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ABSTRACT

In this paper, we introduce two original evaluation methods

in the context of sinusoidal modeling. The first one assesses the

quality of the extraction of sinusoidal components from short-time

signals, whereas the second one focuses on the quality of the track-

ing of these sinusoidal components over time.

Each proposed method intends to use a unique cost function

that globally reflects the performance of the tested algorithm in a

realistic framework. Clearly defined evaluation protocols are then

proposed with several test cases to evaluate most of the desired

properties of extractors or trackers of sinusoidal components.

This paper is a first proposal to be used as a starting point in a

sinusoidal analysis / synthesis contest to be held at DAFx’07.

1. INTRODUCTION

The sinusoidal model is widely known, and its usability and ver-

satility do not have to be proved. Many tools [1, 2, 3, 4] have been

proposed to analyze and synthesize speech and musical sounds us-

ing this model for various applications from sound modifications

[5, 6] to audio coding [7, 8].

The analysis / synthesis chain is generally divided into three

main stages, as shown in Figure 1. Despite the numerous ap-

proaches that have been proposed in the literature to implement

each of the three stages, the issue of evaluating and comparing the

performance of these proposals is still an open question, at least for

the first two stages. However, we think that there is a strong need

to be able to assess the performance of each of these two stages in

case of general audio processing uses.

Ideally, one would like general purpose evaluation methods

with the following properties:

1. each part of the analysis chain is evaluated without the in-

fluence of the others;

2. the test cases should be realistic: the number of sinusoids is

unknown and their parameters can be modulated.

In an effort to address these issues, we propose in this paper

two original methods: the first one assesses the quality of sinu-

soidal components extractors, whereas the second one assesses the

quality of trackers of sinusoidal components.

The sinusoidal model and the complete analysis / synthesis

chain is presented in Section 2 where the output of each stage is

formalized in terms of the set theory. Existing methodologies that

evaluate the performance of sinusoidal components extractors are

then reviewed and discussed in Section 3. We then show that the

issue of quality measurement can be considered as a set compari-

son problem. From these remarks, an original evaluation metric is

proposed. This metric is then considered in various test cases that

build a complete evaluation framework of sinusoidal components

extractors. A similar approach (review of existing methodologies,

new evaluation method, and associated protocol) is done in Section

4 for the trackers of these sinusoidal components.

Ŝ
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Figure 1: The sinusoidal analysis / synthesis chain. The peak

extractor extracts sinusoidal components from short-time signals.

These components belong to the S set. Components of successive

frames are then considered by some tracking algorithm to estimate

the evolutions of the parameters of sinusoidal components (the L
set) over time.

2. SINUSOIDAL MODELING

Additive synthesis is the original spectrum modeling technique. It

is rooted in Fourier’s theorem, which states that any periodic func-

tion can be modeled as a sum of sinusoids at various amplitudes

and harmonic frequencies. For stationary pseudo-periodic sounds,

these amplitudes and frequencies continuously evolve slowly with

time, controlling a set of pseudo-sinusoidal oscillators commonly

called partials. The audio signal s can be calculated from the ad-

ditive parameters using Equations 1 and 2, where N is the number

of partials and the functions fn, an, and φn are the instantaneous

frequency, amplitude, and phase of the n-th partial, respectively.

The N pairs (fn, an) are the parameters of the additive model and

represent points in the frequency-amplitude plane at time t. This

representation is used in many analysis / synthesis programs such

as AudioSculpt [1], Lemur [2], SMS [3], or InSpect [4].

s(t) =

N
X

n=1

an(t) cos(φn(t)) (1)

φn(t) = φn(0) + 2π

Z t

0

fn(u) du (2)

As presented in the introduction, the sinusoidal analysis / syn-

thesis chain is generally divided into three main stages, as shown

in Figure 1.
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2.1. The Extraction of Peaks

The first stage, called “peak extraction”, is intended to determine

the number of sinusoids from a short-time signal and to estimate

the parameters of each sinusoid within the interval of observation.

The term peak is due to the fact that the power spectrum of a sinu-

soid mainly consists of a prominent peak (local maximum).

