Jean-Christophe Breton 
email: jcbreton@univ-lr.fr
  
Clment Dombry 
email: clement.dombry@math.univ-poitiers.fr
  
Rescaled weighted random balls models and stable self-similar random fields *

Keywords: self-similarity, generalized random fields, stable field, Poisson point process. AMS Subject classification. Primary: 60G60, Secondary: 60F05, 60G52

We consider weighted random balls in R d distributed according to a random Poisson measure with heavy tailed intensity and study the asymptotic behavior of the total weight of some configurations in R d while we perform a zooming operation. The resulting procedure is very rich and several regimes appear in the limit, depending on the intensity of the balls, the zooming factor, the tail parameters of the radii and the weights. Statistical properties of the limit fields are also evidenced, such as isotropy, self-similarity or dependence. One regime is of particular interest and yields α-stable stationary isotropic self-similar generalized random fields which recovers Takenaka fields, Telecom process or fractional Brownian motion.

Introduction

In this work, we consider the so-called weighted random balls model and investigate its convergence when suitably rescaled and normalized. We exhibit three different asymptotic regimes driving the macroscopic and microscopic variations of this model, namely (i) a stable, translation and rotation invariant, self-similar random of the Poisson intensity. In particular, when the random weights are heavy tailed, the limit generalized random fields are stable, translation and rotation invariant, and also self-similar. The paper is organized as follows. The model under study is described in Section 1. Our main results under different scaling regimes are stated and discussed in Section 2. Finally, Section 3 is devoted to the proof of technical lemmas and of the main results.

Model of weighted random balls

We consider random balls B(x, r) = {y ∈ R d : yx < r} with weight m, the triplet (x, r, m) being distributed according to a Poisson random measure N λ (dx, dr, dm) on R d × R + × R with intensity n(dx, dr, dm) = λdxF (dr)G(dm) where λ is positive, F is a positive measure on R + and G a probability measure on R. Here, and in what follows, • stands for the usual Euclidean norm on R d .

The point process of the centers of the balls in R d is the projection of the point process in R d ×R + ×R corresponding to the Poisson random measure N λ (dx, dr, dm). It is easily seen that it is a Poisson point process with intensity λdx, and hence the parameter λ is interpreted as the intensity of the balls in R d .

We suppose that the measure F driving the distribution of the radius r is absolutely continuous F (dr) = f (r)dr with R + r d F (dr) < +∞ [START_REF] Bierm | Poisson random balls: self similarity and X-ray images[END_REF] and such that for either ǫ = +1 or ǫ = -1,

f (r) ∼ r→0 ǫ C β r -1-β (2) 
where by convention 0 +1 = 0 and 0 -1 = +∞. As will be explained later, the case ǫ = +1 will be referred as the zoom-in case, whereas the case ǫ = -1 will be referred as the zoom-out case. Condition (2) assumes a power behavior of the radius density at the origin (zoom-in case ǫ = +1) or at infinity (zoom-out case ǫ = -1).

Condition ( 1) is equivalent to the finiteness of the volume of the random balls. Note that assumptions (1) and ( 2) together imply that for ǫ = +1, we must have β < d, while for ǫ = -1, we must have β > d.

We suppose that the probability measure G belongs to the normal domain of attraction of the α-stable distribution S α (σ, b, τ ) with α ∈ (1, 2], i.e. if X 1 , . . . , X n are independent and identically distributed (i.i.d.) according to G, n -1/α (X 1 + • • •+ X n ) ⇒ S α (σ, b, τ ). We recall the following estimate (see [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]) of the characteristic function ϕ G of G as θ → 0

ϕ G (θ) = 1 + iθτ -σ α |θ| α (1 + ibε(θ) tan(πα/2) + o(|θ| α ), (3) 
where here, and in what follows, ε(a) = +1 if a > 0, ε(a) = -1 if a < 0 and ε(0) = 0. In case α ∈ (1, 2), typical choices for G are heavy tailed distributions while for α = 2, G is any distribution with finite variance. In this latter case, we recover a weighted version of the main results in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] (set G = δ 1 to recover exactely the setting described in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF]).

Let M denote the set of signed measures on R d with finite total variation |µ|(R d ), where |µ| is the total variation of a measure µ. We recall that equipped with the norm of total variation µ M = |µ|(R d ), M is a Banach space. We consider the random field

M (µ) = R d ×R + ×R mµ(B(x, r))N λ (dx, dr, dm) (4) 
indexed by signed measures µ ∈ M. When µ = δ y , y ∈ R d , M (δ y ) is the weight density at point y as described in the introduction: it is the sum of the algebraic weights of the balls containing the point y.

Note that the stochastic integral in ( 4) is well defined and has finite expected value since

R d ×R + ×R |mµ(B(x, r))|n(dx, dr, dm) ≤ R |m|G(dm) × λ|B(0, 1)||µ|(R d ) R + r d F (dr) < +∞.
where |A| stands for the Lebesgue measure of a Borel set A. Furthermore, the expected value is given by

E[M (µ)] = λ|B(0, 1)| R mG(dm) R + r d F (dr) µ(R d ).
We are interested in the variations of M (µ) at a microscopic or macroscopic level. To do so, we swell, resp. shrink, the volume of the balls replacing the radius r of a ball by ρr and taking the limit ρ → +∞, resp. ρ → 0. In this procedure, the law of the radius is replaced by F ρ (dr) = f (r/ρ)dr/ρ, the image measure of F (dr) by the change of scale r → ρr. In order to derive non-trivial asymptotics, the intensity λ of the balls is changed accordingly and we shall write λ(ρ) to underline that from now on the intensity depends on the scaling parameter ρ. In what follows, we are thus interested in the following random field:

M ρ (µ) = R d ×R + ×R mµ(B(x, r))N λ(ρ),ρ (dx, dr, dm)
where N λ(ρ),ρ (dx, dr, dm) is the Poisson measure with intensity λ(ρ)dxF ρ (dr)G(dm). The limit ρ → 0 is interpreted as zoom-out in the random configurations of balls and this is relevant when the behavior of f is known at +∞, i.e. ǫ = -1 in (2). In this case, we investigate the macroscopic variations of M . On the contrary, ρ → +∞ is interpreted as zoom-in in space and this is relevant when the behavior of f is known at 0, i.e. ǫ = +1 in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] and this is the microscopic variations that are investigated. Remark 1.1 As observed before, the choice G = δ 1 recovers the setting of [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] for non-weighted random balls, see (4) therein. If d = 1, a verbatim replacement of B(x, r) = (xr, x + r) by (x, x + r) and the choice µ = | • ∩(0, t)| recover the field studied in [START_REF] Kaj | Convergence to fractional Brownian motion and to the telecom process: the integral representation approch[END_REF] in the "continuous flow reward model", see (18) therein.

