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ABSTRACT A amplitude
®

In this paper we present an original technique designed-in or
der to speed up additive synthesis. This technique corigitak-
ing into account psychoacoustic phenomena (thresholdsasfitg
and masking) in order to ignore the inaudible partials dytime
synthesis process, thus saving a lot of computation time. abu
gorithm relies on a specific data structure called “skig hstd has
proven to be very efficient in practice. As a consequence,ree a
now able to synthesize an impressive number of spectrabsaan
real time, without overloading the processor. ’ . T ’

(fp,ap)

o>

1. INTRODUCTION time frequency

Spectral sound models provide general representatiorsoford

well-suited for intuitive and expressive musical transfations Figure 1:Partials of an harmonic sound.

[1, 2]. However, most of them are based on additive synthesis

and thus usually require the computation of a large numbsi-of

nusoidal oscillators, since they are dealing with sounddemd a of the p-th partial, respectively. Tha pairs(fp,ap) are the pa-

large number of partials or harmonics. rameters of the additive model and represent at tip@nts in the
We have shown in [3, 4] that a very efficient synthesis algo- frequency-amplitude plane, as shown in Figure 1. This ssre

rithm — based on a recursive description of the sine functioan tation is used in many analysis / synthesis programs sucivi& S

reproduce sound in real time from the additive parameteith, av [1] or InSpect3, 6].

nearly optimal number of operations per partial. In thigcéet we

propose to consider psychoacoustic phenomena such asngaski n

in order to reduce the number of partials to be synthesized. at) = Zlap(t) cosp(t) @
After a brief introduction to additive synthesis and psye&ho P= ¢

coustics in, respectively, Sections 2 and 3, we presentdtices o) = @p(0)+2m / fp(u) du )

the algorithm which allows us to reduce on the fly the number of 0

partials to be synthesized as well as some results obtaiitbadur
software implementation of this algorithm in Section 5.

2.2. Real-Time Synthesis
2. ADDITIVE SYNTHESIS

The real-time synthesis has been implemented irRa8$pecsoft-

Additive synthesis (see [5]) is the original spectrum modglech- ware tool [3, 6]. We are indeed able to synthesize hundrefisot i
nigue. It is rooted in Fourier's theorem, which states thmst jpe- thousands — of sinusoidal oscillators in real time. As thaber of
riodic function can be modeled as a sum of sinusoids at variou oscillators grows, the volume of many partials is very lowd &me
amplitudes and harmonic frequencies. average distance in frequency between two consecutiviasas

getting smaller. Psychoacoustic considerations (seevpalioow
that many partials are then inaudible, and could safely berig

at the synthesis stage in order to save processor time.

For pseudo-periodic sounds, these amplitudes and fregpsscan- An harmonic sound with & = 50 Hz fundamental frequency
tinuously evolve slowly with time, controlling a set of pskeu requires a maximal number of 440 partials (since 22 kHz is the
sinusoidal oscillators commonly callggrtials The audio signal highest audible frequency). We believe that a number oflatmis

a can be calculated from the additive parameters using Eapgti  not much larger than that is enough for nearly all possibiads,

1 and 2, wheren is the number of partials and the functiofys even polyphonic ones. The reason for this is that as the nuafbe
ap, andgyp are the instantaneous frequency, amplitude, and phaseoscillators grows, the smallest distance — in frequencytwéen

2.1. Sinusoidal Modeling
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two oscillators is going to get smaller. When this distarsceuf-
ficiently small, the masking phenomenon occurs (see 3). eSinc
the partials under the masking threshold cannot be heardawe
safely omit them at the synthesis stage.

3. PSYCHOACOUSTIC PHENOMENA

The fast fluctuations — from tens to thousands per secondheof t
air pressure at the level of the ears generate an auditosaten.
The word “sound” stands for both the physical vibration amel t
sensation this vibration produces. This section expldiesbasic
knowledge in psychoacoustics [7] required to fully undamsitthis
article. Further information can be found in [8, 9].

If, at timet, we can measure the instantaneous amplitude and
frequency of a sound, the corresponding perceptive pasmate
loudness and pitch, respectively. The Fechner law apmievt
ery sensory organ and claims that the sensation is propaftto
the logarithm of the excitation. As a consequence, humamgkei
perceive these parameters on logarithmic scales.