At each frame, some sinusoidal components are detected and

their parameters are estimated. In this paper, a peak pk
i (peak num-

ber i of frame number k) is defined by four parameters: the fre-

quency fk
i (considered as constant during the observation inter-

val), amplitude ak
i , phase φk

i , and confidence ck
i :

pk
i =

“

fk
i , ak

i , φk
i , ck

i

”

(3)

where fk
i , ak

i , and ck
i are normalized parameters between 0 and 1.

The ck
i parameter denotes the degree of confidence given by the

extraction algorithm. A small ck
i indicates that the peak pk

i should

not be trusted (e.g. may belong to some noisy component).

The peaks of the same frame may be clustered in a frame set

and the resulting sets may in turn be grouped to build the (multi)

set of peaks S:

S =
[

k

Sk where Sk =
[

i

n

pk
i

o

(4)

A review of the methods that permit such extraction from au-

dio signals is out of the scope of this paper, see [9, 10] for reviews

and references about methods based on the Fourier spectrum and

see for example [11] concerning high-resolution estimation meth-

ods. In this paper, we aim at finding a way of evaluating such

methods.

2.2. The Tracking of Partials

The second stage is known as “partial tracking”. This part iden-

tifies continuities between peaks of consecutive frames and there-

fore determines the continuous evolutions of sinusoids over time.

The term partial is due to the fact that many partials are usually

needed at the same time to model one musical or voice tone.

Formally, a partial is a vector of peaks (of confidence 1) with

successive time indices:

Pn(m) = {Fk(m), Ak(m), Φk(m)}, ∀m ∈ [bn, · · · , bn+ln−1]
(5)

where Pn is the partial number n, of length ln, and that appeared

(was born) at frame index bn; Pn(m) is the peak of time index

m of this partial. Following these notations, a peak that does not

belong to any partial is noted p and noted P otherwise. For exam-

ple, pm
i = Pn(m) means that the i-th peak of frame m has been

assigned to the partial number n.

The set of partials that represents the entire sound is defined as:

L =

N
[

n=1

Pn (6)

2.3. Synthesis

The last stage synthesizes back the output audio signal using the

estimated sinusoidal parameters. The continuous evolutions of the

sinusoidal parameters of Equations 1 and 2 are computed from the

parameters of the partials using interpolation methods [12, 13] and

efficient synthesizers are then used to obtain the output signal ŝ(t).

The performance of different methods [14, 15] that implement

this last stage can be evaluated and compared using some clearly

defined protocols. To do so, the synthesized sound ŝ(t) is com-

pared to the original one s(t) using some objective or subjective

criteria.

The Reconstruction Signal-to-Noise Ratio (R-SNR) can be con-

sidered as an objective criterion:

R-SNR = 10 log 10

 

L−1
X

l=0

(s(l)− ŝ(l))2
‹

L−1
X

l=0

s2(l)

!

(7)

where s is the original (short-time) signal and ŝ the synthesized

one, both signals consisting of L samples. This objective criterion

can be easily computed but has the disadvantage of being some-

times perceptively irrelevant. Alternatively, some expert listeners

may be asked to judge the quality of ŝ versus s using software tools

such as [16].

Approximately the same protocol can be considered to com-

pare the performance of the other stages of the chain. If we want to

compare several extractors (resp. trackers), a given tracker (resp.

extractor) and a synthesis module are chosen and a switch is done

between the several peak extractors (resp. partial trackers). How-

ever, the influence of the chosen tracker (resp. extractor) and syn-

thesis modules may favor a specific extractor (resp. tracker) and

these biases cannot be quantified easily.

Alternatively, we introduce in this paper flexible evaluation

methods that do not compare time-signals and thus do not need

implementations of the other stages to compare a specific stage of

the chain.

3. PEAK EXTRACTION

Extractors are generally designed to detect the right number of si-

nusoids and to estimate the parameters of each sinusoid precisely.

3.1. Existing Evaluation Methods

Therefore, existing evaluation methods usually decorrelate the pa-

rameter estimation issue from the detection one and evaluate them

independently.

3.1.1. Frequency Estimation

As far as the estimation of parameters is concerned, we generally

focus on the frequency one since the others (amplitude and phase)

can be found by Maximum Likelihood (ML) methods once the

frequency is estimated.