Results

We exhibit normalization terms n(ρ) such that the normalized centered random field n(ρ It is natural to investigate first the behavior of the random field giving the density of the weights at each point which in our notations rewrites (M ρ (δ y )) y∈R d . The heuristic is the following. The average numbers of balls containing the point y is given by

) -1 M ρ (•) -E[M ρ (•)] converges in finite-dimensional distribution (f.
E R d ×R + ×R 1 {y∈B(x,r)} N λ(ρ),ρ (dx, dr, dm) = V λ(ρ)ρ d ,
where V = c d r d F (dr) is the expected volume of a random ball and c d stands for the volume of the Euclidean unit ball in R d . Since the weights belong to the domain of attraction of an α-stable distribution, it is natural to introduce the scaling n 0 (ρ) = λ(ρ) 1/α ρ d/α . Convergence of the normalized and centered random variable M ρ (δ y ) to an α-stable distribution is obtained if we suppose that λ(ρ)ρ d → +∞ when ρ → 0 -ε . Heuristically, the dependence between M ρ (δ y 1 ) and M ρ (δ y 2 ) is given by the weights of the balls containing both points y 1 and y 2 . In the zoom-in case (ε = -1, ρ → +∞), the balls are very large yielding total dependence at the limit and we have:

n 0 (ρ) -1 (X ρ (δ y ) -E[X ρ (δ y )]) f.d.d. --→ W α , y ∈ R d (5) 
where W α (y) ≡ W α is a constant random field distributed according to S α (σV 1/α , b, 0). In the zoom-out case (ε = -1, ρ → 0), the balls are very small yielding independence at the limit and we have:

n 0 (ρ) -1 (M ρ (δ y ) -E[M ρ (δ y )]) f.d.d. --→ W α (δ y ), y ∈ R d , (6) 
where W α (δ y ), y ∈ R d , are i.i.d. S α (σV 1/α , b, 0) distributed. Similar results as in [START_REF] Kaj | Limiting fractal random processes in heavy tailed systems[END_REF] and in (6) hold true for f.d.d. convergence on the space of measures with finite support. Since these results are not surprising, their proofs are omitted and in what follows we investigate convergence for more general measures.

Preliminaries on measured spaces

We introduce a subspace M α,β ⊂ M on which we will show the convergence of the rescaled generalized random field M ρ (µ).

Definition 2.1 For 1 < α ≤ 2 and β > 0, let M α,β be the subset of measures µ ∈ M satisfying for some finite constant C and some 0 < p < β < q: γ(r) :=

R d |µ(B(x, r))| α dx ≤ C(r p ∧ r q ) (7)
where for reals a, b: a ∧ b = min(a, b).

Here, and in what follows, C is a finite constant that may change at each occurrence. Some elementary properties of the spaces M α,β are given in the following proposition.

Proposition 2.2 i) M α,β is a linear subspace of M on which ∀µ ∈ M α,β , R d ×R + |µ(B(x, r))| α r -β-1 dxdr < +∞.
ii) M α,β is closed under translations, rotations and dilatations, i.e. when µ ∈ M α,β , τ s µ, Θµ and µ a are also in M α,β where for any Borelian set A and for

s ∈ R d , Θ ∈ O(R d ), a ∈ R + τ s µ(A) = µ(A -s), Θµ(A) = µ(Θ -1 A), µ a (A) = µ(a -1 A). iii) When α ≤ α ′ , we have M α,β ⊂ M α ′ ,β .
iv) When β ≥ d, the space M α,β is included in the subspace of diffuse measures (i.e. such that µ({x}) = 0 for any x ∈ R d ).

v) When β ≤ d, the space M α,β is included in the subspace of centered measures (i.e. such that µ(R d ) = 0).

Observe that Dirac measures δ y , y ∈ R d , are not in M α,β . However, explicit examples of measure in M α,β are given in the following proposition. Absolutely continuous measures (with respect to the Lebesgue measure) µ(dx) = φ(x)dx with integrable density φ ∈ L 1 (R d ) ∩ L α (R d ) will play an important role. In this case, we shall (abusively

) note µ ∈ L 1 (R d ) ∩ L α (R d ). Proposition 2.3 i) If d < β < αd, any measure µ ∈ L 1 (R d ) ∩ L α (R d ) belongs to M α,β . ii) If d -1 < β < d, any centered measure µ(dx) = φ(x)dx ∈ L 1 (R d ) such that R d ||y|||φ(y)|dy < +∞ belongs to M α,β
, as well as any centered measure with finite support.

Note that in particular, when d < β < αd (resp. d -1 < β < d), M α,β contains the space S of measures with density in the Schwartz class (resp. S 0 the space of centered measures with density in the Schwartz class). Note also that when α = 2, the conditions supposed in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] on the measure µ (expressed in terms of Riesz energy) imply that µ ∈ M 2,β . By analogy with the case α = 2, we suspect the space M α,β to be reduced to {0} whenever β ≤ d -1 or β ≥ αd, but we have no formal proof of these facts. However, we refer to Theorem 2.19 for a positive result when β > αd.