3.1. Perceptive Scales

The dB (decibel) scale is commonly used to represent thanalu
The relation between the volume in dB and the linear amp#itiad
given by Equation 3. If we consider that the maximal ampktud
(1.0inthe linear scale) should correspond to a volume of 120hdB i
order to match the standard dB SPL (Sound Pressure Levéd) sca
then we setAggg = 1078 corresponding to an acoustic pressure
of Pogg = 2-10~° Pa (Pascals). Anyway, amplitude and pressure
being proportional, it is just a matter of translation of tlwdume
origin (0 dB) in the logarithmic scale.

AOdB>

A very convenient scale for representing frequencies iBiud
scale (after Barkhausen), which is very close to our peicej®].
Equation 4 allows us to go from the Hertz scale to the Barkescal

R

3.2. Threshold of Hearing

a

V(a) = 20 logyg < ®3)

if
if

f <500
f > 500

f/100

B( 9+ 4 logy( /1000

f (4)
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Figure 2:Threshold of hearings,.
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Figure 3:Masking of a sinusoid of frequency, by another sinu-
soid of frequencyyf. The masking effect is maximal whepand

fm are close. As a first approximation we can consider that the
masking threshold is close to a triangle in the Bark-dB scale
though it is not exactly the case in practice, especiallytf@r top

of the triangle.

phenomenon is known as the frequency masking. Consider the
case ofM andm being two sinusoids of frequencidg and fp,

Human beings can hear frequencies in the range of 20 Hz to 22and amplitudesy, andan, respectively. Assume thaiy > an.

kHz approximatively, but the sensibility threshold in aiyale S5

is a function of frequency. Equation 5 provides us with a good
approximation for this threshold. Partials with volumetohethis
threshold will not be heard, and thus can safely be ignoredeat
synthesis stage.

3.64(f /looq—O.B _ 6.56_0'6(f/1000_3'3)2

Sa(f) = { +1073(f /10004

Q)

3.3. Frequency Masking

Physically, the addition of two signals of the same ampétisl
ruled by a nonlinear addition law and gives a maximum of +6 dB.
However, from a perceptive point of view, there is a modifarat

of the perception threshold for a sounmdmasked sound) when it
is played together with a louder souMi (masking sound). This

DAFX-

If fm is close tofy, the soundnis masked by the sound and
becomes inaudible. This phenomenon can be used to lower the
number of sinusoids to be computed during the additive €nth
sis process by filtering out the masked (inaudible) parti@krcia

and Pampin use in [10] this masking phenomenon to reduce the
number of sinusoids of a sound in the additive model. We mepo

to use a similar technique, but this time not for compresgion
poses, but for synthesis efficiency only. The masking phemam

is also used in the MPEG-II Layer 3 audio compression [11, 12]
We do not want to compress the spectral sounds, because @e nee
all the partials — even the inaudible ones — for musical faansa-
tions. But masked partials can be removed at the synthegjs,st
since they will not be heard. As a first approximation we cam-co
sider that the masking threshold is close to a triangle irBiuek-

dB scale. Garcia and Pampin [10] use a simple masking model
to evaluate the signal-to-mask ratio (SMR) of each parfidiis
model consists of:

2
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interpolation line

"""" uncertainty area

Figure 4: Linear interpolation applied to the discrete version of
the threshold of hearing.

e The differenceA between the level of the masker and the
masking threshold (-10 dB);

e The masking curve towards lower frequencies (left slope:
27 dB/Bark);

e The masking curve towards higher frequencies (right slope:
-15 dB/Bark).

Another interesting phenomenon is temporal masking. Theze
two kinds of temporal masking. The post-masking occurs when
the masking sound disappears. In fact, its effect pergistsrie
during some milliseconds. As a consequence, even if theimgsk
sound is not present the masking effect is still preserhoatih

it decreases with time. Perhaps more surprisingly, prekmgs
also exists. More precisely, the masking effect is activevaril-
liseconds before the masking sound really appears. Hoviiiger
phenomenon is less significant.

4. REAL-TIME SYNTHESISALGORITHM

Before the classic additive synthesis algorithm itselfther algo-
rithm can be added in order to reduce the number of partidie to
synthesized by filtering out inaudible partials.

This algorithm decides whether a partial can or cannot be de-
tected by a listener in a noiseless environment. More pebgifor
each partial we first compare its amplitugg to the threshold of
hearings, at the corresponding frequendy. If it turns out that
this partial could be heard, then we check if it is not maskgd b
some other stronger partial.

