to noise. On the other hand, the evolutions
of the partials in frequency and amplitude are sampled at a low
sampling rate, so the method to estimate the coefficients has to be
reactive. Among the three methods tested in [9], the Burg method
was the most satisfactory. It minimizes the average of the power of
the forward e f and backward eb errors calculated using Equations
4 and 5, it then leads to stable filter coefficients (see [10] for de-
tails). Moreover, the minimization is done on a finite support and
the method requires only a few samples.

e f
k (n) =

1
(N − k)

N−1

∑
n=k

|x(n)+
k

∑
i=1

a(i)x(n− i)|2 (4)

eb
k(n) =

1
(N − k)

N−1−k

∑
n=0

|x(n− k)+
k

∑
i=1

a(i)x(n+ k + i)|2 (5)

5. ENHANCED ALGORITHM

Since linear prediction requires at least a few samples to be effec-
tive, all starting partials then begin using a tracking mode similar
to the one used in the MAQ algorithm for a fixed number of frames
ns. During these first frames, these partials can be considered as
“young” (the others being called “mature”). We propose to process
the partials in decreasing amplitude order and the mature – most
reliable – ones are processed first in order to reduce clicks and thus
improve resynthesis quality.

At each frame, each mature partial selects and links a peak
that is close to the prediction, if any. Defining a distance between
peaks that combines frequency and amplitude is not straightfor-
ward because these two parameters do not have the same physical
dimensions. Instead, we propose a two-step selection algorithm.
First, the partial selects all peak candidates in the next frame whose
frequency distance to the prediction is below a given threshold ∆ f .
Second, it keeps from these peaks the one whose amplitude is clos-
est to the prediction.

If no peak can be found, the predicted frequency and ampli-
tude are used to create a new peak. Its phase is then interpolated
using the maximally smooth cubic interpolation detailed in [1]. In
case of musical sound modulations, corrupted tremolo and vibrato
are well resynthesized.

If two partials cross, a peak corruption occurs in the crossing
region (see Figure 3). In this case, interpolated peaks will be used
for the partial having the lower amplitude since there is no peak
satisfying the prediction constraints. When this partial links to
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Fig. 3. Peak extraction of the crossing of an harmonic of a saxo-
phone tone and a synthetic frequency-ramped sinusoid sound.

an existing peak, the crossing is detected (at frame 58 in Figure
3). If the amplitude difference between the two partials is below
a given threshold, the partial with the highest amplitude will also
use interpolated peaks in the crossing region because the extracted
peaks in this region are considered as too corrupted to be reliable.

6. RESULTS

Due to the numerous possible applications of a partial tracking
module, it seems hard to give an exhaustive evaluation of partial-
tracking algorithms by a straightforward quality measure. As a
consequence, we left this task for further research and give an intu-
itive comparison of the MAQ algorithm and the proposed method
using several criteria.

We can roughly set two requirements concerning the results
of a tracking algorithm: the resynthesis quality concerning coding
applications and the identification of onset/offset and evolutions of
partials concerning indexing applications. Both requirements are
needed for source separation. The resynthesis quality will be dis-
cussed in the first part using a synthetic tone. Crossing partials
management is studied in a second part. The identification of on-
set/offset and evolutions of partials is then studied in a third part
using natural violin tones.

6.1. Resynthesis Quality

In the processing chains of hybrid sound models such as sinusoids-
+noise or sinusoids+transients+noise, the sinusoidal components
are first extracted and then synthesized to be subtracted from the
original signal to give a residual that will be considered as a ran-
dom process (noise). Ideally, the partials should efficiently rep-
resent all sinusoidal components and only them. Otherwise, if
the partial set represents only a few of the sinusoidal components,
there will be some sinusoidal components left in the residual. If the
partial-tracking algorithm has no discrimination capability, it will
wrongly identify partials in noise and the random process will be
modeled as slow-time varying sinusoids, forcing the residual mod-
ule to handle those synthesized sinusoids that were not present in
the original sound.