Let us consider a (real) sinusoid x (of amplitude 1) in a Gaus-

sian noise y (of variance σ2), both (short-time) signals consisting

of L samples:

x(l) = sin(jωl + Φ) (8)

y(l) = 10−SNR/20/
√

2 · z(l) (9)

where ω is the frequency (in radians per sample) and z is a Gaus-

sian noise of variance 1. The variance of the signal part x is

1/2, and the variance of the noise part y is var(y) = σ2 =

10−D-SNR/10/2. The analyzed signal is s = x + y.
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For the case of the estimation of the frequency ω of a sinusoid

in noise, the lower Cramér-Rao Bound (CRB) [17] is:

var(ω̂) ≥ 24 σ2

a2L(L2 − 1)
=

12

L(L2 − 1)
10−D-SNR/10

(10)

where a is the amplitude of the sinusoid (here a = 1), and the

Degradation-SNR is given by the following equation:

D-SNR = 10 log 10

 

L−1
X

l=0

y2(l)
‹

L−1
X

l=0

x2(l)

!

(11)

We can easily show that, in the log scales, the CRB in function of

the SNR is a line, see Figure 2.

Therefore, the variance of the error versus the SNR gives an

indication of the precision of the tested estimator, i.e. the closer to

the CRB, the better. This framework has also been used to evaluate

the frequency resolution of estimators in [10], by considering two

sinusoids instead of only one. However, such tests are often done

using complex exponentials instead of real sinusoids.

The clear mathematical formulation of this evaluation method

is convenient for mathematical derivations of theoretical perfor-

mance estimation bounds. However, this unrealistic test case has

the major disadvantage of being over-simplified and may therefore

lead to over-specialized estimators whose applicability to musical

and speech signal analysis remains to be proved.

3.1.2. Detection

Keiler et al. use in [9] an algorithm similar to the one proposed

in this paper, where extracted peaks are compared to the original

ones and the following quantities are computed: the mean number

of detected peaks per frame, the mean number of peaks per frame

that are in the reference signal but not detected by the algorithm,

and the mean number of peaks that are detected by the algorithm

but not present in the reference signal.

Hainsworth in [10] also uses two quantities: the number of

correctly identified sinusoids and the number of falsely detected

sinusoids. However, this “correctness” is not clearly defined.

3.2. Proposed Evaluation Methodology

As remarked by Hainsworth in [10], even if the problems of param-

eter estimation and component detection can be separated, they are

in practice inextricably linked. We therefore propose in this section

a method to evaluate globally the performance of a peak extrac-

tor without considering the other stages of the analysis / synthesis

chain.

Given a set of peaks Sk of cardinal #Sk = Nk, the origi-

nal (short-time) sound is synthesized and possibly degraded. The

tested extractor is then used to extract another set of sinusoids Ŝk

with cardinal Mk. The frame index k will be removed in the fol-

lowing for the sake of clarity. The closer this set is to the original,

the better the extractor is.

The issue here is then to be able to compare these two sets.

Following the remarks of Section 3.1, we consider only the fre-

quency and confidence parameters for the evaluation.

3.2.1. Unitary Case

Let us consider a simple case, where only one peak is in the orig-

inal set and the estimated one: N = M = 1. To compute the
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Figure 2: (a) Performance comparison of several estimators from

[18] for the analysis of a real sinusoid with frequency lying in

the whole (normalized) frequency range ]0, 0.5[: the reassignment

method (dotted line with *), the phase-vocoder estimator (dash-

dotted line with o), the derivative estimator (dashed line with x),

and the trigonometric estimator (solid line with ⋄). The CRB is

plotted with a double solid line. (b) Performance of the tested

estimators at SNR=100 dB versus the frequency of the analyzed

sinusoid (symbols are not plotted here for the sake of clarity).

imprecision cost between a peak of the original set pi and a peak

in the estimated set p̂j , we use only the frequency parameter. Since

we consider only real signals, the normalized frequencies are be-

tween 0 and 0.5. A normalization factor of 2 is then used to obtain

a cost function between 0 and 1. More precisely:

c(pi, p̂j) = (2(fi − f̂j))
2

(12)

3.2.2. General Case

Let us now consider the general case where N is set arbitrarily.

Since all the sinusoids of the original set exist, they have full con-
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fidence, i.e. ci = 1 for all peaks pi ∈ S. Ideally, the estimated

set Ŝ should be of the same cardinality as S and the frequencies of

each peak of Ŝ should be close to the one of a peak in S. By apply-

ing Algorithm 1, we iteratively seek for correspondences between

peaks of the two sets by decreasing confidence order of estimated

peaks until no peak remains in one of the two sets.