Limit theorems for the rescaled weighted random balls model

We now come to the main results of this paper, viz. limit theorems for the rescaled generalized random fields M ρ and for configurations µ ∈ M α,β on the balls. As in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] and [START_REF] Kaj | Convergence to fractional Brownian motion and to the telecom process: the integral representation approch[END_REF] (for ǫ = -1), several regimes appear according to the density of large/small balls in the limit. More precisely, using (2):

Zoom-out case (ǫ = -1, i.e. β > d and ρ → 0). The mean number of balls with radius larger than one that cover the origin is given by

R d ×R+ 1 x <r 1 r>1 λ(ρ)dxF ρ (dr) = c d λ(ρ) +∞ 1 r d F ρ (dr) ∼ ρ→0 c d C β β -d λ(ρ)ρ β .
Consequently, we distinguish the following three scaling regimes:

• large-balls scaling: λ(ρ)ρ β → +∞,

• intermediate scaling: λ(ρ)ρ β → a ∈ (0, +∞),
• small-balls scaling: λ(ρ)ρ β → 0.

Zoom-in case (ǫ = +1, i.e. β < d and ρ → +∞). The mean number of balls with radius less than one that cover the origin is given by

R d ×R+ 1 x <r 1 r<1 λ(ρ)dxF ρ (dr) = c d λ(ρ) 1 0 r d F ρ (dr) ∼ ρ→+∞ c d C β d -β λ(ρ)ρ β .
In this case, the three scaling regimes are:

• small-balls scaling: λ(ρ)ρ β → +∞,

• intermediate scaling: λ(ρ)ρ β → a ∈ (0, +∞),

• large-balls scaling:

λ(ρ)ρ β → 0.
In what follows, we study precisely the limiting shape of the random balls by investigating the fluctuations of M (µ) around its mean. Three different limit fields are exhibited according to the scaling performed.

Stable regime with dependence

In this section, we investigate the behavior of M under the scaling ρ β λ(ρ) → +∞. In this case the limiting field is given by an α-stable integral. We recall that the stable stochastic integral of f with respect to an α-stable random measure with control measure m is well defined whenever f ∈ L α (dm) and in this case, this stochastic integral follows an α-stable distribution. We refer to [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for a complete account on stable measures and integrals. The asymptotic of the rescaled generalized fields M ρ is given by the following result:

Theorem 2.4 Suppose ρ β λ(ρ) → +∞ when ρ → 0 -ǫ . Let n 1 (ρ) = λ(ρ) 1/α ρ β/α . We have M ρ (•) -E[M ρ (•)] n 1 (ρ) M α,β --→ Z α (•) ρ → 0 -ǫ (8)
where

Z α (µ) = R d ×R + µ(B(x, r))M α (dr, dx
) is a stable integral with respect to the α-stable measure M α with control measure σ α C β r -1-β drdx and constant skewness function b given in the domain of attraction of G.

Note that Z α (µ) makes sense as soon as

R×R + |µ(B(x, r))| α r -1-β drdx < +∞ (see Prop. 2.2-i))
. However, we need the stronger assumption µ ∈ M α,β in order to derive [START_REF] Kallenberg | Foundations of modern probability[END_REF]. Roughly speaking, the control (7) of µ ∈ M α,β allows to replace F by its tails behavior given in (2) in asymptotic estimate. Due to the invariance by translation and rotation of the Lebesgue measure, the self-similarity of stable integral and the (global) invariance by rotation of the balls and because of Proposition 2.2-ii), we derive the following properties for the limit field Z α of Theorem 2.4:

Proposition 2.5 i) The field Z α is stationary on M α,β , that is: ∀µ ∈ M α,β , ∀s ∈ R d , Z α (τ s µ) f dd = Z α (µ).
ii) The field Z α is isotropic on M α,β , that is:

∀µ ∈ M α,β , ∀Θ ∈ O(R d ), Z α (Θµ) f dd = Z α (µ).
iii) The field Z α is self-similar on M α,β with index (dβ)/α, that is:

∀µ ∈ M α,β , ∀a > 0, Z α (µ a ) f dd = a (d-β)/α Z α (µ).
Remark 2.6 The covariation gives an insight into the structure of the spatial dependence of the stable generalized field. It is a generalization of the usual notion of covariance to the stable framework. Here, for µ 1 , µ 2 ∈ M α,β , the covariation of

Z α (µ 1 ) on Z α (µ 2 ) is given by [Z α (µ 1 ), Z α (µ 2 )] α = σ α C β R d ×R + µ 1 (B(x, r))ǫ(µ 2 (B(x, r)))|µ 2 (B(x, r))| α-1 r -β-1 drdx.
Note that the integral above is well defined by Hlder's inequality since µ 1 and µ 2 belong to M α,β . We refer to [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for a definition and properties of the covariation. Note that unlike the Gaussian case, the covariation structure is not sufficient to characterize the distribution of the generalized random field. However, since even if µ 1 and µ 2 have disjoint supports, [Z α (µ 1 ), Z α (µ 2 )] α = 0, Z α (µ 1 ) and Z α (µ 2 ) are not independent and the random field Z α is stable with dependence.

Remark 2.7 Note that when d -1 < β < d, µ z = δ zδ 0 for z ∈ R d belongs to M α,β . For such a measure, when moreover b = 0 (i.e. when G in our model is symmetric), our limiting field rewrites

Z α (µ z ) = R d ×R + 1 B(z,r)∆B(0,r) M α (dx, dr)
where A∆B = (A \ B) ∪ (B \ A). In this case, we recover the so-called (α, H)- 

Takenaka field with H = (d -β)/α.
α = 2, Z 2 (µ t ) is a fractional Brownian motion of Hurst index H = (3 -β)/2 ∈ (1/2, 1) (note that, for a > 0, µ at (A) = aµ t (a -1 A)).
Remark 2.9 When α = 2, Theorem 2.4 exhibits a Gaussian limit field and generalizes Theorem 2.1 in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] with random weights. Indeed, in this case, we have (up to some multiplicative constant) Z 2 = W β . Remark 2.10 A natural complementary result to be investigated is the tightness of M ρ after normalization and centering which would allow to turn f.d.d. convergences into weak functional convergences. In dimension d = 1, only partial tightness results are available for the processes studied in [START_REF] Kaj | Convergence to fractional Brownian motion and to the telecom process: the integral representation approch[END_REF], [START_REF] Mikosch | Is network traffic approximated by stable Lvy motion of fractional Brownian motion[END_REF] (see Section 4 on "continuous flow reward model" in [START_REF] Kaj | Convergence to fractional Brownian motion and to the telecom process: the integral representation approch[END_REF] and the remarks of Th. 1, Th. 2 and Th. 3 in [START_REF] Mikosch | Is network traffic approximated by stable Lvy motion of fractional Brownian motion[END_REF]). In the case of generalized random fields, tightness issue is more difficult to tackle due to the lack of tractable tightness criterion.