Efficiency and discrimination capabilities of the two algorithms
are tested using a synthetic constant-amplitude 4-Hz vibrato sinu-
soid with frequency ranges from 1950 to 2050 Hz, embedded in a
white noise of growing level. Concerning the parameterization of
the tracking algorithms, ni was set to 4. For the MAQ algorithms,
we used the smallest ∆ f such that the vibrato could be tracked,
that is 20 Hz. For the proposed method, ∆ f was set to 12 Hz, the
prediction order to 6, the prediction length to 20 frames, and ns to
10. All partials whose length was below 15 peaks were discarded.
The peak extraction method proposed in [7] and the original partial
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Fig. 4. Evaluation of the efficiency and discrimination capa-
bilities of the two methods: proposed method (solid line) and
MAQ method (dashed line) using a synthetic vibrato tone em-
bedded in white noise. The plot shows reconstruction-SNR ver-
sus degradation-SNR on the dB scale. To evaluate the efficiency,
on the top, only the partial with the highest amplitude is synthe-
sized. At the bottom, to evaluate the discrimination capability, all
extracted partials are synthesized to compute the reconstruction-
SNR.

resynthesis method introduced in [1] were used for the two com-
pared methods. The quality of the tracking algorithm is measured
with the reconstruction-SNR in function of the degradation-SNR.

In the first experiment, in order to evaluate the efficiency, only
the partial having the highest mean amplitude was synthesized to
compute the reconstruction-SNR. At degradation-SNR below -7
dB (see Figure 4.1), the MAQ algorithm produces partials that are
a mix of noisy and tonal peaks so that the tone is split into sev-
eral partials. Whereas the proposed method, with its smaller ∆ f , is
able to track correctly the tone with vibrato by not choosing noisy
peaks. The slow decay is due to errors in the estimation of the
spectral peaks. In the second experiment, to evaluate the discrimi-
nating capability of the two algorithms, all retained partials having
frequencies in the [1900,2100] Hz band are synthesized to com-
pute the degradation-SNR (see Figure 4.2). Because the proposed
algorithm allows the use of a lower ∆ f , it has a better discrimina-
tion capability.

6.2. Crossing of Partials

The problem of crossing partials arises when we have to deal with
a mixture of non-stationary sounds. The tracking has to be able
to identify the evolutions of the partials and to interpolate cor-
rectly missing spectral data (see Figure 3). In order to test the
management of crossing, a natural A-440 Hz saxophone tone was
corrupted by a synthetic constant-amplitude sinusoid beginning 20
frames later and whose frequency is increasing linearly from 200
Hz to 4 kHz. Only the extracted partials starting before frame 20
were synthesized to compute the reconstruction-SNR. Results for
the MAQ method using a ∆ f of 80 Hz and the proposed method
using a ∆ f of 25 Hz are plotted in Figure 5. Having a model of
the evolutions of the parameters leads to an easier management
of crossing partials, by being more selective and by having a bet-
ter interpolation capability. Furthermore, the presented algorithm
schedules the partials in decreasing amplitude, so that the partial
with the lower degradation is processed first. It reduces the proba-
bility of handling the crossing incorrectly.
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Fig. 5. Evaluation of the crossing management capability of the
two methods: the proposed method (solid line) and the MAQ
algorithm (dashed line). A natural A-440 Hz saxophone tone
is corrupted by a synthetic constant-amplitude sinusoid begin-
ning 20 frames later and whose frequency is increasing linearly
from 200 Hz to 4 kHz. The plot shows reconstruction-SNR ver-
sus degradation-SNR on the dB scale. Only the extracted par-
tials starting before frame 20 were synthesized to compute the
reconstruction-SNR.

6.3. Identification of Partials

In applications such as indexing or source separation of station-
ary pseudo-periodic sounds, a good representation of the partials
provides a higher level of description, useful to extract robustly
high-level informations such as note onset/offset, pitch detection
and source identification.

In order to easily detect the note onset/offset, one would like to
have a good time separation, meaning that a partial should belong
to only one source. And in order to detect the pitch and to iden-
tify the sources, the partials should show clear time/frequency and
time/amplitude evolutions in order to be able to cluster partials. As
can be seen in Figure 6.1, the partial set extracted by the MAQ al-
gorithm is not satisfactory. A lot of partials belong to two or three
tones and it would be very difficult to detect the vibrato frequency
of the second tone. The proposed method shows better results in
time separation and the vibrato of the second tone is clearer (see
Figure 6.2). However the algorithm described in Section 5 is not
perfect, since some partials belong to two tones and the vibrato is
still not perfectly handled in noisy conditions.

7. CONCLUSION

In this article, we proposed to use linear prediction to replace the
classic stationary assumption to better track and interpolate par-
tials in the context of sinusoidal modeling. While the presented
implementation has still to be compared with tracking algorithm
explicitly dedicated to musical recording analysis [2, 4], this new
approach leads to promising results in terms of resynthesis and rep-
resentation quality, two important requirements for an approach of
source separation from mono recording based on sinusoidal mod-
eling.
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