4.1. Threshold of Hearing

Since the expression of the threshold of hearing given iraEqn

5 is rather complicated to compute, we choose to deal witls-a di
crete version of this threshold. More precisely, we first gienthe
threshold of hearing, thus precomputing the valugdfor a large
number of discrete frequencies in the Bark scale in ordech@se

a sufficient precision. Then, for each partpif fy is between the
frequenciess andF 1 then:

o If ap <min(Sa(Fi),Sa(Fit1)), thenp will not be heard;

o If ap > max($a(F),Sa(Fi+1)), thenp could be heard;

o If Sa(Fi) < ap < Sa(Fi+1), then we have to decide by linear
interpolation.

Indeed, in the last cageis in an uncertainty area due to the sam-
pling of the threshold. To decide whether the partial coddiéard

or not, we approximats, between the sampling poirfisandF 1

by a line segment (see Figure 4) and we simply compgreith
the value of the segment at ordindtg

DAFX-
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Figure 5:Five partials and the associated mask M (bold polyline).
p1, P2, and p are masking partials and contribute to M. The fre-
guency areas of their contributions are represented byaregies.

ps is neither masking nor masked, anglip masked (by 5.

4.2. Frequency Masking Overview

After that, our algorithm decides whether a partial is mdste
not, while computing the global mask incrementally. First, the
partials are sorted by decreasing amplitudes. Then, for patial

If M(fp) +A < V(ap), thenp is amasking partial andM
must be updated with its contribution;

If M(fp) <V(ap) <M(fp)+A, thenpis neither masking
nor masked;

If V(ap) < M(fp), thenp s simply masked.

We use a list in order to store the contributions of the magkin
partials to the global madW. Since this list is ordered by increas-
ing frequencies, only the left and right neighbors are to &we-c
sidered when inserting the contribution of a new maskindiglar
The new partial cannot mask them, since its amplitude is fowe
than theirs (remember that the partials have been preyisosied
by decreasing amplitudes), but it can shorten the frequaney
where they contribute thl.

The contributions of the masking partials to the global mdsk
are stored in a double-linked list, sorted by increasingdeancies.
In order to decide if a new partigl is masking, neither masking
nor masked, or simply masked, we need to search the list éor th
two contributions surrounding its frequenéy. If it turns out that
p is a masking partial, then its contribution must be inseit¢a
the list at the right position — in order to maintain the ordéthe
list — and the contributions of its neighbors are to be uptiate

4.3. Usinga Skip List

As a consequence, we need a data structure ordered in figguen
with the notion of left and right neighbors, and where seiagh
and inserting is as fast as possible. Thus, we choose ailtece-I|
structure, the skip list, introduced by Pugh in [13] as aeraktive

to balanced trees. Both data structures show a logarithame c
plexity for searching.

Let us explain the mechanism of the skip list on the example
of Figure 6. To find out the node with a key value equal to 6 ia thi
skip list, we begin at the top of the head pointer array (lef&m
node). The node pointed ML (rightmost node), which contains
a key value greater than those of all the nodes in the listw®o,
have to go down in the array of pointers. The pointed node tas n

3
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[
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5

Figure 6: Example of a skip list. Bold rectangles indicate ad-
dresses that would be updated during the insertion of valire 7
the skip list.

the key value 2, which is lower than 6. We can safely skip tcenod
2 (without going through node 1) and start again the sameegsoc
on this new node. Doing so, we jump directly to node 6. Witk thi
mechanism, we can search very efficiently a list for a valughé
end of a search, if the current node does not contain theedesir
key value, then the searched value was simply not presehein t
list.

Concerning insertion, balanced trees algorithms explibdl-
ance the data structure during insertions — which is timeaon
ing — whereas skip lists algorithms balance it probabdadty, by
choosing the size of the array of pointers of the new node ran-
domly. Thus, insertion is a simple process, consisting pam
searching for the first node with a key value greater than ttee o
of the new node, followed by pointer updates. The cost oftpoin
updates is constant, that is why insertion and searchindatie
O(log(n)) in terms of complexity -n being the number of ele-
ments in the list — which is optimal.

4.4. Global Mask Generation Algorithm

We first allocate enough memory to be able to store at leasbifre
tributions of all the partials and initialize the head afid nodes.
Then, for each partiab which has an amplitude, greater than
the threshold of hearing (see 3.2), we try to insert its ¢buation
into the global masi.