Algorithm 1 considered to seek for correspondence between

peaks of the two sets S and Ŝ.

cI ← 0
Sr ← S
Ŝr ← Ŝ
while Sr 6= ∅ and Ŝr 6= ∅ do

take pj ∈ Ŝr such that cj = maxpk∈Ŝr
ck

find pi ∈ Sr such that |fi − fj | = mink 6=j |fk − fj |
cI ← cI + c(pi, pj)
Sr ← Sr − {pi}
Ŝr ← Ŝr − {pj}

end while

Once the algorithm has been processed, the imprecision cost

cI is obtained. If the remaining set Ŝr 6= ∅, then some peaks have

been over estimated. On contrary, if the remaining set Sr 6= ∅,
then some peaks have been under estimated. The over and under

estimation costs are defined then by:

cO =

#Ŝr
X

j=1

cj and cU =

#Sr
X

i=1

ci = #Sr (13)

We propose that these three costs can be summed and normal-

ized to obtain an overall cost that reflects both the issue of finding

the correct number of peaks and of estimating their parameters

precisely:

C = (cO + cU + cI)/N (14)

By using the cost function C, we consider that missing a si-

nusoid is equivalent to completely misestimating its frequency. In

the same time, over estimating the number of sinusoids is a handi-

cap only if the extractor had great confidence for the over detected

peaks.

3.3. Test Cases

Now, the cost C defined in Equation 14 is used to assess the per-

formance of a given extractor in a realistic framework. Two tests

cases are considered to evaluate the precision and the resolution of

the tested extractor, while the third one is intended for an overall

evaluation by simulating a realistic case.

Precision. In this test, we consider only one sinusoid embedded in

a Gaussian noise. Several runs with randomized frequencies and

phases are operated and the mean cost versus the D-SNR is plotted

such as in Figure 2. A perfect extractor will lead to performances

equal to the CRB.

Resolution. To assess the resolution capabilities of a given extrac-

tor, we consider a test with two sinusoids with the same amplitude.

Several runs with randomized phase and frequencies are operated

and the mean cost versus the absolute difference between the fre-

quencies of the two sinusoids will be plotted.

Overall Quality Assessment. In this test, we consider several si-

nusoids. Several runs with randomized frequencies and phases are

operated and the mean cost versus the number of sinusoids will

be plotted. For this test, the amplitudes may be set with the same

value. This would be more correct, since it is much more difficult

to detect a sinusoid of low amplitude than one with high ampli-

tude and this is not reflected by the proposed cost C of Equation

14. However, tested estimators may take that into account to arti-

ficially achieve good evaluation. We then consider that the ampli-

tude should also be randomized but within a reasonable range. For

example, the threshold of hearing may be considered as a lower

bound.

4. PARTIAL TRACKING

Trackers of partials are designed to identify continuities between

peaks of (generally) successive frames to build a continuous repre-

sentation of the evolutions of the sinusoidal parameters over time.

4.1. Existing Evaluation Methods

The first algorithms were proposed by McAulay and Quatieri in

the speech processing field [12] and by Serra and Smith in the

musical sound processing field [19]. They are now references and

many implementations of these algorithms are available.

Several other methods have been proposed then [20, 21, 22,

23, 24, 25, 26] to achieve better identifications of the continuities

between peaks either by extending these first algorithms or by con-

sidering a totally different framework.

Once proposed, most of the algorithms are validated by visual

examination of the output of the trackers, i.e. the evolutions of the

frequency or the amplitude of the partials are plotted over time.

This may be used to show specific properties of a given algorithm

but not to compare this algorithm to existing ones.

Alternatively, we have proposed and used a methodology of

evaluation in [24, 25]. A single synthetic sinusoidal source x is

corrupted by the addition of noise or another sinusoidal source y,

leading to the signal s. The performance of the trusted tracker is

evaluated by considering the ratio between the R-SNR (see Equa-

tion 7) versus the D-SNR (see Equation 11). The results for three

trackers in two test cases are plotted in Figure 3. This methodol-

ogy is useful to compare different trackers in a more systematic

manner. However, since only SNRs are considered, it requires the

implementation of the other stages of the chain, which could result

in biased evaluations.