Poissonian regime

In this section, we investigate the behavior of M under the scaling ρ β λ(ρ) → a ∈ (0, ∞). In this case, the limiting field is given by a compensated Poisson integral and we refer to [START_REF] Kallenberg | Foundations of modern probability[END_REF] for a general description of Poisson integral. We have: Theorem 2.11 Suppose λ(ρ)ρ β → a d-β when ρ → 0 -ǫ for some a > 0. We have

M ρ (µ) -E[M ρ (µ)] M α,β --→ J(µ a ), ρ → 0 -ǫ
where µ a is the dilatation of µ and J is the compensated Poisson integral

J(µ) = R d ×R×R + mµ(B(x, r)) N β (dx, dr, dm) (9) 
with respect to the compensated Poisson random measure N β with intensity given by C β r -β-1 dxdrG(dm).

Note that the Poisson integral in (9) above is well defined since

R d ×R×R + |mµ(B(x, r))| ∧ (mµ(B(x, r))) 2 r -β-1 dxdrG(dm) < +∞ (10) 
see Section 3.4. As the stable field Z α , the Poisson field J enjoys similar properties. However, note that in contrast to Z α , J is not self-similar but (and similarly to [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF], see also [START_REF] Kaj | Limiting fractal random processes in heavy tailed systems[END_REF]) J satisfies an aggregate similarity property.

Proposition 2.12 The field J is stationary and isotropic on M α,β . Moreover, J is aggregate similar, viz. ∀µ ∈ M α,β , ∀m ≥ 1,

J(µ am ) f dd = m i=1 J i (µ) ( 11 
)
where J i , 1 ≤ i ≤ m, are independent copies of J and a m = m 1/(d-β) .

The proof of this proposition follows from straightforward computation and will be omitted. A comparison of the limiting procedures in Theorem 2.4 where λ(ρ)ρ β → +∞ and in Theorem 2.11 where λ(ρ)ρ β → a d-β suggests that when a d-β → +∞, we can recover Z α from J. This is true and precisely stated in the following proposition: Remark 2.15 When α = 2, Theorem 2.11 generalizes Theorem 2.5 in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] with random weights. The field J recovers J β in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] when the random weights in our model are constant. Otherwise the law of J depends on the law G of the weight.

Proposition 2.13 When a d-β → +∞, we have 1 a (d-β)/α J(µ a ) M α,β --→ Z α (µ).

Stable regime with independence for small radius

In this section, we investigate the behavior of M under the scaling ρ β λ(ρ) → 0, but we restrict to the case d < β < αd, i.e. ǫ = -1 and ρ → 0, see Section 2.2.4 for β > αd. The case m ≡ 1 is considered in Theorem 2 iii) of [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] and we extend here the results and proofs to the case when the weights are random and belong to the normal domain of attraction of a stable distribution. In comparison to the case β < d, the tails of the law of the radius are lighter and thus the radius considered are small. We show that the asymptotic behavior is given again by a stable field but with index γ = β/d and defined on R d . Moreover in contrast to the stable field Z α of Section 2.2.1, this new field exhibits independence. 

M ρ (•) -E[M ρ (•)] n 2 (ρ) L 1 (R d )∩L α (R d ) -----------→ Z γ (•)
where, for µ(dx) = φ(x)dx, Z γ (µ) = R d φ(x) M γ (dx) is a stable integral with respect to the γ-stable measure M γ with control measure σ γ γ dx for

σ γ γ = c γ d C β d R + 1 -cos(r) r 1+γ dr R |m| γ G(dm)
and with constant skewness function equals to

b γ = -R ε(m)|m| γ G(dm) R |m| γ G(dm) . ( 12 
)
Note that the integrals above are well defined when d < β < αd (see Lemma 3.1 below). The limiting field Z γ enjoys similar properties as Z α and J:

Proposition 2.17 The field Z γ is stationary, isotropic and self-similar with index (dβ)/γ.

Remark 2.18

As in Remarks 2.8 and 2.14, when d = 1 and φ t = 1 (0,t) , the field Z γ (φ t ) coincides with the process obtained in the slow connection rate for the "continuous flow reward model" in [4, Th. 3], see also Remark 1.1 above. In this particular case, Z γ (φ t ) is a γ-stable Lvy process.

Stable regime with independence for very small radius

When the tails of the radii are lighter than that in Section 2.2.3, i.e. β > αd, the same stable regime with independence as in Section 2.2.3 appears but under a different normalization n 3 (ρ) := λ(ρ) 1/α ρ d and a different stability index α. As previously, since β > αd, we have ǫ = -1 and the limits are taken when ρ → 0, i.e. the limiting scheme is a zooming-out procedure.

Theorem 2.19 Let β > αd and suppose that λ(ρ)

→ +∞ as ρ → 0. Let n 3 (ρ) := λ(ρ) 1/α ρ d , then M ρ (•) -E[M ρ (•)] n 3 (ρ) L 1 (R d )∩L α (R d ) -----------→ Z α (•)
where, for µ(dx Actually, only the asymptotics of the law with the heavier tails contribute to the limit while the law with the lighter tails appears only (but globally) as a mere parameter in the limit. In particular, observe that Theorem 2.19 applies for any distribution F such that R + r αd F (dr) < +∞. 