We first searctM for the lowest node with a frequency greater
than fp — the right neighbor. During this search, we store all the
addresses of the nodes whose frequency is greateff ghakie ob-
tain the left neighbor with the backward link of the right giebor.
With these local information (left and right neighbors), aleeck
whether the contribution of the partiglhas to be inserted or not
(see 4.2).

In case of an insertion, we choose randomly the size of the
array of pointers of the new node — lower than the size of tlaelhe
array though. We copy in this array all the addresses prelyiou
stored. Finally, we update the pointers structures wittettdress
of the new element. At the end of our algorithm, we know which
partials has to be synthesized and we can send them to ouretffic
algorithm for additive synthesis.

45. Towardsan Adaptive Masking Algorithm

If the masking phenomenon is strong, the number of masked par
tials nm is high and the skip list remains very short. The global
mask computation is fast and efficient — since a lot of partill

DAFX-

not be synthesized in the end. On the contranyyifs low, the skip
list is bigger and the insertion of each new contributionl@sver.
A lot of time is lost in the generation of the global madkvhereas
only a few partials will not be synthesized in the end.

The challenge is then to be able to tune the duration of the
generation of the global mask, depending on the evoluticoofe
efficiency criterion without knowing the exact number of e
partials. For example, in the first case above (strong mggkinis
criterion will be high and low in the second case (weak magkin

Further research will include the capability to approxienat
as precisely as desired — the global mask and to determirete
tuning strategy.

5. RESULTS

The amplitude sort and frequency masking algorithms ingbft
ware architecture (see Figure 7) have both a complexitp(im-
log(n)), wheren is the number of partials.

Yet, the additive synthesis itself is on(n) in terms of com-
plexity, its duration being proportional to the number oftjzs.
Trying to speed up this algorithm by the mean of a more complex
one could have been an utopia.

5.1. Monophonic Sources

In the case of a single harmonic source showing poor masking
among partials, our algorithm may seem of little interestduse
it takes much time for basically removing a very few partidis
would have been faster to forget about our algorithm andjost-
pute the inaudible partials anyway. . .

Hopefully, the global mask is very slow time-varying akid
has not to be rebuilt at every synthesis step. Currentlyglbieal
mask is recomputed only every 16 synthesis steps, eachesynth
sis step occurring every 64 samples at 44100 Hz. This value is
based on psychoacoustic experiments. This allow our akgori
to be still valuable — or at least acceptable — when the mgskin
phenomenon is not strong enough. The error — depreciated par
tials state — is very low<1%). Further research will include error
reduction using a global mask interpolation in time.

5.2. Polyphonic Sounds

The masking phenomenon is stronger when synthesizingadever
sources simultaneously. In the example illustrated in &g}
50% of the partials are removed, with a very small computatio
time overhead. As a consequence, the synthesis time isedivid
by almost 2. Practical experiments confirm that our algorith
becomes even more valuable as the number of partials iseas
This is even more encouraging that the current implememtatf

our algorithm — used for these measurements — is still ay ear}
sion, far from being fully optimized.

6. CONCLUSION AND FUTURE WORK

We are actually implementing this masking algorithm on the t

of our ReSpecteal-time synthesis software tool. For 3 harmonic
sources played simultaneously — a voice, a saxophone, anitha g

— 50% of the partials were removed. As the number of sources
increases, the algorithm becomes more and more valuablet Mo
partials are removed, ariReSpectanages to synthesize complex
sounds in real time where it had failed before.
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n Ny Na — Nm
amplitude amplitudef | frequency additive o \
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thresholding sort masking synthesis )

Figure 7: Software architecture overview. Among the n original st only y are above the threshold of hearing. These partials are
sorted by decreasing amplitudes, then thgmasked partials are filtered out by taking advantage of tlfieieficy of the skip-list data
structure. Eventually, onlyat+- ny, partials are effectively sent to a classic algorithm for @l synthesis.

time

number of partials

Figure 8: Polyphonic sound synthesis. The durations of the com-
plete synthesis (solid line), synthesis with systematibajlmask
computation (dotted line), and synthesis with spaced dlotzsk
computation (dashed line) are displayed in the case of a-poly
phonic sound consisting of several harmonic sources (stngi
voice, saxophone, and guitar) played simultaneously.

Further research includes exact determination of other psy
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