A first attempt to get rid of the influence of the other stages

while assessing the performance of a tracker is proposed in [27].

By doing so, we have to compare the output of the tracker – set L̂
– to the original set L.

In [26], Satar-Boroujeni et al. uses two factors defined as fol-

lows to compare the performance of their trackers with another one

proposed in the literature:

Rd = nd/ne and Rf = nf/ne (15)

where nd is the number of detected tracks, nf is the number of

false tracks, and ne is the number of expected tracks.

However, the direct comparison between the two sets of par-

tials is a complicated task due to the high dimensionality of the

elements of each set (a partial has a time location, and several pa-

rameters that evolve during this activity time slot), so that a com-

parison of the two sets by considering their cardinals appears as

not sufficient. This issue will be addressed by the introduction of

an algorithm to estimate how different two sets of partials are.

DAFX-242



Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

!15 !10 !5 0 5 10 15 20 25
!30

!20

!10

0

10

20

30

40

50

60

Figure 3: Evaluation of the management of crossing partials for

three trackers from [24]: the High-Frequency Content (HF) algo-

rithm (solid line), the Linear-Prediction (LP) algorithm (dashed

line), and the McAulay-Quatieri (MAQ) one (dash-dotted line).

The R-SNR is plotted in function of the D-SNR.

4.2. Evaluation Methodology

A set of partials L is considered as a reference. This set of partials

L of cardinal N = #L is converted into a set of peaks S. After

being degraded by several types of degradation studied in 4.3, this

set is used as the input of the tested tracker to give another set of

partials L̂ of cardinal M = #L̂.

The issue is then to evaluate the quality of the tested tracker

by comparing the two sets L̂ and L.

4.2.1. Unitary Case

Let us first consider a simple case, where only one partial is in the

original set and the estimated one: N = M = 1.

To evaluate how different two partials Pi and Pj are, we con-

sider only the frequencies and amplitudes parameters. These pa-

rameters are supposed to be null if the partial is not active at a

given frame:

Ai(k) = Fi(k) = 0 if k < bi or k ≥ bi + li (16)

(bi being the birth index of partial i, and li its length).

Let us consider Pi as the reference partial. Considering that

bi ≤ bj , we define four frame indices as follows:

n1 = bi

n2 = min(bj , bi + li)

n3 = min(max(bj , bi + li), bj + lj)

n4 = max(bi + li, bj + lj)

We assume that a missing part of the original partial has a cost

equivalent to the cumulated amplitudes of the original partial. We

also consider that artificially prolongating a partial in the resulting

representation has a cost equivalent to the cumulative amplitude of

the prolongated part.

The common part between the two partials (between frames

n2 and n3) is then considered. We assume that the imprecision

cost between a peak of the original partial pk
i and a peak of the

estimated partial p̂k
j is the product of the differences between their

frequencies and amplitudes.

The cost function between the two partials Pi and Pj is then:

c (Pi, Pj) =

n3
X

k=n2

2 |Fi(k)− Fj(k)| · |Ai(k)−Aj(k)|

+

n2
X

k=n1

max(Ai(k), Aj(k)) +

n4
X

k=n3

max(Ai(k), Aj(k)) (17)

Since we consider only real signals, the normalized frequen-

cies are between 0 and 0.5. A normalization factor of 2 is then

used to obtain a cost function between 0 and 1 (as in Equation 12).

4.2.2. General Case

Let us now consider the general case where N is set arbitrar-

ily. Ideally, the estimated set L̂ should be of the same cardinality

(M = N ) and each partial of the estimated set should be close to

one partial of L. By applying Algorithm 2, we iteratively seek for

correspondences between partials of the two sets until no partial

remains in one of the two sets. This search is done by decreas-

ing overall amplitude order of the estimated partials, the overall

amplitude of a partial Pk being defined as:

Ak =

bk+lk−1
X

i=bk

Ak(i) (18)

Algorithm 2 considered to seek for correspondences between par-

tials of two sets L and L̂.