) = φ(x)dx, Z α (µ) = R d φ(x) M α (

Proof of the results

In what follows, note that the linearity of the random functionals M ρ and of the stochastic integrals in W α , W α , Z α , J and Z γ , together with the Cramér-Wold device imply that the convergence of the finite-dimensional distributions of the centered and renormalized version of M ρ is equivalent to the convergence of the one-dimensional distributions. To do so, we will explicitly compute the limits of the characteristic functions, denoting ϕ X for the characteristic function of a random variable X. Observe that the characteristic function of n(ρ

) -1 (M ρ (µ) -E[M ρ (µ)]) rewrites: ϕ n(ρ) -1 (Mρ(µ)-E[Mρ(µ)]) (θ) = exp R d ×R + ×R Ψ n(ρ) -1 θmµ(B(x, r)) λ(ρ)dxF ρ (dr)G(dm)
where Ψ(u) = e iu -1iu, see [START_REF] Kallenberg | Foundations of modern probability[END_REF]. Integrating first with respect to the probability G(dm), we have

ϕ n(ρ) -1 (Mρ(µ)-E[Mρ(µ)]) (θ) = exp R d ×R + λ(ρ)Ψ G n(ρ) -1 θµ(B(x, r)) dxF ρ (dr) ( 13 
)
where Ψ G (u) = R Ψ(mu)G(dm). We also recall that the characteristic function of the stable distribution S α (σ, b, τ ) is given by exp(-σ α |x| α (1ibε(θ) tan(πα/2)) + iτ θ).

Preliminary lemmas

In this section, we collect some useful lemmas that will be needed in the proof of our limit theorems 2.4, 2.11 and 2.16. We recall the following estimate for the characteristic function of distribution in the domain of attraction of a stable law: Lemma 3.1 Suppose X is in the domain of attraction of an α-stable law S α (σ, b, 0) for some α > 1. Then

ϕ X (θ) -1 -iθE[X] ∼ 0 -σ α |θ| α (1 -iε(θ) tan(πα/2)b).
Furthermore, there is some C > 0 such that for any θ ∈ R,

ϕ X (θ) -1 -iθE[X] ≤ C|θ| α .
The following lemma is a reformulation from lemma 2.4 in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF]. It shows that in the scaling limit ρ → 0 -ǫ , the behavior of F ρ is given by the power tail of F . This is crucial in several estimates. Lemma 3.2 Let F be as in [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] and ǫ = ±1. Assume that g is a continuous function on R + such that for some 0 < p < β < q, there exists some C > 0 such that

|g(r)| ≤ C(r p ∧ r q ). ( 14 
)
Assume furthermore that (g ρ ) ρ>0 is a family of continuous functions such that

lim ρ→0 -ǫ |g(r) -g ρ (r)| = 0 and |g(r) -g ρ (r)| ≤ C(r p ∧ r q ). ( 15 
) Then R + g ρ (r)F ρ (dr) ∼ C β ρ β R + g(r)r -1-β dr when ρ → 0 -ǫ .
In the proof of Theorem 2.4 and of Theorem 2.11 below, this lemma will be used in the particular case where g ρ = g and g satisfies condition (14). Roughly speaking, the proof of Lemma 3.2 consists in taking the limit in the integral. This is authorized by the dominated convergence theorem under ( 14) and (15). We refer to [START_REF] Bierm | Self-similar random fields and rescaled random balls models[END_REF] for more details.

Proofs of Propositions 2.2 and 2.3

Proof of Proposition 2.2. Proof of i). If [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] holds true for µ 1 with p 1 < β < q 1 and for µ 2 with p 2 < β < q 2 , then (7) holds true for µ 1 and µ 2 with p = p 1 ∨ p 2 < β and q = q 1 ∧ q 2 > β (possibly with a different constant C). For all a 1 , a 2 ∈ R:

R d |(a 1 µ 1 + a 2 µ 2 )(B(x, r))| α dx = (a 1 µ 1 + a 2 µ 2 )(B(x, r)) α α ≤ |a 1 | µ 1 (B(x, r)) α + |a 2 | µ 2 (B(x, r)) α α ≤ (|a 1 | α C(r p ∧ r q )) 1/α + (|a 2 | α C(r p ∧ r q )) 1/α α = C(|a 1 | + |a 2 |) α (r p ∧ r q ).
This is [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] for

a 1 µ 1 + a 2 µ 2 .
Proof of ii). Since (τ s µ)(B(x, r)) = µ(B(x-s, r)), (θµ)(B(x, r)) = µ(B(Θ -1 x, r)), µ a (B(x, r)) = µ(B(a -1 x, a -1 r)), the closeness of M α,β by translations τ s , by rotations Θ and by dilatations x → ax follow straightforwardly from the invariance of the Lebesgue measure by translations, by rotation, and by an immediate change of variable in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF].

Proof of iii). Since |µ|(R d ) < +∞, for µ ∈ M α,β and α ≤ α ′ , we have

R d |µ(B(x, r))| α ′ dx = R d |µ(B(x, r))| α ′ -α |µ(B(x, r))| α dx ≤ |µ|(R d ) α ′ -α R d |µ(B(x, r))| α dx ≤ C(r p ∧ r q ) which proves µ ∈ M α ′ ,β .
Proof of iv). We prove that µ ∈ M α,β is diffuse when β > d. Indeed, suppose that µ has an atom a, then for small enough r, γ(r) ≥ |µ(a)/2| α c d r d , where we recall that γ(r) is defined in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. To see this, let ε > 0 be such that |µ|(B(a, ε . This is in contradiction with [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] which rewrites γ(r) ≤ Cr q for q > β > d when r is small.

Proof of v). We prove that µ ∈ M α,β is centered when β ≤ d. We will show that

γ(r) ≥ |µ(R d )/3| α c d r d (16) 
when r is large enough. This is sufficient to prove v) since [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] Proof of Proposition 2.3. Proof of i). First, when d < β < αd and µ(dx

) = φ(x)dx ∈ L 1 (R d ) ∩ L α (R d ), we have: R d |µ(B(x, r))| α dx = R d R d 1 { x-y <r} φ(y)dy α dx ≤ R d R d 1 { x-y <r} |φ(y)| α dy R d 1 { x-y <r} dy α-1 dx = (c d r d ) α-1 R d R d 1 { x-y <r} |φ(y)| α dydx = (c d r d ) α-1 R d R d 1 { x-y <r} dx |φ(y)| α dy = (c d r d ) α R d |φ(y)| α dy
where we applied Hlder's inequality with α > 1. Next, in the same way,

R d |µ(B(x, r))| α dx = R d R d 1 { x-y <r} φ(y)dy α dx ≤ R d R d 1 { x-y <r} |φ(y)|dy R d |φ(y)|dy α-1 dx = c d r d R d |φ(y)|dy α . (17) 
As a consequence, condition [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] holds with p = d < β < q = αd, and µ ∈ M α,β .

Proof of ii). Suppose d -1 < β < d and µ(dx) = φ(x)dx ∈ L 1 (R d ) is centered.
Using µ(R d ) = 0, we have:

R d |µ(B(x, r))| α dx (18) = R d R d (1 { x-y <r} -1 { x <r} )φ(y)dy α dx ≤ R d R d |1 { x-y <r} -1 { x <r} | α |φ(y)|dy R d |φ(y)|dy α-1 dx.
Let θ(z) = |B(0, 1)∆B(z, 1)| denotes the volume of the symmetric difference of the balls with unit radius centered at 0 and at z ∈ R d . We have,

x∈R d |1 { x-y <r} -1 { x <r} |dx = r d θ y r .
The function θ is continuous, upper bounded by c d and θ(z) = O( z ) as z → 0. As a consequence, the global estimate |θ(z)| ≤ C z holds true for some C > 0. This entails

R d |µ(B(x, r))| α dx = R d |φ(y)|dy α-1 R d r d θ y r φ(y)|dy (19) ≤ R d |φ(y)|dy α-1 R d C y |φ(y)|dy r d-1 ≤ Cr d-1 .
As a consequence, condition (7) holds true with p = d -1 < β < q = d because (17) still holds true, and finally µ ∈ M α,β . Alternatively, if µ has a finite support {a 1 , . . . , a p }, let δ > 0 such that for

1 ≤ i ≤ p, B(a i , δ) ∩ Supp (µ) = {a i }. For r < δ/2, γ(r) = R d |µ(B(x, r))| α dx = p i=1 B(a i ,r) |µ(B(x, r))| α dx = p i=1 B(a i ,r) |µ(a i )| α dx = c d p i=1 |µ(a i )| α r d = O(r d ). (20) 
Next, let M be such that µ(B(0, M ) c ) = 0 and note that µ(B(x, r)) = 0 when B(x, r) ∩ B(0, M ) = ∅ or when B(0, M ) ⊂ B(x, r) since µ(R d ) = 0. We derive µ(B(x, r)) = 0 when x ≤ r -M or when x ≥ M + r. Since µ is a finite measure, we have

γ(r) = r-M ≤ x ≤r+M |µ(B(x, r))| α dx ≤ c d (r + M ) d -(r -M ) d (|µ|(R d )) α = O(r d-1 ), r → +∞.
Together with (20), this yields condition [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] with p = d -1 < β and q = d > β.

Remark 3.3 (On the bound for large radii) Note that in order to derive the bound γ(r) ≤ r p for p < β when r is large, the existence of a density for µ is not required. We can instead suppose that µ satisfy some tail condition: for some η > d/α |µ|(B(0, R) c ) = O(R -η ) as R → +∞.

Proof of Theorem 2.4

The characteristic function of the stable integral Z α (µ) is given by

ϕ Zα(µ) (θ) (21) = exp -C β σ α R d ×R + |θµ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b)r -1-β drdx .
Since the characteristic function of the Poisson integral n 1 (ρ

) -1 (M ρ (µ) -E[M ρ (µ)]
) is given by (13), comparing (21) and ( 13), it is sufficient to show that lim

ρ→0 -ǫ R d ×R + λ(ρ)Ψ G n 1 (ρ) -1 θµ(B(x, r)) dxF ρ (dr) (22) = -C β σ α R d ×R + |θµ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b)r -1-β drdx.
Since n 1 (ρ) = (λ(ρ)ρ β ) 1/α → +∞, Lemma 3.1 applies and yields

λ(ρ)Ψ G n 1 (ρ) -1 θµ(B(x, r)) ∼ -σ α ρ -β |θ| α |µ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b). Since | θ n 1 (ρ) µ(B(x, r))| ≤ θ n 1 (ρ) |µ|(R d )
, this equivalence relation is uniform both in x and r and can be integrated. This yields

R d ×R + λ(ρ)Ψ G n 1 (ρ) -1 θµ(B(x, r)) dxF ρ (dr) (23) ∼ -σ α ρ -β |θ| α R d ×R + |µ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b)dxF ρ (dr).
Finally, Lemma 3.2 applies with

g(r) = R d |µ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b)dx,
note that [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] implies that g satisfies condition (14). Consequently,

R d ×R + |µ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b)dxF ρ (dr) ∼ C β ρ β R d ×R + |µ(B(x, r))| α (1 -iε(θµ(B(x, r))) tan(πα/2)b)r -β-1 dxdr.( 24 
)
Finally, ( 23) and (24) together imply (22), and as explained at the beginning of Section 3, Theorem 2.4.

Proof of Condition (10)

We prove that Condition [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] for the existence of J is satisfied. Note that this condition splits into:

|mµ(B(x,r))|≤1
(mµ(B(x, r))) 2 r -β-1 dxdrG(dm) < +∞ (25)

and

|mµ(B(x,r))|≥1 |mµ(B(x, r))|r -β-1 dxdrG(dm) < +∞. ( 26 
)
We shall use the following Lemma for the truncated moments of a distribution in the normal domain attraction of a stable law:

Lemma 3.4 Let G be in the normal domain attraction of an α-stable law for α > 1.

There are C 1 , C 2 ∈ (0, +∞) such that for all x ≥ 0:

|m|≥x |m|G(dm) ≤ C 1 x 1-α and x -x m 2 G(dm) ≤ C 2 x 2-α .
Proof of Lemma 3.4. From [3, XVII.5], we have

x -x m 2 G(dm) ∼ Cx 2-α when x → +∞ (note that since G is in the normal domain of attraction, there is no slowly varying function in this estimate). But since moreover for x ∈ [0, 1]

x -x m 2 G(dm) = x 2 0 G(m : u ≤ m 2 ≤ x 2 )du ≤ x 2 ≤ x 2-α
and the second part is proved.