cI ← 0
Lr ← L
L̂r ← L̂
while Lr 6= ∅ and L̂r 6= ∅ do

take Pj ∈ L̂r such that Aj = maxPk∈L̂r
Ak

find Pi ∈ Lr such that c(Pi, Pj) = minPk∈Lr
c(Pk, Pj)

cI ← cI + c(Pi, Pj)
Lr ← Lr − {Pi}
L̂r ← L̂r − {Pj}

end while

Once the algorithm has been processed, the imprecision cost

cI is obtained. If the remaining set L̂r 6= ∅, then some partials

have been over estimated. On the contrary, if the remaining set

Lr 6= ∅, then some partials have been under estimated. The over

and under estimation costs are then defined by:

cO =

#L̂r
X

j=1

Aj and cU =

#Lr
X

i=1

Ai (19)

We assume that these three costs can be summed and normal-

ized by the number of partials of the original set L to obtain an

overall cost that reflects the quality of the tracking:

C = (cO + cU + cI)/N (20)
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4.3. Test Cases

The cost C defined in Equation 20 can be used to assess the perfor-

mance of a given tracker. As described in the beginning of Section

4.2, a given set of partials L – considered as a reference – is con-

verted back to a set of peaks S. This set is possibly degraded to

simulate degradations that trackers have to face when tracking par-

tials within audio sounds.

4.3.1. Simulating Degradations

When considering a monophonic source embedded in noise or a

polyphonic sound with many sources, the S set extracted by the

first stage of the analysis / synthesis chain is usually degraded. In

case of noise addition, the number of peaks is over estimated. In

case of partials with close or crossing frequencies, some peaks are

missing. In both cases, the parameters of the peaks are also not

estimated precisely.

Therefore the three types of degradations proposed below – if

combined – will produce a degradation close to the one obtained

by the addition of a noise signal to the input signal s(t) before

processing a peak extractor.

We assume that these degradations may be considered inde-

pendently in three different test cases.

Adding Peaks. In this test case, some peaks are added to S be-

fore the tracking. The frequencies and the phases of these peaks

are randomly chosen. The amplitude of each peak is also chosen

randomly, and the addition of peaks is stopped when the sum of

their amplitudes has reached a given amount. The evaluation is

done by considering the overall cost C versus the ratio between

the summed amplitudes of the added peaks and the summed am-

plitudes of the peaks of S.

Removing Peaks. In this test case, we randomly remove a given

number of peaks from S. The evaluation is done by considering

the overall cost C versus the ratio between the number of removed

peaks and the number of peaks in S.

Degrading the Parameters of Partials. In this test case, the am-

plitude and frequency parameters of the peaks are modified by the

addition of randomly chosen values. For the frequency, this value

is chosen between −∆f and ∆f . The evaluation is then done by

considering the overall cost C versus the ∆f threshold.

4.3.2. Polyphonic Case

In this last test case, we simulate a polyphonic context by adding

several monophonic sound sources together within a unique set of

partials before converting it to the peak representation S.

However, this test is obviously over-simplified since the result-

ing representation is of far better quality than if the peak set was

obtained by analyzing a polyphonic sound with a peak extractor.

5. CONCLUSION

In this paper, we have introduced two original evaluation methods

that intend to ease the comparison of peak extractors and partial

trackers in a realistic framework, and independently to any spe-

cific application. Clearly defined protocols are also proposed to

evaluate most of the desired properties of peak extractors and par-

tial trackers with several test cases that simulate typical problems

while considering the sinusoidal model in audio processing appli-

cations. Each protocol allows to evaluate individually each stage

of the sinusoidal analysis / synthesis chain.

Although the capacities of extractors to detect the sinusoids

and to estimate the parameters of these sinusoids are generally

evaluated independently, they are in practice inextricably linked.

The proposed method for peak extractors uses a unique cost func-

tion that globally reflects the performance of the tested method.

The protocol for partial trackers considers a cost function that

evaluates how different the extracted set of partials is from the

original one. The definition of this cost function is a difficult prob-

lem, since the comparison of two sets of partials is not clearly

defined yet. The empirical cost function proposed in this paper

constitutes a first attempt to address this issue. However, a more

theoretically motivated comparison method should be considered

as a future research subject.

This paper is a first proposal to be used as a starting point in a

sinusoidal analysis / synthesis contest to be held at DAFx’07. Par-

ticipants will have the opportunity to submit extractors, trackers,

as well as evaluation methodologies and protocols. The resulting

survey will be automatically generated and published. This sur-

vey should be of great interest for people involved in sinusoidal

modeling.
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