Next, since lim x→0 |m|>x |m|G(dm) = R |m|G(dm) < +∞ while x 1-α → +∞, x → 0, the first part comes from [3, Eq. (5.21)]:

|m|>x |m|G(dm) ∼ 2 -α α -1 1 x x -x m 2 G(dm) ∼ 2 -α α -1 x 1-α , x → +∞.
Now, we prove (25) and (26). First for (25), we have:

|mµ(B(x,r))|≤1 (mµ(B(x, r))) 2 r -β-1 dxdrG(dm) ≤ R d ×R + +1/|µ(B(x,r))| -1/|µ(B(x,r))| m 2 G(dm) µ(B(x, r)) 2 r -β-1 dxdr ≤ C 2 R d ×R + |µ(B(x, r))| α-2 µ(B(x, r)) 2 r -β-1 dxdr ≤ C 2 R d ×R + |µ(B(x, r))| α r -β-1 dxdr
which is finite when µ ∈ M α,β (see Prop. 2.2-i)). Next for (26), we have:

|mµ(B(x,r))|≥1 |mµ(B(x, r))|r -β-1 dxdrG(dm) ≤ R d ×R + |m|>1/|µ(B(x,r))| |m|G(dm) |µ(B(x, r))|r -β-1 dxdr ≤ C 1 R d ×R + |µ(B(x, r))| α-1 |µ(B(x, r))|r -β-1 dxdr ≤ C 1 R d ×R + |µ(B(x, r))| α r -β-1 dxdr
which, again, is finite when µ ∈ M α,β .

Proof of Theorem 2.11

As in the proof of Theorem 2.4, it is enough to consider convergence of onedimensional marginals. The characteristic function of the Poisson integral M ρ (µ) -E[M ρ (µ)] is given by (13) and that of the generalized random field J(µ) is given by

ϕ J(µa) (θ) = exp R d ×R + ×R Ψ(θmµ(B(a -1 x, a -1 r)))C β r -1-β drdxG(dm) = exp R d ×R + Ψ G (θµ(B(x, r)))C β a d-β r -1-β drdx . From Lemma 3.1, |Ψ G (θµ(B(x, r)))| ≤ C|θ| α |µ(B(x, r 
))| α for some C > 0, so that condition (14) for g(r) = R d Ψ G (µ(B(x, r)))dx is given again by [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] when µ ∈ M α,β . Thus, Lemma 3.2 applies and together with lim

ρ→0 -ǫ λ(ρ)ρ β = a d-β entail lim ρ→0 -ǫ R d ×R + Ψ G (θµ(B(x, r))) dxλ(ρ)F ρ (dr) = C β a d-β R d ×R + Ψ G (θµ(B(x, r))) r -β-1 drdx.
Since one-dimensional convergence is enough, this achieves the proof of Theorem 2.11.

Proof of Proposition 2.13

We consider the subsequence a m = m 1/(d-β) . From the aggregate-similarity of the field J (see (11) in Proposition 2.12), we have:

1 a (d-β)/α m J(µ am ) f dd = 1 m 1/α m i=1 J i (µ) for independent copies J i , 1 ≤ i ≤ m, of J. But ϕ m -1/α P m i=1 J i (µ) (θ) = ϕ J(µ) (m -1/α θ) m = exp m R d ×R + Ψ G (m -1/α θµ(B(x, r)))C β r -1-β drdx ,
and from Lemma 3.1,

Ψ G (m -1/α θµ(B(x, r))) ∼ σ α |θ| α |µ(B(x, r))| α (1 -iǫ(θµ(B(x, r)) tan(πα/2)b).
The relation above is uniform both in x and r and it is thus integrable with respect to drdx. This yields

lim m→+∞ ϕ m -1/α P m i=1 J i (µ) (θ) = exp C β σ α |θ| α R d ×R + |µ(B(x, r))| α 1 -iǫ(θµ(B(x, r)) tan πα 2 b r -1-β drdx .
A standard argument completes the proof of convergence in distribution along an arbitrary sequences.

Proof of Theorem 2.16

We follow the argument in the proof of Theorem 2 in [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. Recall that here d < β < αd so that ǫ = -1 and the limits are taken when ρ → 0. Again, by linearity, using the Cramér-Wold device, it is enough to deal with one-dimensional marginals. From (13) with a change of variable, the characteristic function rewrites

ϕ n 2 (ρ) -1 (Mρ(µ)-E[Mρ(µ)]) (θ) = exp R d ×R + Ψ G θn 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r)) λ(ρ)dxF ρn 2 (ρ) -1/d (dr) . Let µ(dz) = φ(z)dz with φ ∈ L 1 (R d ) ∩ L α (R d ), then, from Lemma 4 in [7], as n 2 (ρ) → 0, n 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r)) → φ(x)c d r d
dx almost everywhere and

x → φ * (x) = sup v>0 c -1 d v -d |µ|(B(x, v)) ∈ L α (R d ). ( 27 
)
As a consequence,

R d ×R + Ψ G θn 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r)) λ(ρ)dxF ρn 2 (ρ) -1/d (dr) ∼ C β λ(ρ)ρ β n 2 (ρ) -β/d R d ×R + Ψ G θφ(x)c d r d r -β-1 drdx. (28) 
To see this, apply Lemma 3. Hence, g ρ satisfy condition (15) with p = d and q = αd. This proves (28).

From the definition of n 2 (ρ), λ(ρ)ρ β n 2 (ρ) -β/d = 1. Furthermore, by splitting the integration over R d into {x ∈ R d : θφ(x) ≥ 0} and {x ∈ R d : θφ(x) < 0} and performing a change of variable, we have where b γ is given in (12). This achieves the proof of Theorem 2.16.

R d ×R + Ψ G θφ(x)c d r d r -β-1 drdx = D

Proof of Theorem 2.19

The argument uses the same tools as in the proof of Theorem 2.16 and we only give here the main lines. From (13) and a change of variable, the characteristic function rewrites This proves Theorem 2.19.

  d.d.) to a limit random field. In what follows, we are interested in f.d.d. convergence on subspaces M of M and we will denote it by f M -→.

Remark 2 .

 2 14 As in Remark 2.8, when d = 1 and µ t = | • ∩(0, t)|, the field J(µ t ) coincides with the intermediate Telecom process obtained in the intermediate connection rate for the "continuous flow reward model" in [4, Th. 1], see also Remark 1.1 above.

Theorem 2 .

 2 16 Let d < β < αd and suppose that λ(ρ) → +∞ and λ(ρ)ρ β → 0 as ρ → 0. Then with n 2 (ρ) := λ(ρ) d/β ρ d and γ = β/d ∈ (1, α), we have

Remark 2 .

 2 21 When d = 1 and µ t = | • ∩(0, t)|, we recover ii) in Theorem 4 of [4].

  )) -|µ(a)| < |µ(a)|/2. Then, for every r < ε/2 and x ∈ B(a, r), |µ(B(x, r))| ≥ |µ(a)|/2. Integrating on x ∈ B(a, r), we get γ(r) ≥ (|µ(a)|/2) α c d r d

  rewrites γ(r) ≤ Cr p for p < β < d when r ≥ 1 which is in contradiction with (16) when µ(R d ) = 0. The bound (16) is obvious if µ(R d ) = 0 and if µ(R d ) = 0, let M be such that |µ|(B(0, M ) c ) ≤ |µ(R d )|/3. Then, for r ≥ M and any x ∈ B(0, r -M ), B(0, M ) ⊂ B(x, r) and |µ(B(x, r))| ≥ |µ(R d )| -|µ|(B(x, r) c ) ≥ 2|µ(R d )|/3. Integrating on x ∈ B(0, r -M ), we obtain γ(r) ≥ (2|µ(R d )|/3) α c d (r -M ) d . This implies (16).

Ψ

  G θφ(x)c d r d dx and to g ρ (r) = R d Ψ G θn 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r)) dx.Since |Ψ G (u)| ≤ C(|u| ∧ |u| α ), we have |g(r)| ≤ C min c d |θ| φ L 1 r d , c α d |θ| α φ α L α r αdso that condition (14) is satisfied with p = d and q = αd. Furthermore, since Ψ G is a K-Lipschitzian function for some finite K, we get|g(r)g ρ (r)| ≤ Kc d r d |θ| R d c -1 d r -d n 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r))φ(x) dx. The integrand c -1 d r -d n 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r))φ(x)converges to zero dx almost everywhere. Since its L α -norm is bounded by φ * L α + φ L α , it is uniformly integrable and as a consequence,lim ρ→0 R d c -1 d r -d n 2 (ρ) -1 µ(B(x, n 2 (ρ) 1/d r))φ(x) dx = 0.On the other hand, since for some C > 0, |Ψ G (v)| ≤ C|v| α , we obtain |g(r)g ρ (r)| ≤ C( φ * L α + φ L α )r αd .

  x)) γ -dx,where D is the complex conjugate ofD = d -1 c γ d R + Ψ G (r)r -γ-1 dr. We deduce ϕ n 2 (ρ) -1 (Mρ(µ)-E[Mρ(µ)]) (θ) = exp -σ γ φ |θ| γ 1 + ib φ ε(θ) tan πγ 2 where σ γ φ = σ γ γ R d |φ(x)| γ dx,andb φ = R + r -1-γ (rsin(r))dr tan(πγ/2)) R + r -1-γ (1cos(r))dr R ε(m)|m| γ G(dm) R |m| γ G(dm) R d ε(φ(x))|φ(x)| γ dx R d |φ(x)| γ dx . (29) But since for γ ∈ (1, 2), +∞ 0 e ixu -1ixu x 1+γ dx = |u| γ Γ(2γ) (1γ)(2γ) (cos(πγ/2)iε(u) sin(πγ/2)) see Lemma 2 in [3, XVII.4] (with p = 1, q = 0 therein), the first ratio on the righthand side (29) is -1 and we have b φ = b γ R R d ε(φ(x))|φ(x)| γ dx R R d |φ(x)| γ dx

ϕ n 3 ≤

 3 (ρ) -1 (Mρ(µ)-E[Mρ(µ)]) (θ) = exp R d ×R + Ψ G θn 3 (ρ) -1 µ(B(x, ρr)) λ(ρ)dxF (dr) . Let µ(dz) = φ(z)dz with φ ∈ L 1 (R d ) ∩ L α (R d ). Since as ρ → 0 θn 3 (ρ) -1 µ(B(x, ρr)) ∼ λ(ρ) -1/α c d r d φ(x) and λ(ρ) → +∞ lim ρ→0 λ(ρ)Ψ G θn 3 (ρ) -1 µ(B(x, ρr)) = -σ α c α d |θ| α r αd |φ(x)| α 1ε(θφ(x)) tan πα 2 bdx almost everywhere, and this latter function is integrable with respect to dxF (dr) since φ ∈ L α (R d ) and R + r αd F (dr) < +∞. Furthermore, with φ * given in (27), we derive the following bound:λ(ρ)Ψ G θn 3 (ρ) -1 µ(B(x, ρr)) ≤ λ(ρ)Cn 3 (ρ) -α |µ(B(x, ρr))| α Cr αd |φ * (x)| α .This upper bound is independent of ρ and integrable with respect to dxF (dr) since φ * ∈ L α (R d ). The dominated convergence theorem yields:lim ρ→0 R d ×R + Ψ G θn 3 (ρ) -1 µ(B(x, ρr)) λ(ρ)dxF (dr) = -σ α c α d |θ| α R +r αd F (dr) R d |φ(x)| α (1ε(θφ(x)) tan(πα/2)b)dx.

  It is self-similar with index H, with stationary increments and almost surely with continuous sample paths, see [2, p. 25] or [10, Sect. 8.4]. When d = 1, β ∈ (1, α) and µ t = | • ∩(0, t)|, the field Z α (µ t ) coincides with the Telecom process obtained in the fast connection rate for the "continuous flow reward model" in [4, Th. 2], see also Remark 1.1 above. Moreover for

	Remark 2.8

  dx) is a stable integral with respect to the α-stable measure M α with control measure σ α dx with σ α = σc d R + r αd F (dr) Remark 2.20 It is worth noting that in both Theorem 2.16 and Theorem 2.19, the stable regime is driven by the parameter γ = (β/d) ∧ α, since the normalization is λ(ρ) 1/γ ρ d and the stability index is γ.

	1/α
	and constant skewness equal to b.
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